Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 201
Filter
1.
Molecules ; 29(17)2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39275007

ABSTRACT

Agathisflavone is a flavonoid that exhibits anti-inflammatory and anti-oxidative properties. Here, we investigated the neuroprotective effects of agathisflavone on central nervous system (CNS) neurons and glia in the cerebellar slice ex vivo model of neonatal ischemia. Cerebellar slices from neonatal mice, in which glial fibrillary acidic protein (GFAP) and SOX10 drive expression of enhanced green fluorescent protein (EGFP), were used to identify astrocytes and oligodendrocytes, respectively. Agathisflavone (10 µM) was administered preventively for 60 min before inducing ischemia by oxygen and glucose deprivation (OGD) for 60 min and compared to controls maintained in normal oxygen and glucose (OGN). The density of SOX-10+ oligodendrocyte lineage cells and NG2 immunopositive oligodendrocyte progenitor cells (OPCs) were not altered in OGD, but it resulted in significant oligodendroglial cell atrophy marked by the retraction of their processes, and this was prevented by agathisflavone. OGD caused marked axonal demyelination, determined by myelin basic protein (MBP) and neurofilament (NF70) immunofluorescence, and this was blocked by agathisflavone preventative treatment. OGD also resulted in astrocyte reactivity, exhibited by increased GFAP-EGFP fluorescence and decreased expression of glutamate synthetase (GS), and this was prevented by agathisflavone pretreatment. In addition, agathisflavone protected Purkinje neurons from ischemic damage, assessed by calbindin (CB) immunofluorescence. The results demonstrate that agathisflavone protects neuronal and myelin integrity in ischemia, which is associated with the modulation of glial responses in the face of ischemic damage.


Subject(s)
Animals, Newborn , Cerebellum , Flavonoids , Neuroprotective Agents , Animals , Neuroprotective Agents/pharmacology , Mice , Cerebellum/metabolism , Cerebellum/drug effects , Flavonoids/pharmacology , Oligodendroglia/drug effects , Oligodendroglia/metabolism , Astrocytes/drug effects , Astrocytes/metabolism , Brain Ischemia/drug therapy , Brain Ischemia/metabolism , Brain Ischemia/pathology , Neurons/drug effects , Neurons/metabolism , Glucose/metabolism , Biflavonoids
2.
Acta Cir Bras ; 39: e394224, 2024.
Article in English | MEDLINE | ID: mdl-39140525

ABSTRACT

PURPOSE: Amid rising health awareness, natural products which has milder effects than medical drugs are becoming popular. However, only few systems can quantitatively assess their impact on living organisms. Therefore, we developed a deep-learning system to automate the counting of cells in a gerbil model, aiming to assess a natural product's effectiveness against ischemia. METHODS: The image acquired from paraffin blocks containing gerbil brains was analyzed by a deep-learning model (fine-tuned Detectron2). RESULTS: The counting system achieved a 79%-positive predictive value and 85%-sensitivity when visual judgment by an expert was used as ground truth. CONCLUSIONS: Our system evaluated hydrogen water's potential against ischemia and found it potentially useful, which is consistent with expert assessment. Due to natural product's milder effects, large data sets are needed for evaluation, making manual measurement labor-intensive. Hence, our system offers a promising new approach for evaluating natural products.


Subject(s)
Brain Ischemia , Disease Models, Animal , Gerbillinae , Animals , Brain Ischemia/pathology , Deep Learning , Brain/pathology , Brain/blood supply , Image Processing, Computer-Assisted/methods
3.
J Neuropathol Exp Neurol ; 82(9): 787-797, 2023 08 21.
Article in English | MEDLINE | ID: mdl-37558387

ABSTRACT

Stroke is one of the principal cerebrovascular diseases in human populations and contributes to a majority of the functional impairments in the elderly. Recent discoveries have led to the inclusion of electroencephalography (EEG) in the complementary prognostic evaluation of patients. The present study describes the EEG, behavioral, and histological changes that occur following cerebral ischemia associated with treatment by G1, a potent and selective G protein-coupled estrogen receptor 1 (GPER1) agonist in a rat model. Treatment with G1 attenuated the neurological deficits induced by ischemic stroke from the second day onward, and reduced areas of infarction. Treatment with G1 also improved the total brainwave power, as well as the theta and alpha wave activity, specifically, and restored the delta band power to levels similar to those observed in the controls. Treatment with G1 also attenuated the peaks of harmful activity observed in the EEG indices. These improvements in brainwave activity indicate that GPER1 plays a fundamental role in the mediation of cerebral injury and in the behavioral outcome of ischemic brain injuries, which points to treatment with G1 as a potential pharmacological strategy for the therapy of stroke.


