Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 150
Filter
Add more filters











Publication year range
1.
Chemosphere ; 364: 143019, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39103100

ABSTRACT

An integrated chemical and mineralogical characterization approach was applied to smelter wastes collected from 50-year-old dump sites in Argentina. Characterization included pseudo-total element concentrations, acid generation/neutralization potential, sequential extractions, pH-dependent leaching kinetics, and mineralogical analysis of all residues. These analyses provided detailed information on the reactivity of the minerals in the waste material and associated metal release. Cadmium and Zn were the elements of greatest environmental concern due to their high mobility. On average, the release of Zn and Cd in pH-dependent leaching essays reached 17.6% (up to 5.24 mg g-1) and 52.7% (up to 0.02 mg g-1) of the pseudo-total content, respectively. Moreover, Cd and Zn were also the metals that showed the higher proportions of labile fractions associated to the adsorbed and exchangeable fraction (60-92% for Cd and 19-38% for Zn). Since Cd and Zn concentrations in the residue are not high enough to form their own minerals, a large proportion of these elements would be weakly adsorbed on Fe oxyhydroxides. In contrast, the low release of Cu, Pb and Fe would be associated with these elements being incorporated into the crystalline structure of insoluble or very poorly soluble minerals. Lead is incorporated into plumbojarosite and anglesite. Copper was mainly in association with Fe oxyhydroxides and may also have been incorporated into the plumbojarosite structure. The latter could act as a sink especially for Pb under the acidic conditions of the smelter residue. Despite the elevated concentrations of Pb observed in the residue, it showed a very low mobility (≈0.1%), indicating that it is mostly stabilized. Nevertheless, the smelter residue is a continuous source of metals requiring remediation.


Subject(s)
Cadmium , Copper , Iron , Lead , Zinc , Argentina , Lead/analysis , Lead/chemistry , Cadmium/analysis , Cadmium/chemistry , Zinc/analysis , Zinc/chemistry , Iron/chemistry , Iron/analysis , Copper/analysis , Copper/chemistry , Metals, Heavy/analysis , Metals, Heavy/chemistry , Metallurgy , Environmental Monitoring , Chemical Fractionation , Minerals/chemistry , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry , Soil Pollutants/analysis , Soil Pollutants/chemistry
2.
Environ Sci Pollut Res Int ; 31(35): 47866-47881, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39012529

ABSTRACT

The organic xerogel (OX) was synthesized through sol-gel polymerization of formaldehyde and resorcinol in inverse emulsion using Na2CO3 as a catalyst. Meanwhile, OX containing sepiolite (OX-Sep) and vermiculite (OX-Ver) were prepared similarly to OX but adding clays during synthesis. All materials were mesoporous and presented spherical morphology, and the surface of these materials exhibited an acidic character because the concentration of acidic sites was higher than those of basic sites. Cd(II) adsorption from aqueous solutions onto OX, OX-Sep, and OX-Ver was examined, and the OX-Sep showed the highest adsorption capacity towards Cd(II) of 189.7 mg/g, being 1.5, 2, and 36 times higher than that of OX-Ver, OX, and Sep. The OX-Sep capacity for adsorbing Cd(II) was significantly lessened by decreasing the pH from 7 to 4 and raising the ionic strength from 0.01 N to 0.1 N. This trend was ascribed to electrostatic attraction between the Cd+2 in water and the negatively charged surface of OX-Sep. Besides, desorption studies at pH 4 showed that the average desorption percentage of Cd(II) adsorbed on OX-Sep was 80%. The characterization results and the effect of the operating conditions on the adsorption capacity proved that electrostatic attraction and cation exchange play a crucial role in the adsorption mechanism.


Subject(s)
Aluminum Silicates , Cadmium , Microspheres , Adsorption , Cadmium/chemistry , Aluminum Silicates/chemistry , Magnesium Silicates/chemistry , Water Pollutants, Chemical/chemistry , Hydrogen-Ion Concentration , Gels/chemistry
3.
Photochem Photobiol Sci ; 23(5): 997-1010, 2024 May.
Article in English | MEDLINE | ID: mdl-38693447

ABSTRACT

Firefly luciferases emit yellow-green light and are pH-sensitive, changing the bioluminescence color to red in the presence of heavy metals, acidic pH and high temperatures. These pH and metal-sensitivities have been recently harnessed for intracellular pH indication and toxic metal biosensing. However, whereas the structure of the pH sensor and the metal binding site, which consists mainly of two salt bridges that close the active site (E311/R337 and H310/E354), has been identified, the specific role of residue H310 in pH and metal sensing is still under debate. The Amydetes vivianii firefly luciferase has one of the lowest pH sensitivities among the group of pH-sensitive firefly luciferases, displaying high bioluminescent activity and special spectral selectivity for cadmium and mercury, which makes it a promising analytical reagent. Using site-directed mutagenesis, we have investigated in detail the role of residue H310 on pH and metal sensitivity in this luciferase. Negatively charged residues at position 310 increase the pH sensitivity and metal sensitivity; H310G considerably increases the size of the cavity, severely impacting the activity, H310R closes the cavity, and H310F considerably decreases both pH and metal sensitivities. However, no substitution completely abolished pH and metal sensitivities. The results indicate that the presence of negatively charged and basic side chains at position 310 is important for pH sensitivity and metals coordination, but not essential, indicating that the remaining side chains of E311 and E354 may still coordinate some metals in this site. Furthermore, a metal binding site search predicted that H310 mutations decrease the affinity mainly for Zn, Ni and Hg but less for Cd, and revealed the possible existence of additional binding sites for Zn, Ni and Hg.


Subject(s)
Fireflies , Histidine , Luciferases, Firefly , Mutagenesis, Site-Directed , Hydrogen-Ion Concentration , Animals , Luciferases, Firefly/metabolism , Luciferases, Firefly/chemistry , Luciferases, Firefly/genetics , Fireflies/enzymology , Histidine/chemistry , Histidine/metabolism , Color , Metals, Heavy/chemistry , Metals, Heavy/metabolism , Mercury/chemistry , Mercury/metabolism , Cadmium/chemistry , Cadmium/metabolism
4.
Int J Biol Macromol ; 258(Pt 1): 128894, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38134983

ABSTRACT

Hemicellulose is widely available in nature, is a sustainable resource and has a wide range of applications. Among them, adsorption stands out for the removal of potentially toxic ions. Thus, in the study, the adsorption of Cd2+, Pb2+ and Hg2+ ions in two hemicellulose matrices were elucidated through computational simulations using density functional theory. Molecular electrostatic potential and frontier molecular orbitals demonstrated whether the interactions could happen. Four interaction complexes were highlighted due to the interaction energy criteria, ΔEBind, ΔH and ΔG < 0.00 kcal mol-1, that is: Hm1… Pb (1); Hm2… Pb (3); Hm2…Cd (4) and Hm2…Hg (4) and the results show that they occur through physisorption. In structural parameter studies, interaction distances smaller than 3000 Å were identified, which ranged from 2.253 Å to 2.972 Å. From the analysis of the topological parameters of QTAIM, it was possible to characterize the intensities of the interactions, as well as their nature, which were partially covalent or electrostatic in nature. Finally, based on the theoretical results, it can be affirmed that the hemicellulose can interact with Cd2+, Pb2+ and Hg2+ ions, evidencing that this study can support further experimental essays to remove contaminants from effluents.


Subject(s)
Mercury , Polysaccharides , Water Pollutants, Chemical , Cadmium/chemistry , Lead , Adsorption , Thermodynamics , Ions , Models, Theoretical , Water Pollutants, Chemical/analysis
5.
Article in English | MEDLINE | ID: mdl-37095691

ABSTRACT

The humic compost obtained from the treatment of tobacco from smuggled cigarettes (SCT) and industrial sewage sludge (ISS) was evaluated as adsorbent for Cd (II) in aqueous solution, for possible decontamination of water resources. Optimum conditions were found at pH 5 and a 3 g/L adsorbent concentration, which presented 92% Cd (II) removal and maximum adsorption capacity of 28.546 mg/g. The pseudo-second-order kinetic model presented the best fit, pointing 120 min as the time needed to attain a steady state. FTIR and EDX results suggest the formation of coordinated Cd (II) bonds by functional groups between the compost and the solution. The results obtained in real samples showed that, even under different environmental conditions, the Cd (II) adsorption varied between 80.05 and 91.61%. The results indicated that the compost evaluated can be used for remediation of Cd (II)-contaminated water resources.