Subject(s)
Brain Injuries , Brain Ischemia , Ischemic Stroke , Stroke , Rats , Humans , Animals , Aged , Ischemic Stroke/drug therapy , Stroke/complications , Stroke/drug therapy , Brain Ischemia/complications , Brain Ischemia/drug therapy , Brain Ischemia/pathology , Cerebral Infarction
4.
Tissue Cell ; 81: 102033, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36764059

ABSTRACT

AIMS: Brain ischemia and reperfusion may occur in several clinical conditions that have high rates of mortality and disability, compromising an individual's quality of life. Brain injury can affect organs beyond the brain, such as the gastrointestinal tract. The present study investigated the effects of cerebral ischemia on the ileum and jejunum during a chronic reperfusion period by examining oxidative stress, inflammatory parameters, and the myenteric plexus in Wistar rats. MAIN METHODS: Ischemia was induced by the four-vessel occlusion model for 15 min with 52 days of reperfusion. Oxidative stress and inflammatory markers were evaluated using biochemical techniques. Gastrointestinal transit time was evaluated, and immunofluorescence techniques were used to examine morpho-quantitative aspects of myenteric neurons. KEY FINDINGS: Brain ischemia and reperfusion promoted inflammation, characterized by increases in myeloperoxidase and N-acetylglycosaminidase activity, oxidative stress, and lipid hydroperoxides, decreases in superoxide dismutase and catalase activity, a decrease in levels of reduced glutathione, neurodegeneration in the gut, and slow gastrointestinal transit. SIGNIFICANCE: Chronic ischemia and reperfusion promoted a slow gastrointestinal transit time, oxidative stress, and inflammation and neurodegeneration in the small intestine in rats. These findings indicate that the use of antioxidant and antiinflammatory molecules even after a long period of reperfusion may be useful to alleviate the consequences of this pathology.


Subject(s)
Brain Ischemia , Reperfusion Injury , Rats , Animals , Rats, Wistar , Quality of Life , Reperfusion Injury/pathology , Intestine, Small/pathology , Oxidative Stress , Brain Ischemia/pathology , Antioxidants/pharmacology , Ischemia , Inflammation/pathology , Reperfusion
5.
Braz. J. Pharm. Sci. (Online) ; 59: e21555, 2023. graf
Article in English | LILACS | ID: biblio-1439494

ABSTRACT

ABSTRACT Positron emission tomography (PET) is a non-invasive nuclear imaging technique that uses radiotracers to track cell activity. The radiopharmaceutical 18F-fluoro-2-deoxyglucose ([18F] FDG) is most commonly used in nuclear medicine for the diagnosis of various diseases, including stroke. A stroke is a serious condition with high mortality and morbidity rates. Rosmarinic acid (RA) is a promising therapeutic agent that exerts neuroprotective effects against various neurological diseases. Therefore, this study aimed to evaluate the applicability of [18F]FDG/PET for investigating the neuroprotective effects of RA in case of a global stroke model in mice. The [18F]FDG/PET technique facilitates the observation of ischemia and reperfusion injuries in the brain. Moreover, the recovery of glucose metabolism in three specific brain regions, the striatum, superior colliculus, and inferior colliculus, was observed after preconditioning with RA. It was concluded that the [18F]FDG/PET technique may be useful for stroke diagnosis and the assessment of treatment response. In addition, a long-term longitudinal study using biochemical analysis in conjunction with functional imaging may provide further conclusive results regarding the effect of RA on cerebral ischemia.


Subject(s)
Animals , Male , Mice , Stroke/pathology , Positron-Emission Tomography/instrumentation , Brain Ischemia/pathology , Neuroprotective Agents/agonists , Radiopharmaceuticals/pharmacology
6.
Braz. J. Pharm. Sci. (Online) ; 58: e21219, 2022. tab, graf
Article in English | LILACS | ID: biblio-1420483

ABSTRACT

Abstract The aim of the present study is to investigate the cardioprotective effects of 18ß-glycyrrhetinic acid (18ß -GA) against oxidative and histological damage caused by global cerebral ischemia/ reperfusion (I/R) in C57BL/J6 mice. All male mice (n:40) were randomly divided into four groups: (1) sham-operated (Sham), (2) I/R, (3) 18ß-GA, and (4) 18ß -GA+I/R. Ischemia was not applied to the sham and 18ß-GA groups. In the I/R group, the bilateral carotid arteries were clipped for 15 min to induce ischemia, and the mice were treated with the vehicle for 10 days. In the 18ß-GA group, the mice were given 18ß-GA (100 mg/kg) for 10 days following a median incision without carotid occlusion. In the 18ß-GA+I/R group, the ischemic procedure performed to the I/R model was applied to the animals and afterwards they were intraperitoneally (i.p.) treated with 18ß-GA (100 mg/kg) for 10 days. It was found that global cerebral I/R increased TBARS levels and decreased antioxidant parameters. The 18ß-GA treatment decreased the level of TBARS and increased GSH, GPx, CAT, SOD activities. Also, the control group cardiac tissue samples were observed to have a normal histological appearance with the Hematoxylin-Eosin staining method. Histopathological damage was observed in the heart tissue samples belonging to the I/R group. The 18ß-GA treatment ameliorates oxidative and histological injury in the heart tissue after global ischemia reperfusion, and may be a beneficial alternative treatment


Subject(s)
Animals , Male , Mice , Cardiotonic Agents/adverse effects , Reperfusion/adverse effects , Brain Ischemia/pathology , Staining and Labeling/instrumentation , Oxidative Stress , Antioxidants/pharmacology
7.
Braz. J. Pharm. Sci. (Online) ; 58: e19677, 2022. tab, graf
Article in English | LILACS | ID: biblio-1383959

ABSTRACT

Abstract Blood-brain barrier (BBB) disruption, inflammation, and cell death are major pathogenic mechanisms in ischemic stroke. Dimethyl fumarate (DMF) has anti-inflammatory and immune-modulatory effects. So, this study aimed to elucidate the effects of DMF on brain ischemia in the middle cerebral artery occlusion (MCAO) model. 69 Sprague-Dawley male rats were allocated into a sham group that was just subjected to surgery stress; vehicle and DMF groups, after MCAO, received vehicle or 30 mg/kg DMF for three days. Neurological scores were evaluated every day. BBB disruption was evaluated by the extravasation of Evans blue. In addition to the measurement of brain water content, the total and infarct volume, numerical density, and the total number of neurons, non-neurons, and dead neurons in the right cortex were estimated by stereological methods. RT-PCR was done to analyze the expression levels of NF-κB and Nrf2. Although brain ischemia treatment with DMF did not have a significant effect on the infarction size, it improved neurobehavioral function, BBB disruption, cerebral edema, increased number of neurons, and expression of Nrf2. It also decreased the number of dead neurons and the expression of NF-κB. DMF beneficial effects on stroke may be mediated through both increase of the Nrf2 and decrease of NF-κB expression


Subject(s)
Animals , Male , Rats , Brain Ischemia/pathology , Therapeutic Uses , Dimethyl Fumarate/adverse effects , Brain Edema/pathology
8.
Pediatr Infect Dis J ; 40(9): e340-e343, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34288632

ABSTRACT

AIM: To describe a term newborn with acquired severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and multisystem involvement including seizures associated to ischemic lesions in the brain. BACKGROUND: Coronavirus disease 2019 (COVID-19) is predominantly a respiratory infection, but it may affect many other systems. Most pediatric COVID-19 cases range from asymptomatic to mild-moderate disease. There are no specific clinical signs described for neonatal COVID-19 infections. In children, severe central nervous system compromise has been rarely reported. CASE DESCRIPTION: We describe a 17-day-old newborn who acquired a SARS-CoV-2 infection in a family meeting that was admitted for fever, seizures and lethargy and in whom consumption coagulopathy, ischemic lesions in the brain and cardiac involvement were documented. CONCLUSIONS: SARS-CoV-2 neonatal infection can be associated with multi-organic involvement. In our patient, significant central nervous system compromise associated to ischemic lesions and laboratory findings of consumption coagulopathy were found. CLINICAL SIGNIFICANCE: Although neonatal SARS-CoV-2 infections are infrequent, they can be associated with multi-organic involvement. Neonatologists and pediatricians should be aware of this unusual way of presentation of COVID-19 in newborn infants.


Subject(s)
Brain Ischemia/virology , COVID-19/complications , Infant, Newborn, Diseases/virology , SARS-CoV-2/isolation & purification , Acyclovir/therapeutic use , Anti-Bacterial Agents/therapeutic use , Antiviral Agents/therapeutic use , Brain/diagnostic imaging , Brain Ischemia/pathology , COVID-19/pathology , Ceftriaxone/therapeutic use , Fever , Frontal Lobe/blood supply , Frontal Lobe/diagnostic imaging , Frontal Lobe/pathology , Humans , Infant, Newborn , Infant, Newborn, Diseases/drug therapy , Infant, Newborn, Diseases/pathology , Lethargy , Magnetic Resonance Imaging , Male , Nasopharynx/virology , Seizures , COVID-19 Drug Treatment
9.
Neurotherapeutics ; 17(4): 1907-1918, 2020 10.
Article in English | MEDLINE | ID: mdl-32632775

ABSTRACT

Neuroinflammation triggered by the expression of damaged-associated molecular patterns released from dying cells plays a critical role in the pathogenesis of ischemic stroke. However, the benefits from the control of neuroinflammation in the clinical outcome have not been established. In this study, the effectiveness of intranasal, a highly efficient route to reach the central nervous system, and intraperitoneal dexamethasone administration in the treatment of neuroinflammation was evaluated in a 60-min middle cerebral artery occlusion (MCAO) model in C57BL/6 male mice. We performed a side-by-side comparison using intranasal versus intraperitoneal dexamethasone, a timecourse including immediate (0 h) or 4 or 12 h poststroke intranasal administration, as well as 4 intranasal doses of dexamethasone beginning 12 h after the MCAO versus a single dose at 12 h to identify the most effective conditions to treat neuroinflammation in MCAO mice. The best results were obtained 12 h after MCAO and when mice received a single dose of dexamethasone (0.25 mg/kg) intranasally. This treatment significantly reduced mortality, neurological deficits, infarct volume size, blood-brain barrier permeability in the somatosensory cortex, inflammatory cell infiltration, and glial activation. Our results demonstrate that a single low dose of intranasal dexamethasone has neuroprotective therapeutic effects in the MCAO model, showing a better clinical outcome than the intraperitoneal administration. Based on these results, we propose a new therapeutic approach for the treatment of the damage process that accompanies ischemic stroke.


Subject(s)
Anti-Inflammatory Agents/administration & dosage , Brain Injuries/drug therapy , Brain Ischemia/drug therapy , Dexamethasone/administration & dosage , Ischemic Stroke/drug therapy , Administration, Intranasal , Animals , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/pathology , Brain/drug effects , Brain/pathology , Brain Injuries/mortality , Brain Injuries/pathology , Brain Ischemia/mortality , Brain Ischemia/pathology , Infarction, Middle Cerebral Artery/drug therapy , Infarction, Middle Cerebral Artery/mortality , Infarction, Middle Cerebral Artery/pathology , Ischemic Stroke/mortality , Ischemic Stroke/pathology , Male , Mice , Mice, Inbred C57BL
10.
Int. j. morphol ; 38(3): 523-529, June 2020. graf
Article in English | LILACS | ID: biblio-1098282