Subject(s)
Composting , Water Pollutants, Chemical , Cadmium/chemistry , Adsorption , Nicotiana , Sewage , Water Pollutants, Chemical/analysis , Water , Kinetics , Hydrogen-Ion Concentration
6.
Anal Methods ; 14(30): 2920-2928, 2022 08 04.
Article in English | MEDLINE | ID: mdl-35861161

ABSTRACT

In this paper we present the determination of ultratraces of cadmium ions in water by means of a minicolumn (MC) flow-through preconcentration system coupled with graphite furnace atomic absorption spectrometry. The core of the system is a lab-made ion imprinted magnetic organosilica nanocomposite which is employed as filler of the MC for the selective retention of the analyte. In this case superparamagnetic magnetite nanoparticles were coated with an amine-functionalized shell and ion imprinted with Cd(II) by a simple sol-gel co-condensation method. The setup was completed with the inclusion of a magnet fixed around the packed MC. This assembly - which is studied with an MII material for the first time here - allowed a homogeneous distribution of the solid on the walls of the MC, leaving a hole in the center and enabling the absence of material bleeding or obstructions to the free movement of fluids. Ion imprinted (MII) and non-imprinted (MNI) materials were studied for comparison purposes. Both were characterized and compared by DRX, FTIR, and SEM and their magnetic behavior by magnetization curves. Batch experiments showed an equilibration time of less than 10 minutes and a maximum adsorption pH of around 7 for both solids. The maximum capacity for MII was greater than that of MNI (200 mg g-1 and 30 mg g-1 respectively) and thus, the former was chosen for analytical purposes. Under MC dynamic conditions, sample and elution flow rates, volumes of the sample and eluant, and type and concentration of the most suitable eluant have been thoroughly investigated and optimized. Under the optimal experimental conditions, the MII filler showed a preconcentration factor of 200, a limit of detection of 0.64 ng L-1, a linear range of 2.5-100 ng L-1, RSD% of 1.9 (n = 6; 10 ng L-1) and a lifetime of more than 800 cycles of concentration-elution with no loss of sensitivity or need for refilling. The effect of potentially interfering ions on the percent recovery of cadmium was also studied. The proposed method was successfully applied to the determination of traces of Cd(II) in osmosis and tap water with recoveries of 98.0-101.3%. A comparison with similar methods is also provided.


Subject(s)
Graphite , Nanocomposites , Cadmium/analysis , Cadmium/chemistry , Magnetic Phenomena , Spectrophotometry, Atomic/methods , Water
7.
Environ Technol ; 43(24): 3742-3754, 2022 Oct.
Article in English | MEDLINE | ID: mdl-34024261

ABSTRACT

We have developed a clean route for the modification of polyvinylchloride surface (PVC) with 4-amino-5-hydrazino-1,2,4-triazole-3-thiol molecule. The modification reaction was investigated through Fourier Transform Infrared Spectroscopy (FTIR) and X-ray Photoelectron Spectroscopy (XPS) analysis. According to our findings, S-H groups are responsible to the molecule attachment and nitrogen atoms are directly involved in metal ion coordination. These results are in agreement with the pseudo-second-order kinetic model, which infers that chemisorption is the main mechanism for metal removal. Adsorption isotherms of Cd(II), Cu(II) and Pb(II) follow the Langmuir model and the results indicated that Ns values are 0.39, 0.52 and 0.15 mmol g-1, respectively. The calculated Ømax values for Cu(II), Pb(II) and Cd(II) were 3.93, 2.95 and 1.13, respectively, indicating that three types of complex are formed depending on the adsorbed species. Therefore, it can be concluded that PVC use as adsorbent is feasible since it requires a simple modification reaction with nontoxic and low-cost solvents.


Subject(s)
Environmental Pollutants , Metals, Heavy , Water Pollutants, Chemical , Adsorption , Cadmium/chemistry , Chlorides , Hydrogen-Ion Concentration , Kinetics , Lead , Nitrogen , Polyvinyl Chloride , Polyvinyls , Solvents , Spectroscopy, Fourier Transform Infrared , Water/chemistry , Water Pollutants, Chemical/chemistry
8.
Dalton Trans ; 50(13): 4470-4485, 2021 Apr 07.
Article in English | MEDLINE | ID: mdl-33877166