ABSTRACT

This study aimed to investigate the morphometric and the pattern of protein and gene expression related to the extrinsic apoptotic pathway in experimental focal cerebral ischemia and the hole of neuroprotection with hypothermia and ketoprofen. For this analysis, 120 rats were randomly divided into 3 groups (20 animals each): control - no surgery (20 animals); sham - simulation of surgery (20 animals); ischemic - focal ischemia for 1 hour, without reperfusion (80 animals) and divided into four subgroups with 20 animals each: ischemic + intraischemic hypothermia; ischemic + previous intravenous ketoprofen, and ischemic + hypothermia and ketoprofen. The infarct volume was measured using morphometric analysis of infarct areas defined by triphenyl tetrazolium chloride and the patterns of expression of the apoptosis genes (Fas, c-Flip, caspase-8 and caspase-3) and the apoptosis protein caspase-3 were evaluated by quantitative real-time PCR and immunohistochemistry, respectively. Hypo expression of genes of extrinsic pathway of apoptosis was observed: Fas receptor, c-Flip and caspase-8 in the ischemics areas. Increases in the gene and protein caspase-3 in the ischemic areas were also observed, and these increases were reduced by hypothermia and ketoprofen, also noted in the morphometric study. The caspases-3 increase suggests that this gene plays an important role in apoptosis, probably culminating in cell death and that the neuroprotective effect of hypothermia and ketoprofen is involved.


Este estudio tuvo como objetivo investigar la morfometría y el patrón de expresión de proteínas y genes relacionados con la vía apoptótica extrínseca en la isquemia cerebral focal experimental y el agujero de neuroprotección con hipotermia y ketoprofeno. Se dividieron aleatoriamente 120 ratas en 3 grupos (20 animales cada uno): control - sin cirugía (20 animales); simulación - simulación de cirugía (20 animales); isquemia isquemia focal durante 1 hora, sin reperfusión (80 animales) y dividida en cuatro subgrupos con 20 animales cada uno: isquemia + hipotermia intraisquémica; isquemia + ketoprofeno intravenoso previo, e isquemia + hipotermia y ketoprofeno. El volumen del infarto se midió utilizando un análisis morfométrico de áreas de infarto definidas por cloruro de trifenil tetrazolio y los patrones de expresión de los genes de apoptosis (Fas, c-Flip, caspase-8 y caspase-3) y la proteína de apoptosis caspase-3 fueron evaluados por PCR cuantitativa en tiempo real e inmunohistoquímica, respectivamente. Se observó hipoexpresión de genes de la vía extrínseca de la apoptosis: receptor Fas, c-Flip y caspasa-8 en las áreas isquémicas. También se observaron aumentos en el gen y la proteína caspasa-3 en las áreas isquémicas y estos aumentos se redujeron por hipotermia y ketoprofeno, también observado por estudio morfométrico. El aumento de caspasas-3 sugiere que este gen tiene un papel importante en la apoptosis, y probable causa de muerte celular, involucrando el efecto neuroprotector de la hipotermia y el ketoprofeno.


Subject(s)
Animals , Rats , Brain Ischemia/genetics , Brain Ischemia/metabolism , Immunohistochemistry , Brain Ischemia/pathology , Brain Ischemia/therapy , Ketoprofen/pharmacology , Apoptosis/genetics , Neuroprotective Agents/pharmacology , Disease Models, Animal , Caspase 3/genetics , Caspase 8/genetics , Real-Time Polymerase Chain Reaction , Hypothermia, Induced
11.
Clin Exp Pharmacol Physiol ; 47(3): 383-392, 2020 03.
Article in English | MEDLINE | ID: mdl-31732975

ABSTRACT

Pharmacological therapies for interrupting biochemical events of the ischaemic cascade and protecting against stroke in humans are as yet unavailable. Up to now, the neuroprotective activity in cerebral ischaemia of phycocyanobilin (PCB), a tetrapyrrolic natural antioxidant, has not been fully examined. Here, we evaluated if PCB protects PC12 neuronal cells against oxygen and glucose deprivation plus reperfusion, and its protective effects in a rat model of endothelin-1-induced focal brain ischaemia. PCB was purified from the cyanobacteria Spirulina platensis and characterized by spectrophotometric, liquid and gas chromatography and mass spectrometry techniques. In Wistar rats, PCB at 50, 100 and 200 µg/kg or phosphate-buffered saline (vehicle) was administered intraperitoneally at equal subdoses in a therapeutic schedule (30 minutes, 1, 3 and 6 hours after the surgery). Brain expression of myelin basic protein (MBP) and the enzyme CNPase was determined by immunoelectron microscopy. PCB was obtained with high purity (>95%) and the absence of solvent contaminants and was able to ameliorate PC12 cell ischaemic injury. PCB treatment significantly decreased brain infarct volume, limited the exploratory behaviour impairment and preserved viable cortical neurons in ischaemic rats in a dose-dependent manner, compared to the vehicle group. Furthermore, PCB at high doses restored the MBP and CNPase expression levels in ischaemic rats. An improved PCB purification method from its natural source is reported, obtaining PCB that is suitable for pharmacological trials showing neuroprotective effects against experimental ischaemic stroke. Therefore, PCB could be a therapeutic pharmacological alternative for ischaemic stroke patients.