ABSTRACT

Optical sensors with high sensitivity and selectivity, as important analytical tools for chemical and environmental research, can be realized by straightforward synthesis of luminescent one-, two- and three-dimensional Zn(ii) and Cd(ii) crystalline coordination arrays (CPs and MOFs). In these materials with emission centers typically based on charge transfer and intraligand emissions, the quantitative detection of specific analytes, as pesticides or anions, is probed by monitoring real-time changes in their photoluminescence and color emission properties. Pesticides/herbicides have extensive uses in agriculture and household applications. Also, a large amount of metal salts of cyanide is widely used in several industrial processes such as mining and plastic manufacturing. Acute or chronic exposure to these compounds can produce high levels of toxicity in humans, animals and plants. Due to environmental concerns associated with the accumulation of these noxious species in food products and water supplies, there is an urgent and growing need to develop direct, fast, accurate and low-cost sensing methodologies. In this critical frontier, we discuss the effective strategies, chemical stability, luminescence properties, sensitivity and selectivity of recently developed hybrid Zn(ii)/Cd(ii)-organic materials with analytical applications in the direct sensing of pesticides, herbicides and cyanide ions in the aqueous phase and organic solvents.


Subject(s)
Cadmium/chemistry , Coordination Complexes/chemistry , Fluorescent Dyes/chemistry , Herbicides/analysis , Pesticides/analysis , Zinc/chemistry , Coordination Complexes/chemical synthesis , Fluorescent Dyes/chemical synthesis , Photochemical Processes
9.
Article in English | MEDLINE | ID: mdl-33493080

ABSTRACT

In this work, an effective and simple method is proposed for the simultaneous determination of cadmium, lead and copper in chocolate samples by Square Wave Anodic Stripping Voltammetry (SWASV). An ultrasonic bath was used for the extraction of cadmium, lead and copper from fourteen chocolate samples using HNO3 solution (7 mol L-1). The electrochemical system consisted of a cell with three electrodes and HCl solution (10 mmol L-1) as the supporting electrolyte. An efficient extraction of the metals (~100%) was attained after 1 h of ultrasonic pre-treatment. Quantitative analysis was carried out by the standard addition method. Good linearity, precision and accuracy were obtained in the range of concentrations examined. The accuracy was evaluated by means of a reference sample of spiked skim milk powder (BCR 151) to prove the reliability of the method. Detection limits (LOD) of 0.089, 0.059 and 0.018 µg g-1 were found for cadmium, copper and lead, respectively, in the chocolate samples. Concentrations in chocolate samples were 4.30-138 µg g-1 for Cu and 0.83-27.9 µg g-1 for Pb, with no significant Cd. The simultaneous determination brings advantages to other methods already reported for chocolate analysis and the samples preparation proposed avoids the traditional sample mineralization step. These characteristics show this new method is especially attractive for case studies and routine analysis.


Subject(s)
Cadmium/chemistry , Chocolate/analysis , Copper/chemistry , Food Contamination/analysis , Lead/chemistry , Animals , Cattle , Electrochemical Techniques , Electrodes , Food Safety , Limit of Detection , Milk/chemistry , Milk/standards , Reproducibility of Results
10.
Ecotoxicol Environ Saf ; 211: 111843, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33465626

ABSTRACT

Geothermal energy is a low-pollution energy source. However, air, soil, and water near geothermal plants may be affected by their operation. One of the largest geothermal energy sources in the world, Cerro Prieto, has a capacity of 720 MW and is located in northwest Mexico near an agricultural area. The abstracted geothermal fluids, which are enriched with arsenic (As), boron (B), lead (Pb), cadmium (Cd), and other heavy metals, are either reinjected into the aquifer or sent to an evaporation pond located in the geothermal plant. Because spills have occurred in other geothermal zones, it is important to evaluate the effect of those contaminants on the soils of the surrounding area and their possible infiltration into shallow groundwater. To that aim, soils (one chromic Vertisol and two calcic Regosols) from three sites near the Cerro Prieto Geothermal Plant were sampled to evaluate their behavior regarding As, Pb, and B retention. Batch experiments were carried out using the soils as the sorbent and geothermal water from three geothermal production wells as the sorbate. Raw water concentrations in each well were as follows: As: 0.2442 mg/L, 0.2774 mg/L, and mg/L; B: 18.409 mg/L, 13.5075 mg/L, and 16.646 mg/L; and Pb: 0.22 mg/L, 0.13 mg/L, and 0.26 mg/L. The physicochemical characteristics of the soils were determined and compared to the experimental results. A good adjustment of the chromic Vertisol sample to Freundlich isotherms was observed for As (r2 > 0.9), followed by Pb (r2 = 0.61), and B (r2 > 0.5). As retention also showed a good adjustment to the Langmuir model (r2 > 0.9). The retention followed the order Pb >As ≫B in one of the two calcic Regosols, while the other only retained Pb ≫ As. Cationic exchange capacity; clay minerals; carbonate; organic matter; and iron, aluminum, and manganese amorphous and crystalline oxides influenced the soils' retention capacities. Irrigation with geothermal water could not imply a toxicity risk to plants grown in the chromic Vertisol soil due to its high Pb and As sorption capacity. Pb concentration could not be a toxicity issue in the calcic Regosols for the same reason, but As and B could be. B would be a hazard to vegetables and water due to its low or lack of retention in the three soils and also for its possible infiltration into shallow groundwater used for irrigation in the area. This study highlights the importance of maintaining adequate operation and control of the disposal of geothermal fluids in geothermal plants.


Subject(s)
Arsenic/analysis , Boron/analysis , Groundwater/chemistry , Lead/analysis , Soil Pollutants/analysis , Agriculture , Cadmium/chemistry , Metals, Heavy/analysis , Mexico , Soil/chemistry
11.
Int J Mol Sci ; 21(22)2020 Nov 20.
Article in English | MEDLINE | ID: mdl-33233673

ABSTRACT

A new double-open-cubane core Cd(II)-O-Cu(II) bimetallic ligand mixed cluster of type [Cl2Cu4Cd2(NNO)6(NN)2(NO3)2].CH3CN was made available in EtOH/CH3CN solution. The 1-hydroxymethyl-3,5-dimethylpyrazole (NNOH) and 3,5-dimethylpyrazole (NNH) act as N,O-polydentate anion ligands in coordinating the Cu(II) and Cd(II) centers. The structure of the cluster in the solid state was proved by XRD study and confirmed in the liquid state by UV-vis analysis. The XRD result supported the construction of two octahedral and one square pyramid geometries types around the four Cu(II) centers and only octahedral geometry around Cd(II) two centers. Interestingly, NNOH ligand acts as a tetra-µ3-oxo and tri-µ2-oxo ligand; meanwhile, the N-N in NNH acts as classical bidentate anion/neutral ligands. The interactions in the lattice were detected experimentally by the XRD-packing result and computed via Hirschfeld surface analysis (HSA). The UV-vis., FT-IR and Energy Dispersive X-ray (EDX), supported the desired double-open cubane cluster composition. The oxidation potential of the desired cluster was evaluated using a 3,5-DTB-catechol 3,5-DTB-quinone as a catecholase model reaction.


Subject(s)
Coordination Complexes , Cadmium/chemistry , Catalysis , Coordination Complexes/chemical synthesis , Coordination Complexes/chemistry , Copper/chemistry , Models, Molecular , Oxidation-Reduction
12.
Molecules ; 25(20)2020 Oct 16.
Article in English | MEDLINE | ID: mdl-33081238

ABSTRACT

Temperature-dependent Raman scattering and differential scanning calorimetry were applied to the study of the hybrid organic-inorganic azide-perovskite [(CH3)4N][Cd(N3)3], a compound with multiple structural phase transitions as a function of temperature. A significant entropy variation was observed associated to such phase transitions, |∆S| ~ 62.09 J·kg-1 K-1, together with both a positive high barocaloric (BC) coefficient |δTt/δP| ~ 12.39 K kbar-1 and an inverse barocaloric (BC) coefficient |δTt/δP| ~ -6.52 kbar-1, features that render this compound interesting for barocaloric applications. As for the obtained Raman spectra, they revealed that molecular vibrations associated to the NC4, N3- and CH3 molecular groups exhibit clear anomalies during the phase transitions, which include splits and discontinuity in the phonon wavenumber and lifetime. Furthermore, variation of the TMA+ and N3- modes with temperature revealed that while some modes follow the conventional red shift upon heating, others exhibit an unconventional blue shift, a result which was related to the weakening of the intermolecular interactions between the TMA (tetramethylammonium) cations and the azide ligands and the concomitant strengthening of the intramolecular bondings. Therefore, these studies show that Raman spectroscopy is a powerful tool to gain information about phase transitions, structures and intermolecular interactions between the A-cation and the framework, even in complex hybrid organic-inorganic perovskites with highly disordered phases.