Subject(s)
Brain Injuries/chemically induced , Brain Injuries/drug therapy , Brain Ischemia/chemically induced , Brain Ischemia/drug therapy , Endothelin-1/toxicity , Phycobilins/therapeutic use , Phycocyanin/therapeutic use , Animals , Brain Injuries/pathology , Brain Ischemia/pathology , Male , PC12 Cells , Rats , Rats, Wistar
12.
Rev. chil. neuropsicol. (En línea) ; 14(2): 35-39, dic. 2019. ilus
Article in Spanish | LILACS | ID: biblio-1102455

ABSTRACT

La isquemia cerebral es el tipo de accidente cerebrovascular más común, generando altas tasas de mortalidad y morbilidad a nivel mundial. El entendimiento de la fisiopatología de la lesión cerebral ha requerido de la implementación de modelos experimentales que permitan evaluar los fenómenos celulares, sobre todo aquellos a largo plazo. Por tal razón, el objetivo del presente trabajo fue evaluar las áreas exofocales a un mes y cuatro meses post-isquemia cerebral en un modelo experimental. Ratas Wistar fueron sometidas a una isquemia focal transitoria (t-MCAo) y un grupo fueron sacrificados al mes y otro grupo a los cuatro meses post-isquemia para su posterior análisis histológico. Los cortes fueron teñidos con Nissl y se realizó inmunohistoquímica de la proteína Tau. Nuestros resultados muestran tres áreas de lesión exofocal tanto al mes como a los cuatro meses post-isquemia: el giro dentado, la amígdala y el tálamo. Estas regiones se han asociado al control emocional, lo cual sugiere que a largo término post-isquemia se tengan en cuenta hallazgos clínicos que evalúen cambios emocionales en los pacientes que han sufrido un evento isquémico cerebral.


Cerebral ischemia is the most common type of stroke, which generates high mortality and morbidity rates worldwide. The understanding of the pathophysiology of brain injury has required the implementation of experimental models that allow the evaluation of cellular phenomena, especially those in the long-term. For this reason, the objective of the present work was to evaluate the exofocal areas at one month and four months after cerebral ischemia. Wistar rats were subjected to transient focal ischemia (t-MCAo) and one group was sacrificed one month and another group at four months' post-ischemia for subsequent histological analysis. The cuts were stained with Nissl and immunohistochemistry of the Tau protein was performed. Our results show three areas of exofocal lesion both one month and four months' post-ischemia: the thalamus, the dentate gyrus, and the amygdala. These regions have been associated with emotional control, which suggests that in the long-term post-ischemia clinical findings that evaluate emotional changes in patients who have suffered a cerebral ischemic event should be considered.


Subject(s)
Animals , Rats , Thalamus/pathology , Brain Ischemia/pathology , Dentate Gyrus/pathology , Amygdala/pathology , Immunohistochemistry , Disease Models, Animal
13.
Dis Markers ; 2019: 3745735, 2019.
Article in English | MEDLINE | ID: mdl-31781299

ABSTRACT

BACKGROUND AND PURPOSE: The thrombin-activatable fibrinolysis inhibitor (TAFI) is an important inhibitor of fibrinolysis and plays a critical role in the pathogenesis of arterial thrombosis; genetic polymorphisms of the TAFI gene affect its activity and increase the risk of thrombosis. Moreover, studies in young patients are still scarce. The aim was to examine the contribution of the Thr325Ile and Ala147Thr polymorphisms with ST acute myocardial infarction (STEMI) or idiopathic ischemic stroke (IIS) in the young Mexican population. METHODS: A total of 244 patients with STEMI ≤45 years of age and 244 controls. In a second study, 250 patients with IIS ≤45 years of age were recruited, including 250 controls. In both studies, cases and controls were matched by age and sex. The polymorphisms were determined in all participants by PCR-RFLP. RESULTS: There was significant difference in the Thr325Ile genotype distribution (P = 0.001) and allele frequency (P = 0.001) between STEMI and control groups, but no difference in the Ala147Thr genotype distribution (P = 0.24) and allele frequency (P = 0.46), neither in the Thr325Ile genotype distribution (P = 0.25) nor in the Ala147Thr genotype distribution (P = 0.46) or their allele frequencies; there was significant difference between IIS and the control group. There were independent factors for STEMI: the Ile allele (P = 0.01), type 2 diabetes mellitus (P = 0.001), hypertension (P = 0.001), smoking (P = 0.001), dyslipidemia (P = 0.001), and family history of atherothrombotic disease (P = 0.001). The independent factors for IIS were hypertension (P = 0.001), smoking (P < 0.01), and family history of atherothrombotic disease (P < 0.01). CONCLUSIONS: The Thr325Ile polymorphism, but no Ala147Thr polymorphism, represents an independent risk factor for STEMI in the young Mexican population.


Subject(s)
Brain Ischemia/genetics , Histone Acetyltransferases/genetics , Polymorphism, Single Nucleotide , ST Elevation Myocardial Infarction/genetics , Stroke/genetics , TATA-Binding Protein Associated Factors/genetics , Transcription Factor TFIID/genetics , Adult , Biomarkers , Brain Ischemia/pathology , Case-Control Studies , Female , Follow-Up Studies , Humans , Male , Middle Aged , Prognosis , Risk Factors , ST Elevation Myocardial Infarction/pathology , Stroke/pathology
14.
Arq Neuropsiquiatr ; 77(10): 689-695, 2019.
Article in English | MEDLINE | ID: mdl-31664344

ABSTRACT

OBJECTIVE: This study aimed to analyze the cerebellum of rats submitted to an experimental focal cerebral ischemia, by middle cerebral artery occlusion for 90 minutes, followed by reperfusion for 48 hours, associated with an alcoholism model. METHODS: Fifty adult Wistar rats were used, subdivided into five experimental groups: control group (C): animals submitted to anesthesia only; sham group (S): animals submitted to complete simulation of the surgical procedure; ischemic group (I): animals submitted to focal cerebral ischemia for 90 minutes followed by reperfusion for 48 hours; alcoholic group (A): animals that received daily absolute ethanol diluted 20% in water for four weeks; and, ischemic and alcoholic group (I + A): animals receiving the same treatment as group A and, after four weeks, submitted to focal cerebral ischemia for 90 minutes, followed by reperfusion for 48 hours. The cerebellum samples were collected and immunohistochemical analysis of Caspase-9 protein and serum analysis by RT-PCR of microRNAs miR-21, miR-126 and miR155 were performed. RESULTS: The expression of Caspase-9 was higher in groups I, A and I + A. In the microRNAs analyses, miR-126 was higher in groups A and I + A, miR-155 was higher in groups I and I + A. CONCLUSIONS: We conclude that apoptosis occurs in the cerebellar cortex, even if it is distant from the ischemic focus, and that microRNAs 126 and 155 show a correlation with cellular apoptosis in ischemic rats and those submitted to the chronic alcohol model.


Subject(s)
Alcoholism/pathology , Apoptosis , Brain Ischemia/pathology , Caspase 9/analysis , Cerebellum/pathology , MicroRNAs/blood , Alcoholism/blood , Animals , Brain Ischemia/blood , Cerebellum/chemistry , Immunohistochemistry , Infarction, Middle Cerebral Artery , Male , Random Allocation , Rats, Wistar , Real-Time Polymerase Chain Reaction , Reperfusion Injury/pathology , Time Factors
15.
Arq. neuropsiquiatr ; Arq. neuropsiquiatr;77(10): 689-695, Oct. 2019. graf
Article in English | LILACS | ID: biblio-1038728

ABSTRACT

ABSTRACT This study aimed to analyze the cerebellum of rats submitted to an experimental focal cerebral ischemia, by middle cerebral artery occlusion for 90 minutes, followed by reperfusion for 48 hours, associated with an alcoholism model. Methods Fifty adult Wistar rats were used, subdivided into five experimental groups: control group (C): animals submitted to anesthesia only; sham group (S): animals submitted to complete simulation of the surgical procedure; ischemic group (I): animals submitted to focal cerebral ischemia for 90 minutes followed by reperfusion for 48 hours; alcoholic group (A): animals that received daily absolute ethanol diluted 20% in water for four weeks; and, ischemic and alcoholic group (I + A): animals receiving the same treatment as group A and, after four weeks, submitted to focal cerebral ischemia for 90 minutes, followed by reperfusion for 48 hours. The cerebellum samples were collected and immunohistochemical analysis of Caspase-9 protein and serum analysis by RT-PCR of microRNAs miR-21, miR-126 and miR155 were performed. Results The expression of Caspase-9 was higher in groups I, A and I + A. In the microRNAs analyses, miR-126 was higher in groups A and I + A, miR-155 was higher in groups I and I + A. Conclusions We conclude that apoptosis occurs in the cerebellar cortex, even if it is distant from the ischemic focus, and that microRNAs 126 and 155 show a correlation with cellular apoptosis in ischemic rats and those submitted to the chronic alcohol model.


RESUMO O objetivo deste estudo foi analisar o cerebelo de ratos submetidos à isquemia cerebral focal experimental, por oclusão da artéria cerebral média por 90 minutos, seguida de reperfusão por 48 horas, associada a um modelo de alcoolismo. Métodos Foram utilizados 50 ratos Wistar adultos, subdivididos em cinco grupos experimentais: grupo controle (C): animais submetidos apenas à anestesia; grupo sham (S): animais submetidos à simulação completa do procedimento cirúrgico; grupo isquêmico (I): animais submetidos à isquemia cerebral focal por 90 minutos, seguidos de reperfusão por 48 horas; grupo alcoólico (A): animais que receberam etanol absoluto diário diluído em 20% em água por quatro semanas; e grupo isquêmico e alcoólico (I + A): animais que recebem o mesmo tratamento do grupo A e, após quatro semanas, submetidos à isquemia cerebral focal por 90 minutos, seguidos de reperfusão por 48 horas. As amostras de cerebelo foram coletadas e a análise imuno-histoquímica da proteína Caspase-9 e a análise sérica por RT-PCR dos microRNAs miR-21, miR-126 e miR155 foram realizadas. Resultados A expressão de Caspase-9 foi maior nos grupos I, A e I + A. Nas análises de microRNAs, o miR-126 foi maior nos grupos A e I + A, o miR-155 foi maior nos grupos I e I + A. Conclusões Concluímos que a apoptose ocorre no córtex cerebelar, mesmo distante do foco isquêmico, e que os microRNAs 126 e 155 mostram uma correlação com a apoptose celular em ratos isquêmicos e submetidos ao modelo crônico de álcool.


Subject(s)
Animals , Male , Cerebellum/pathology , Brain Ischemia/pathology , Apoptosis , MicroRNAs/blood , Alcoholism/pathology , Caspase 9/analysis , Time Factors , Immunohistochemistry , Reperfusion Injury/pathology , Random Allocation , Cerebellum/chemistry , Brain Ischemia/blood , Rats, Wistar , Infarction, Middle Cerebral Artery , Alcoholism/blood , Real-Time Polymerase Chain Reaction
16.
Cell Transplant ; 28(9-10): 1306-1320, 2019.
Article in English | MEDLINE | ID: mdl-31161782

ABSTRACT

Amniotic fluid has been investigated as new cell source for stem cells in the development of future cell-based transplantation. This study reports isolation of viable human amniotic fluid-derived stem cells, labeled with multimodal iron oxide nanoparticles, and its effect on focal cerebral ischemia-reperfusion injury in Wistar rats. Middle cerebral artery occlusion of 60 min followed by reperfusion for 1 h, 6 h, and 24 h was employed in the present study to produce ischemia and reperfusion-induced cerebral injury in rats. Tests were employed to assess the functional outcome of the sensorimotor center activity in the brain, through a set of modified neurological severity scores used to assess motor and exploratory capacity 24 h, 14, and 28 days after receiving cellular therapy via tail vein. In our animal model of stroke, transplanted cells migrated to the ischemic focus, infarct volume decreased, and motor deficits improved. Therefore, we concluded that these cells appear to have beneficial effects on the ischemic brain, possibly based on their ability to enhance endogenous repair mechanisms.


Subject(s)
Amniotic Fluid/metabolism , Behavior, Animal , Brain Ischemia , Stem Cell Transplantation , Stem Cells/metabolism , Stroke , Adult , Animals , Brain Ischemia/metabolism , Brain Ischemia/pathology , Brain Ischemia/physiopathology , Brain Ischemia/therapy , Disease Models, Animal , Female , Heterografts , Humans , Pregnancy , Rats , Rats, Wistar , Stem Cells/pathology , Stroke/metabolism , Stroke/pathology , Stroke/physiopathology , Stroke/therapy
17.
Eur J Pharmacol ; 857: 172420, 2019 Aug 15.
Article in English | MEDLINE | ID: mdl-31136761

ABSTRACT

Stroke is the second cause of death and first cause of physical disability around the world; it affects the brain parenchyma through oxygen deficiency and spreads excitotoxicity. The complexity of the disease has made it difficult to find effective therapies. It is necessary to identify new treatments that effectively act within the narrow therapeutic window but also offer long-term protection poststroke. Our previous work found that oral linalool reversed the hippocampal and peripheral pro-inflammatory phospholipidomic biomarkers in ischemic rats; based on these observations, the "proof of concept" was to demonstrate that intranasal administration of linalool has a faster delivery to the central nervous system to protect it after focal ischemia in Wistar rats. The ischemic animals treated with linalool (25 mg/kg) showed a decrease in infarct volume at 24 h and seven days, and the treated animals had better neurological and motor skills at both poststroke times. Additionally, one month after daily intranasal administration of linalool, the ischemic rats showed improved relearning performance in the Morris water maze test. They also exhibited a reduction in microgliosis and decreased COX2, IL-1Beta and Nrf2 markers in the cerebral cortex and hippocampus. In astrocyte and microglial cultures, linalool reduced pro-inflammation and had a potent effect on microglial cells, generating Nrf2 subcellular redistribution under glutamate excitotoxicity conditions. Together, our findings indicate an acute and chronic recovery after ischemia induced by a daily intranasal puff of linalool, which mainly acts on microglial populations with anti-inflammatory actions.


Subject(s)
Acyclic Monoterpenes/administration & dosage , Acyclic Monoterpenes/pharmacology , Brain Ischemia/pathology , Microglia/drug effects , Neuroprotective Agents/administration & dosage , Neuroprotective Agents/pharmacology , Acyclic Monoterpenes/pharmacokinetics , Administration, Intranasal , Animals , Astrocytes/drug effects , Astrocytes/metabolism , Astrocytes/pathology , Brain Ischemia/metabolism , Cerebral Cortex/drug effects , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , Cyclooxygenase 2/metabolism , Cytokines/metabolism , Dose-Response Relationship, Drug , Hippocampus/drug effects , Hippocampus/metabolism , Hippocampus/pathology , Intracellular Space/drug effects , Intracellular Space/metabolism , Male , Microglia/metabolism , Microglia/pathology , NF-E2-Related Factor 2/metabolism , Neuroprotective Agents/pharmacokinetics , Protein Transport/drug effects , Rats , Rats, Wistar , Tissue Distribution
18.
Stroke ; 50(4): 1021-1025, 2019 04.
Article in English | MEDLINE | ID: mdl-30862257

ABSTRACT

Background and Purpose- Inhibition of brain NKCC1 (Na+-K+-Cl- cotransporter 1) with bumetanide (BMT) is of interest in ischemic stroke therapy. However, its poor brain penetration limits the application. In this study, we investigated the efficacy of 2 novel NKCC1 inhibitors, a lipophilic BMT prodrug STS5 (2-(Dimethylamino)ethyl 3-(butylamino)-4-phenoxy-5-sulfamoyl-benzoate;hydrochloride) and a novel NKCC1 inhibitor STS66 (3-(Butylamino)-2-phenoxy-5-[(2,2,2-trifluoroethylamino)methyl]benzenesulfonamide), on reducing ischemic brain injury. Methods- Large-vessel transient ischemic stroke in normotensive C57BL/6J mice was induced with 50-min occlusion of the middle cerebral artery and reperfusion. Focal, permanent ischemic stroke in angiotensin II (Ang II)-induced hypertensive C57BL/6J mice was induced by permanent occlusion of distal branches of middle cerebral artery. A total of 206 mice were randomly assigned to receive vehicle DMSO, BMT, STS5, or STS66. Results- Poststroke BMT, STS5, or STS66 treatment significantly decreased infarct volume and cerebral swelling by ≈40% to 50% in normotensive mice after transient middle cerebral artery occlusion, but STS66-treated mice displayed better survival and sensorimotor functional recovery. STS5 treatment increased the mortality. Ang II-induced hypertensive mice exhibited increased phosphorylatory activation of SPAK (Ste20-related proline alanine-rich kinase) and NKCC1, as well as worsened infarct and neurological deficit after permanent distal middle cerebral artery occlusion. Conclusions- The novel NKCC1 inhibitor STS66 is superior to BMT and STS5 in reducing ischemic infarction, swelling, and neurological deficits in large-vessel transient ischemic stroke, as well as in permanent focal ischemic stroke with hypertension comorbidity.


Subject(s)
Brain Ischemia/drug therapy , Brain/drug effects , Recovery of Function/drug effects , Sodium Potassium Chloride Symporter Inhibitors/therapeutic use , Solute Carrier Family 12, Member 2 , Stroke/drug therapy , Animals , Brain/pathology , Brain Ischemia/pathology , Disease Models, Animal , Female , Male , Mice , Rotarod Performance Test , Sodium Potassium Chloride Symporter Inhibitors/pharmacology , Stroke/pathology , Treatment Outcome
19.
Ecotoxicol Environ Saf ; 174: 557-565, 2019 Jun 15.
Article in English | MEDLINE | ID: mdl-30865911

ABSTRACT

Stroke is one of the main causes of human disability worldwide. Ischemic stroke is mostly characterized by metabolic collapse and fast tissue damage, followed by secondary damage in adjacent regions not previously affected. Heavy metals intoxication can be associated with stroke incidence, because of their damaging action in the vascular system. Mercury, in particular, possesses a high tropism by metabolically active regions, such as the brain. In the present study we sought to evaluate whether methylmercury (MeHg) intoxication can aggravate the tissue damage caused by an ischemic stroke induced by microinjections of endothelin-1 (ET-1) into the motor cortex of adult rats. Following MeHg intoxication by gavage (0.04 mg/kg/day) during 60 days, the animals were injected with ET-1 (1 µl, 40 pmol/µl) or vehicle (1 µl). After 7 days, all animals were submitted to behavioral tests and then their brains were processed to biochemical and immunohistochemical analyses. We observed that long-term MeHg intoxication promoted a significant Hg deposits in the motor cortex, with concomitant increase of microglial response, followed by reduction of the neuronal population following ischemia and MeHg intoxication, as well as disturbance in the antioxidant defense mechanisms by misbalance of oxidative biochemistry with increase of both lipid peroxidation and nitrite levels, associated to behavioral deficits. MeHg exposure and cortical ischemia demonstrated that both injuries are able of causing significant neurobehavioural impairments in motor coordination and learning accompanied of an exacerbated microglial activation, oxidative stress and neuronal loss in the motor cortex, indicating that MeHg as a source of metabolic disturbance can act as an important increasing factor of ischemic events in the brain.


Subject(s)
Brain Ischemia/metabolism , Brain Ischemia/physiopathology , Methylmercury Compounds/toxicity , Stroke/metabolism , Stroke/physiopathology , Animals , Brain/drug effects , Brain/metabolism , Brain Ischemia/pathology , Comorbidity , Lipid Peroxidation/drug effects , Male , Methylmercury Compounds/pharmacokinetics , Motor Cortex/drug effects , Motor Cortex/metabolism , Neurons/drug effects , Oxidative Stress , Rats , Rats, Wistar , Stroke/pathology
20.
Biomed Res Int ; 2019: 8480468, 2019.
Article in English | MEDLINE | ID: mdl-30800679

ABSTRACT

Ischemic stroke is a neurovascular disorder caused by reduced or blockage of blood flow to the brain, which may permanently affect motor and cognitive abilities. The diagnostic of stroke is performed using imaging technologies, clinical evaluation, and neuropsychological protocols, but no blood test is available yet. In this work, we analyzed amino acid concentrations in blood plasma from poststroke patients in order to identify differences that could characterize the stroke etiology. Plasma concentrations of sixteen amino acids from patients with chronic ischemic stroke (n = 73) and the control group (n = 16) were determined using gas chromatography coupled to mass spectrometry (GC-MS). The concentration data was processed by Partial Least Squares-Discriminant Analysis (PLS-DA) to classify patients with stroke and control. The amino acid analysis generated a first model able to discriminate ischemic stroke patients from control group. Proline was the most important amino acid for classification of the stroke samples in PLS-DA, followed by lysine, phenylalanine, leucine, and glycine, and while higher levels of methionine and alanine were mostly related to the control samples. The second model was able to discriminate the stroke subtypes like atherothrombotic etiology from cardioembolic and lacunar etiologies, with lysine, leucine, and cysteine plasmatic concentrations being the most important metabolites. Our results suggest an amino acid biosignature for patients with chronic stroke in plasma samples, which can be helpful in diagnosis, prognosis, and therapeutics of these patients.


Subject(s)
Amino Acids/blood , Brain Ischemia/blood , Plasma/metabolism , Stroke/blood , Aged , Brain Ischemia/pathology , Discriminant Analysis , Female , Humans , Male , Middle Aged , Prognosis , Stroke/pathology
SELECTION OF CITATIONS
SEARCH DETAIL