Subject(s)
Azides/chemistry , Calcium Compounds/chemistry , Calorimetry, Differential Scanning/methods , Oxides/chemistry , Spectrum Analysis, Raman/methods , Titanium/chemistry , Cadmium/chemistry , Cations/chemistry , Phase Transition , Temperature , Vibration
13.
Int J Biol Macromol ; 155: 142-152, 2020 Jul 15.
Article in English | MEDLINE | ID: mdl-32224174

ABSTRACT

Chitosan film, Spirulina sp. film and its blend were developed as biosorbents to remove Cr6+ and Pb2+ ions from aqueous solutions. The kinetic study and the pH effect on biosorption efficiency were evaluated to comprehend the interactions between the ions and biosorbents. The characterization analyses pointed out that occurred interaction between both biomaterials, which resulted in structural alterations through the blend. The Spirulina sp. film exhibited the highest biosorption capacities for Cr6+ (43.2 mg g-1) and Pb2+ (35.6 mg g-1) ions, however, its physical integrity was not kept in acid medium. The blend film showed results slightly lower (35.8 mg g-1 for Cr6+ and 31.6 mg g-1 for Pb2+), but its physical integrity remained intact in all assays. Chitosan film presented the lower biosorption capacities (15.4 mg g-1 for Cr6+ and 20.9 mg g-1 for Pb2+). Elovich and pseudo-second order models were the most suitable to express the kinetic behaviors for Cr6+ and Pb2+, respectively. Therefore, chitosan/Spirulina sp. blend could be a green alternative for Cr6+ and Pb2+ removal, because this biosorbent showed high biosorption capacity obtained from Spirulina sp. and great physical integrity obtained of chitosan.


Subject(s)
Biocompatible Materials/chemistry , Cadmium/chemistry , Chitosan/chemistry , Lead/chemistry , Spirulina/chemistry , Adsorption , Kinetics , Water/chemistry , Water Pollutants, Chemical/chemistry
14.
Protein Expr Purif ; 166: 105511, 2020 02.
Article in English | MEDLINE | ID: mdl-31622664

ABSTRACT

Metallothioneins (MTs) are cysteine rich proteins with antioxidant capacity that participate in the homeostasis and detoxification of metals and other cellular processes, and help to counteract the oxidative stress produced by Reactive Oxygen Species (ROS). The production of ROS increases during several stress conditions, including metal intoxication and hypoxia (oxygen deficiency). During hypoxia the expression of the MT gene is induced in the shrimp Litopenaeus vannamei; however, the MT protein coded by this gene has not been purified nor characterized. In this work, the coding sequence of L. vannamei MT was cloned and overexpressed in Escherichia coli as a fusion protein, containing an intein and a chitin binding domain (CBD). The MT was purified by chitin affinity chromatography and its antioxidant capacity and ability to bind cadmium (Cd) and copper (Cu) were evaluated. This MT has an antioxidant capacity of 27.23 µM equivalent to Trolox in a 100 µg/mL solution. Addition of CdCl2 to the culture media augments 273-fold the Cd content, while addition of CuCl2 increases Cu content 569-fold in the purified MT. Thus, the shrimp MT gene codes for a functional protein that has antioxidant capacity and binds Cu and Cd.


Subject(s)
Metallothionein/chemistry , Metallothionein/genetics , Penaeidae , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Animals , Cadmium/chemistry , Chitin/chemistry , Chromatography, Affinity , Cloning, Molecular , Copper/chemistry , Escherichia coli , Genetic Vectors , Penaeidae/enzymology , Penaeidae/genetics
15.
Environ Sci Pollut Res Int ; 27(2): 2287-2300, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31776908

ABSTRACT

Azospirillum brasilense Cd is a bacterial strain widely used as an inoculant of several crops due to its plant growth promoting properties. However, its beneficial effects depend on its viability and functionality under adverse environmental conditions, including the presence of arsenic (As) in agricultural soils. Therefore, the aim of this work was to evaluate the response of A. brasilense Cd to arsenate (AsV) and arsenite (AsIII). This bacterium was tolerant to As concentrations frequently found in soils. Moreover, properties related to roots colonization (motility, biofilm, and exopolymers) and plant growth promotion (auxin, siderophore production, and N2 fixation) were not significantly affected by the metalloid. In order to deepen the understanding on As responses of A. brasilense Cd, As resistance genes were sequenced and characterized for the first time in this work. These genes could mediate the redox As transformation and its extrusion outside the cell, so they could have direct association with the As tolerance observed. In addition, its As oxidation/reduction capacity could contribute to change the AsV/AsIII ratio in the environment. In conclusion, the results allowed to elucidate the As response of A. brasilense Cd and generate interest for its potential use in polluted environments.


Subject(s)
Arsenic , Azospirillum brasilense , Arsenic/chemistry , Azospirillum brasilense/chemistry , Cadmium/chemistry , Indoleacetic Acids/chemistry , Plant Roots
16.
Environ Sci Pollut Res Int ; 27(3): 2580-2587, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31832941

ABSTRACT

The vulnerability of aquatic ecosystems due to the entry of cadmium (Cd) is a concern of public and environmental health. This work explores the ability of tissues and symbiotic corpuscles of Pomacea canaliculata to concentrate and depurate Cd. From hatching to adulthood (4 months), snails were cultured in reconstituted water, which was a saline solution in ASTM Type I water. Then, adult snails were exposed for 8 weeks (exposure phase) to Cd (5 µg/L) and then returned to reconstituted water for other 8 weeks (depuration phase). Cadmium concentration in the digestive gland, kidney, head/foot and viscera (remaining of the snail body), symbiotic corpuscles, and particulate excreta was determined by electrothermal atomic absorption spectrometry. After exposure, the digestive gland showed the highest concentration of Cd (BCF = 5335). Symbiotic corpuscles bioaccumulated Cd at a concentration higher than that present in the water (BCF = 231 for C symbiotic corpuscles, BCF = 8 for K symbiotic corpuscles). No tissues or symbiotic corpuscles showed a significant change in the Cd levels at different time points of the depuration phase (weeks 8, 9, 10, 12, and 16). The symbiotic depuration through particulate excreta was faster between weeks 8 and 10, and then slower after on. Our findings show that epithelial cells of the digestive gland of P. canaliculata and their symbiotic C corpuscles are sensitive places for the bioindication of Cd in freshwater bodies.


Subject(s)
Cadmium , Water Pollutants, Chemical , Animals , Cadmium/chemistry , Ecosystem , Environmental Biomarkers , Fresh Water/analysis , Fresh Water/chemistry , Snails , Symbiosis
17.
Environ Monit Assess ; 191(10): 602, 2019 Sep 02.
Article in English | MEDLINE | ID: mdl-31478102

ABSTRACT

Globally, millions of tons of coal fly ash (CFA) are generated per year, and the majority of this material is usually stored in stock piles or landfills, and in a long-term, it can be an environmental hazard if rainwater infiltrates the ashes. Long-term leaching studies of Brazilian ashes are scarce. The purpose of this study was to evaluate arsenic, cadmium, molybdenum, lead, and zinc leaching behavior from a Brazilian CFA by a column experiment designed to simulate field conditions: slightly acid rain considering seasonality of precipitation and temperature for a long-term leaching period (336 days). All elements were leached from CFA, except lead. Elements leaching behavior was influenced by leaching time, leaching volume, and temperature. Higher leachability of As and Cd from CFA during warm and wet season was observed. Results indicate a potential risk to soil and groundwater, since ashes are usually stored in uncovered fields on power plants vicinity.


Subject(s)
Coal Ash/chemistry , Environmental Monitoring , Metals, Heavy/analysis , Arsenic/analysis , Arsenic/chemistry , Brazil , Cadmium/analysis , Cadmium/chemistry , Groundwater , Lead/analysis , Lead/chemistry , Molybdenum/analysis , Molybdenum/chemistry , Power Plants , Soil/chemistry , Waste Disposal Facilities , Zinc/analysis , Zinc/chemistry
18.
Chemosphere ; 235: 1073-1080, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31561297

ABSTRACT

As one of emerging contaminants, microplastics (MPs) can enter the environment and adsorb toxic metals such as cadmium (Cd), thereby causing potential environmental risks. However, adsorption characteristics of MPs are poorly understood. Herein, batch experiments were performed to investigate the adsorption characteristics of Cd onto high-density polyethylene (HDPE) MPs with different particle sizes, that is, 1-2 mm, 0.6-1 mm, and 100-154 µm. The adsorption of Cd was quite rapid initially, and the equilibrium time was approximately 90 min. An increase in the pH of the Cd solution led to an increase in Cd adsorption. MPs with particle size of 100-154 µm had the highest adsorption capacity. Addition of 1, 10, and 100 mg/L NaCl all significantly decreased Cd adsorption. Adsorption kinetics fitted the pseudo-second-order model. Adsorption isotherm followed the Langmuir model and, to a lesser extent, the Freundlich model, with estimated maximum adsorption capacity of 30.5 µg/g. The adsorbed Cd easily desorbed from the MPs. Energy-dispersive X-ray spectroscopy (EDS) analysis confirmed Cd adsorption to and desorption from MPs. Fourier transform infrared (FTIR) spectroscopy analysis showed no new functional groups formed during the adsorption and desorption processes, suggesting physical interaction may dominate the Cd adsorption onto MPs. The present study findings provide evidence that MPs can accumulate Cd, and the adsorbed Cd may be highly available, thus posing risks to the organisms exposed to these MPs.


Subject(s)
Cadmium/chemistry , Plastics/chemistry , Water/chemistry , Adsorption , Kinetics , Particle Size , Polyethylene/chemistry , Solutions , Spectroscopy, Fourier Transform Infrared
19.
Chemosphere ; 236: 124224, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31306976

ABSTRACT

In this study, we investigated the metal handling capacity of non-tolerant and tolerant populations of Palaemon argentinus to cadmium (Cd), through evaluating of the main mechanisms of metal detoxification, metallothioneins (MT) and metal-rich granules (MRG), to probe that the presence of MRG in the second population is responsible of that condition. The tolerant population were exposed to 3.06 and 12.26 µg Cd·L-1, while the non-tolerant shrimp were exposed to 3.06 µg Cd·L-1. Each experiment involved the exposure during 3, 7, 10 and 15 days and, the depuration during 7, 14, 21 and 28 days, for which shrimp were transferred to clean water. The range values of MT concentrations for non-tolerant shrimp were: 12.24-23.91 µg g (w.w), while for tolerant shrimp were: 8.75-16.85 µg g (w.w); MRG levels were: 0.12-0.57 µg g (w.w) and 0.3-2.1 µg g (w.w), respectively. The results showed different strategies for Cd detoxification: the induction of MT was the main pathway in the non-tolerant population, while the formation of Cd-MRG was the main mechanism for tolerant shrimp. These differences could be related to the environmental history and the health status of each populations.


Subject(s)
Cadmium/chemistry , Environmental Pollutants/chemistry , Environmental Pollution/adverse effects , Metallothionein/metabolism , Palaemonidae/chemistry , Water Pollutants, Chemical/chemistry , Animals
20.
Environ Sci Pollut Res Int ; 26(25): 26039-26051, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31278641

ABSTRACT

This is a report on comprehensive characterization of cadmium (Cd)-exposed root proteomes in tomato using label-free quantitative proteomic approach. Two genotypes differing in Cd tolerance, Pusa Ruby (Cd-tolerant) and Calabash Rouge (Cd-sensitive), were exposed during 4 days to assess the Cd-induced effects on root proteome. The overall changes in both genotypes in terms of differentially accumulated proteins (DAPs) were mainly associated to cell wall, redox, and stress responses. The proteome of the sensitive genotype was more responsive to Cd excess, once it presented higher number of DAPs. Contrasting protein accumulation in cellular component was observed: Cd-sensitive enhanced intracellular components, while the Cd-tolerant increased proteins of extracellular and envelope regions. Protective and regulatory mechanisms were different between genotypes, once the tolerant showed alterations of various protein groups that lead to a more efficient system to cope with Cd challenge. These findings could shed some light on the molecular basis underlying the Cd stress response in tomato, providing fundamental insights for the development of Cd-safe cultivars. Graphical abstract.


Subject(s)
Cadmium/metabolism , Cell Wall/metabolism , Plant Roots/metabolism , Solanum lycopersicum/metabolism , Cadmium/chemistry , Drug Tolerance , Genotype , Proteome/chemistry , Proteome/metabolism , Proteomics , Stress, Physiological/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL