ABSTRACT
The 5-lipoxygenase/leukotriene system has been implicated in both physiological and pathological states within the central nervous system. Understanding how this system interacts with the dopaminergic system could provide valuable insights into dopamine-related pathologies. This study focused on examining both motor and non-motor dopamine-related responses in 5-lipoxygenase/leukotriene-deficient mice. We used pharmacological agents such as amphetamine, apomorphine, and reserpine to challenge the dopaminergic system, evaluating their effects on prepulse inhibition reaction (PPI), general motor activity, and oral involuntary movements. Additionally, we analyzed striatal glial marker expression (GFAP and Iba-1) in reserpine-treated mice. The 5-lipoxygenase/leukotriene-deficient mice exhibited increased spontaneous locomotor activity, including both horizontal and vertical exploration, along with stereotyped behavior compared to wild-type mice. This hyperactivity was reduced by acute apomorphine treatment. Although basal PPI responses were unchanged, 5-lipoxygenase/leukotriene-deficient mice displayed a significant reduction in susceptibility to amphetamine-induced PPI disruption. Conversely, these mice were more vulnerable to reserpine-induced involuntary movements. There were no significant differences in the basal expression of striatal GFAP and Iba-1 positive cells between 5-lipoxygenase/leukotriene-deficient and wild-type mice. However, reserpine treatment significantly increased GFAP immunoreactivity in wild-type mice, an effect not observed in 5-lipoxygenase-deficient mice. Additionally, the percentage of activated microglia was significantly higher in reserpine-treated wild-type mice, an effect absents in 5-lipoxygenase/leukotriene-deficient mice. Our findings suggest that 5-lipoxygenase/leukotriene deficiency leads to a distinctive dopaminergic phenotype, indicating that leukotrienes may influence the modulation of dopamine-mediated responses.
Subject(s)
Amphetamine , Arachidonate 5-Lipoxygenase , Dopamine , Animals , Male , Mice , Amphetamine/pharmacology , Apomorphine/pharmacology , Arachidonate 5-Lipoxygenase/metabolism , Arachidonate 5-Lipoxygenase/deficiency , Arachidonate 5-Lipoxygenase/genetics , Calcium-Binding Proteins/metabolism , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/deficiency , Corpus Striatum/metabolism , Corpus Striatum/drug effects , Dopamine/metabolism , Glial Fibrillary Acidic Protein/metabolism , Mice, Inbred C57BL , Mice, Knockout , Microfilament Proteins/metabolism , Motor Activity/drug effects , Motor Activity/physiology , Prepulse Inhibition/drug effects , Prepulse Inhibition/physiology , Reserpine/pharmacology , Stereotyped Behavior/drug effectsABSTRACT
OBJECTIVE: This study was to investigate the role of serum Klotho, fetuin-A, and Matrix Gla Protein (MGP) in Coronary Artery Calcification (CAC) in patients with Maintenance Hemodialysis (MHD) and their predictive value for CAC. METHODS: 100 patients receiving MHD were selected. Serum Klotho, fetuin-A, and MGP levels were detected by ELISA. CAC scores were assessed by coronary CT scan. Multifactor analysis was used to evaluate the risk factors affecting CAC. The ability of serum Klotho, fetuin-A, and MGP levels to diagnose CAC was evaluated by receiver operating characteristic curves. RESULTS: Serum Klotho, fetuin-A, and MGP were independent risk factors for CAC. Serum Klotho, fetuin-A, and MGP were valuable in the diagnosis of CAC in MHD patients. CONCLUSION: There is a close relationship between Klotho, fetuin-A, and MGP levels in MHD patients and CAC.
Subject(s)
Biomarkers , Calcium-Binding Proteins , Coronary Artery Disease , Extracellular Matrix Proteins , Glucuronidase , Klotho Proteins , Matrix Gla Protein , Renal Dialysis , Vascular Calcification , alpha-2-HS-Glycoprotein , Humans , Renal Dialysis/adverse effects , Male , Female , Calcium-Binding Proteins/blood , Middle Aged , alpha-2-HS-Glycoprotein/analysis , alpha-2-HS-Glycoprotein/metabolism , Coronary Artery Disease/blood , Coronary Artery Disease/diagnostic imaging , Glucuronidase/blood , Extracellular Matrix Proteins/blood , Biomarkers/blood , Vascular Calcification/blood , Vascular Calcification/diagnostic imaging , Aged , Risk Factors , Enzyme-Linked Immunosorbent Assay , Adult , ROC Curve , Calcinosis/blood , Calcinosis/diagnostic imaging , Calcinosis/etiology , Predictive Value of TestsABSTRACT
Accidents caused by Bothrops jararaca (Bj) snakes result in several local and systemic manifestations, with pain being a fundamental characteristic. The inflammatory process responsible for hyperalgesia induced by Bj venom (Bjv) has been studied; however, the specific roles played by the peripheral and central nervous systems in this phenomenon remain unclear. To clarify this, we induced hyperalgesia in rats using Bjv and collected tissues from dorsal root ganglia (DRGs) and spinal cord (SC) at 2 and 4 h post-induction. Samples were labeled for Iba-1 (macrophage and microglia), GFAP (satellite cells and astrocytes), EGR1 (neurons), and NK1 receptors. Additionally, we investigated the impact of minocycline, an inhibitor of microglia, and GR82334 antagonist on Bjv-induced hyperalgesia. Our findings reveal an increase in Iba1 in DRG at 2 h and EGR1 at 4 h. In the SC, markers for microglia, astrocytes, neurons, and NK1 receptors exhibited increased expression after 2 h, with EGR1 continuing to rise at 4 h. Minocycline and GR82334 inhibited venom-induced hyperalgesia, highlighting the crucial roles of microglia and NK1 receptors in this phenomenon. Our results suggest that the hyperalgesic effects of Bjv involve the participation of microglial and astrocytic cells, in addition to the activation of NK1 receptors.
Subject(s)
Bothrops , Crotalid Venoms , Ganglia, Spinal , Hyperalgesia , Receptors, Neurokinin-1 , Animals , Hyperalgesia/chemically induced , Hyperalgesia/metabolism , Crotalid Venoms/toxicity , Male , Ganglia, Spinal/drug effects , Ganglia, Spinal/metabolism , Receptors, Neurokinin-1/metabolism , Minocycline/pharmacology , Spinal Cord/drug effects , Spinal Cord/metabolism , Early Growth Response Protein 1/metabolism , Early Growth Response Protein 1/genetics , Microglia/drug effects , Microglia/metabolism , Neuroglia/drug effects , Neuroglia/metabolism , Rats , Glial Fibrillary Acidic Protein/metabolism , Calcium-Binding Proteins/metabolism , Astrocytes/drug effects , Astrocytes/metabolism , Microfilament Proteins/metabolism , Neurokinin-1 Receptor Antagonists/pharmacology , Rats, Sprague-DawleyABSTRACT
INTRODUCTION: High sucrose intake is linked to cardiovascular disease, a major global cause of mortality worldwide. Calcium mishandling and inflammation play crucial roles in cardiac disease pathophysiology. OBJECTIVE: Evaluate if sucrose-induced obesity is related to deterioration of myocardial function due to alterations in the calcium-handling proteins in association with proinflammatory cytokines. METHODS: Wistar rats were divided into control and sucrose groups. Over eight weeks, Sucrose group received 30% sucrose water. Cardiac function was determined in vivo using echocardiography and in vitro using papillary muscle assay. Western blotting was used to detect calcium handling protein; ELISA assay was used to assess TNF-α and IL-6 levels. RESULTS: Sucrose led to cardiac dysfunction. RYR2, SERCA2, NCX, pPBL Ser16 and L-type calcium channels were unchanged. However, pPBL-Thr17, and TNF-α levels were elevated in the S group. CONCLUSION: Sucrose induced cardiac dysfunction and decreased myocardial contractility in association with altered pPBL-Thr17 and elevated cardiac pro-inflammatory TNF-α.
Subject(s)
Calcium-Binding Proteins , Rats, Wistar , Tumor Necrosis Factor-alpha , Animals , Male , Rats , Calcium-Binding Proteins/metabolism , Interleukin-6/metabolism , Myocardial Contraction/drug effects , Myocardium/metabolism , Myocardium/pathology , Phosphorylation/drug effects , Sucrose/pharmacology , Tumor Necrosis Factor-alpha/metabolismABSTRACT
Ischemic stroke (IS) is one of the most impairing complications of sickle cell anemia (SCA), responsible for 20% of mortality in patients. Rheological alterations, adhesive properties of sickle reticulocytes, leukocyte adhesion, inflammation and endothelial dysfunction are related to the vasculopathy observed prior to ischemic events. The role of the vascular endothelium in this complex cascade of mechanisms is emphasized, as well as in the process of ischemia-induced repair and neovascularization. The aim of the present study was to perform a comparative transcriptomic analysis of endothelial colony-forming cells (ECFCs) from SCA patients with and without IS. Next, to gain further insights of the biological relevance of differentially expressed genes (DEGs), functional enrichment analysis, protein-protein interaction network (PPI) construction and in silico prediction of regulatory factors were performed. Among the 2469 DEGs, genes related to cell proliferation (AKT1, E2F1, CDCA5, EGFL7), migration (AKT1, HRAS), angiogenesis (AKT1, EGFL7) and defense response pathways (HRAS, IRF3, TGFB1), important endothelial cell molecular mechanisms in post ischemia repair were identified. Despite the severity of IS in SCA, widely accepted molecular targets are still lacking, especially related to stroke outcome. The comparative analysis of the gene expression profile of ECFCs from IS patients versus controls seems to indicate that there is a persistent angiogenic process even after a long time this complication has occurred. Thus, this is an original study which may lead to new insights into the molecular basis of SCA stroke and contribute to a better understanding of the role of endothelial cells in stroke recovery.
Subject(s)
Anemia, Sickle Cell , Stroke , Humans , Endothelial Cells/metabolism , Transcriptome , Stroke/genetics , Stroke/complications , Anemia, Sickle Cell/complications , Ischemia , Gene Expression Profiling , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/metabolism , EGF Family of Proteins/genetics , EGF Family of Proteins/metabolismABSTRACT
Inflammasomes are large protein complexes that, once activated, initiate inflammatory responses by activating the caspase-1 protease. They play pivotal roles in host defense against pathogens. The well-established role of NAIP/NLRC4 inflammasome in bacterial infections involves NAIP proteins functioning as sensors for their ligands. However, recent reports have indicated the involvement of NLRC4 in non-bacterial infections and sterile inflammation, even though the role of NAIP proteins and the exact molecular mechanisms underlying inflammasome activation in these contexts remain to be elucidated. In this study, we investigated the activation of the NAIP/NLRC4 inflammasome in response to Trypanosoma cruzi, the protozoan parasite responsible for causing Chagas disease. This parasite has been previously demonstrated to activate NLRP3 inflammasomes. Here we found that NAIP and NLRC4 proteins are also required for IL-1ß and Nitric Oxide (NO) release in response to T. cruzi infection, with their absence rendering macrophages permissive to parasite replication. Moreover, Nlrc4 -/- and Nlrp3 -/- macrophages presented similar impaired responses to T. cruzi, underscoring the non-redundant roles played by these inflammasomes during infection. Notably, it was the live trypomastigotes rather than soluble antigens or extracellular vesicles (EVs) secreted by them, that activated inflammasomes in a cathepsins-dependent manner. The inhibition of cathepsins effectively abrogated caspase-1 cleavage, IL-1ß and NO release, mirroring the phenotype observed in Nlrc4 -/-/Nlrp3 -/- double knockout macrophages. Collectively, our findings shed light on the pivotal role of the NAIP/NLRC4 inflammasome in macrophage responses to T. cruzi infection, providing new insights into its broader functions that extend beyond bacterial infections.
Subject(s)
Bacterial Infections , Chagas Disease , Trypanosoma cruzi , Humans , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Trypanosoma cruzi/metabolism , Caspase 1/metabolism , Cathepsins/metabolism , Macrophages , Calcium-Binding Proteins/metabolism , CARD Signaling Adaptor Proteins/metabolism , Neuronal Apoptosis-Inhibitory Protein/metabolismABSTRACT
Studies indicate EGFL7 as an important gene in controlling angiogenesis and cancer growth, including in colorectal cancer (CRC). Anti-EGFL7 agents are being explored, yet without promising results. Therefore, the role of EGFL7 in CRC carcinogenesis should be investigated. This study aimed to evaluate the prognostic value of EGFL7 expression in CRC and the signaling pathways influenced by this gene. EGFL7 expression was evaluated through immunohistochemistry in 463 patients diagnosed with CRC and further associated with clinicopathological data, angiogenesis markers and survival. In silico analyzes were performed with colon adenocarcinoma data from The Cancer Genome Atlas. Analysis of enriched gene ontology and pathways were performed using the differentially expressed genes. 77.7% of patients presented low EGFL7 expression, which was associated with higher lymph node spread and invasion of lymphatic vessels, with no impact on survival. Additionally, low EGFL7 expression was associated with high VEGFR2 expression. Finally, we found in silico that EGFL7 expression was associated with cell growth, angiogenesis, and important pathways such as VEGF, Rap-1, MAPK and PI3K/Akt. Expression of EGFL7 in tumor cells may be associated with important pathways that can alter functions related to tumor invasive processes, preventing recurrence and metastatic process.
Subject(s)
Adenocarcinoma , Colonic Neoplasms , Colorectal Neoplasms , Lymphatic Vessels , Humans , Phosphatidylinositol 3-Kinases/metabolism , Endothelial Growth Factors/genetics , EGF Family of Proteins/metabolism , Neoplastic Processes , Intercellular Signaling Peptides and Proteins/metabolism , Transcription Factors/metabolism , Lymph Nodes/metabolism , Lymphatic Vessels/metabolism , Colorectal Neoplasms/genetics , Calcium-Binding Proteins/geneticsABSTRACT
BACKGROUND: Several rare loss-of-function mutations of delta-like noncanonical notch ligand 1 (DLK1) have been described in non-syndromic children with familial central precocious puberty (CPP). OBJECTIVE: We investigated genetic abnormalities of DLK1 gene in a French cohort of children with idiopathic CPP. Additionally, we explored the pattern of DLK1 serum levels in patients with CPP and in healthy children at puberty, as well as in wild-type female mice. PATIENTS AND METHODS: Genomic DNA was obtained from 121 French index cases with CPP. Automated sequencing of the coding region of the DLK1 gene was performed in all cases. Serum DLK1 levels were measured by enzyme linked immunosorbent assay (ELISA) in 209 individuals, including 191 with normal pubertal development and in female mice during postnatal pubertal maturation. RESULTS: We identified 2 rare pathogenic DLK1 allelic variants: A stop gain variant (c.372C>A; p.Cys124X) and a start loss variant (c.2T>G; p.Met1?, or p.0) in 2 French girls with CPP. Mean serum DLK1 levels were similar between healthy children and idiopathic CPP children. In healthy individuals, DLK1 levels correlated with pubertal stage: In girls, DLK1 decreased between Tanner stages III and V, whereas in boys, DLK1 decreased between Tanner stages II and V (P = .008 and .016, respectively). Serum levels of Dlk1 also decreased in wild-type female mice. CONCLUSIONS: Novel loss-of-function mutations in DLK1 gene were identified in 2 French girls with CPP. Additionally, we demonstrated a pattern of dynamic changes in circulating DLK1 serum levels in humans and mice during pubertal stages, reinforcing the role of this factor in pubertal timing.
Subject(s)
Puberty, Precocious , Animals , Child , Female , Humans , Male , Mice , Alleles , Calcium-Binding Proteins/genetics , Enzyme-Linked Immunosorbent Assay , Membrane Proteins/genetics , Mutation , Puberty, Precocious/geneticsABSTRACT
OBJECTIVE: Acute appendicitis is one of the most common surgical causes of an acute abdomen among patients admitted to the emergency room due to abdominal pain. The clinical diagnosis of acute appendicitis is usually difficult and is made by evaluating the clinical, laboratory, and radiological findings together. The aim of this study was to investigate the diagnostic potential of signal peptide-CUB-EGF-like domain-containing protein 1 as a biomarker for acute appendicitis. METHODS: A total of 67 adult patients without any comorbidities who presented to the emergency department with abdominal pain and were clinically diagnosed with acute appendicitis were included in the case group. The patients included in the study were classified into the negative appendectomy group and the acute appendicitis group according to their histopathological final diagnosis. In addition, 48 healthy volunteers without comorbidities were included in the control group. Signal peptide-CUB-EGF-like domain-containing protein 1 levels of patients and the control group were measured. RESULTS: According to postoperative histopathological examinations of the patients, 7 (10.4%) patients were diagnosed with negative appendectomy, and 60 (89.6%) patients were diagnosed with acute appendicitis. Signal peptide-CUB-EGF-like domain-containing protein 1 levels were higher in the patients with acute appendicitis than in negative appendectomy patients (p=0.012). Signal peptide-CUB-EGF-like domain-containing protein 1 levels were also higher in the case group compared to the control group (p=0.001). CONCLUSION: The admission signal peptide-CUB-EGF-like domain-containing protein 1 level was significantly higher in adults with acute appendicitis. The SCUBE1 level is a novel but promising biomarker that aids in the diagnosis of acute appendicitis.
Subject(s)
Appendicitis , Epidermal Growth Factor , Adult , Humans , Appendicitis/diagnosis , Protein Sorting Signals , Membrane Proteins , Biomarkers , Acute Disease , Appendectomy , Calcium-Binding ProteinsABSTRACT
EGFL7 is a proangiogenic factor. It has been widely described with having a vital role in tubulogenesis and regulation of angiogenesis, mainly during embryogenesis and organogenesis. It has been mainly associated with NOTCH pathway, but there are reports showing association with MAPK and integrin pathways. Given its association with angiogenesis and these other pathways, there are several studies associating EGFL7 with carcinogenesis. In fact, most of the studies have pointed to EGFL7 as an oncogene, and some of them suggest EGFL7 expression as a possible biomarker of prognosis or use for a patient's follow-up. Here, we review the molecular pathways which EGFL7 is associated and highlight several studies describing the role of EGFL7 in tumorigenesis, separated by tumor type. Besides its role on angiogenesis, EGFL7 may act in other pathways as oncogene, which makes it a possible biomarker and a candidate to targeted therapy.
Subject(s)
Calcium-Binding Proteins , Neoplasms , Humans , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/metabolism , Signal Transduction , Endothelial Growth Factors , EGF Family of Proteins/genetics , EGF Family of Proteins/metabolism , Cell Movement , Neoplasms/genetics , Intercellular Signaling Peptides and Proteins/metabolism , BiomarkersABSTRACT
The aim of the current study was to investigate the effect of glutamine supplementation on the expression of HSP70 and the calcium-binding proteins from the S100 superfamily in the recovering extensor digitorum longus (EDL) muscle after injury. Two-month-old Wistar rats were subjected to cryolesion of the EDL muscle and then randomly divided into two groups (with or without glutamine supplementation). Starting immediately after the injury, the supplemented group received daily doses of glutamine (1 g/kg/day, via gavage) for 3 and 10 days orally. Then, muscles were subjected to histological, molecular, and functional analysis. Glutamine supplementation induced an increase in myofiber size of regenerating EDL muscles and prevented the decline in maximum tetanic strength of these muscles evaluated 10 days after injury. An accelerated upregulation of myogenin mRNA levels was detected in glutamine-supplemented injured muscles on day 3 post-cryolesion. The HSP70 expression increased only in the injured group supplemented with glutamine for 3 days. The increase in mRNA levels of NF-κB, the pro-inflammatory cytokines IL-1ß and TNF-α, and the calcium-binding proteins S100A8 and S100A9 on day 3 post-cryolesion in EDL muscles was attenuated by glutamine supplementation. In contrast, the decrease in S100A1 mRNA levels in the 3-day-injured EDL muscles was minimized by glutamine supplementation. Overall, our results suggest that glutamine supplementation accelerates the recovery of myofiber size and contractile function after injury by modulating the expression of myogenin, HSP70, NF-κB, pro-inflammatory cytokines, and S100 calcium-binding proteins.
Subject(s)
Glutamine , NF-kappa B , Rats , Animals , Glutamine/pharmacology , Glutamine/metabolism , Myogenin/metabolism , Myogenin/pharmacology , NF-kappa B/metabolism , Rats, Wistar , Muscle, Skeletal/metabolism , Muscle Contraction/physiology , Cytokines/metabolism , RNA, Messenger/metabolism , Dietary Supplements , Calcium-Binding ProteinsABSTRACT
SUMMARY: S100 proteins belong group of calcium-binding proteins and are present in physiological intracellular and extracellular regulatory activities, such as cell differentiation, and act in inflammatory and neoplastic pathological processes. Recently, its expressions in the nervous system have been extensively studied, seeking to elucidate its action at the level of the thalamus: A structure of the central nervous system that is part of important circuits, such as somatosensory, behavioral, memory and cognitive, as well as being responsible for the transmission and regulation of information to the cerebral cortex. This article is an integrative review of scientific literature, which analyzed 12 studies present in Pubmed. The analysis showed that the relationship of S100 proteins and the thalamus has been described in neoplastic processes, mental disorders, hypoxia, trauma, stress, infection, Parkinson's disease and epilepsy. In summary, it is possible to conclude that this protein family is relevant as a marker in processes of thalamic injury, requiring further studies to better understand its clinical, preclinical meanings and its prognostic value.
Las proteínas S100 pertenecen al grupo de proteínas fijadoras de calcio y están presentes en actividades reguladoras fisiológicas intracelulares y extracelulares, como la diferenciación celular, y actúan en procesos patológicos inflamatorios y neoplásicos. Recientemente, sus expresiones en el sistema nervioso han sido ampliamente estudiadas, buscando dilucidar su acción a nivel del tálamo: una estructura del sistema nervioso central que forma parte de importantes circuitos, como el somatosensorial, conductual, de memoria y cognitivo, así como además de ser responsable de la transmisión y regulación de la información a la corteza cerebral. Este artículo es una revisión integradora de la literatura científica, que analizó 12 estudios presentes en Pubmed. El análisis mostró que la relación de las proteínas S100 y el tálamo ha sido descrita en procesos neoplásicos, trastornos mentales, hipoxia, trauma, estrés, infección, enfermedad de Parkinson y epilepsia. En resumen, es posible concluir que esta familia de proteínas es relevante como marcador en procesos de lesión talámica, requiriendo más estudios para comprender mejor su significado clínico, preclínico y su valor pronóstico.
Subject(s)
Humans , Thalamus/metabolism , S100 Proteins/metabolism , Calcium-Binding Proteins/metabolism , Biomarkers , Diencephalon/metabolismABSTRACT
Flagellin-induced NAIP/NLRC4 inflammasome activation and pyroptosis are critical events restricting Legionella pneumophila infection. However, the cellular and molecular dynamics of the in vivo responses against this bacterium are still unclear. We have found temporal coordination of two independent innate immunity pathways in controlling Legionella infection, the inflammasome activation and the CCR2-mediated Mo-DC recruitment. Inflammasome activation was an important player at the early stage of infection by lowering the numbers of bacteria for an efficient bacterial clearance conferred by the Mo-DC at the late stage of the infection. Mo-DC emergence highly depended on CCR2-signaling and dispensed inflammasome activation and pyroptosis. Also, Mo-DC compartment did not rely on the inflammasome machinery to deliver proper immune responses and was the most abundant cytokine-producing among the monocyte-derived cells in the infected lung. Importantly, when the CCR2- and NLRC4-dependent axes of response were simultaneously ablated, we observed an aggravated bacterial burden in the lung of infected mice. Taken together, we showed that inflammasome activation and CCR2-mediated immune response interplay in distinct pathways to restrict pulmonary bacterial infection. These findings extend our understanding of the in vivo integration and cooperation of different innate immunity arms in controlling infectious agents.
Subject(s)
Dendritic Cells , Inflammasomes , Legionella pneumophila , Legionnaires' Disease , Monocytes , Animals , Mice , Apoptosis Regulatory Proteins/metabolism , Calcium-Binding Proteins/metabolism , Chemotaxis, Leukocyte/genetics , Chemotaxis, Leukocyte/immunology , Dendritic Cells/metabolism , Inflammasomes/genetics , Inflammasomes/metabolism , Legionella pneumophila/immunology , Legionnaires' Disease/genetics , Legionnaires' Disease/immunology , Macrophages , Mice, Knockout , Monocytes/metabolism , Receptors, CCR2/metabolismABSTRACT
BACKGROUND: Central Illustration : New Cardiovascular Biomarkers in Breast Cancer Patients Undergoing Doxorubicin-Based Chemotherapy. Cardiovascular diseases (CVDs) are relevant to the management of breast cancer treatment since a substantial number of patients develop these complications after chemotherapy. OBJECTIVE: This study aims to evaluate new cardiovascular biomarkers, namely CXCL-16 (C-X-C motif ligand 16), FABP3 (fatty acid binding protein 3), FABP4 (fatty acid binding protein 4), LIGHT (tumor necrosis factor superfamily member 14/TNFS14), GDF-15 (Growth/differentiation factor 15), sCD4 (soluble form of CD14), and ucMGP (uncarboxylated Matrix Gla-Protein) in breast cancer patients treated with doxorubicin (DOXO). METHODS: This case-control study was conducted in an oncology clinic that included 34 women diagnosed with breast cancer and chemotherapy with DOXO and 34 control women without cancer and CVD. The markers were determined immediately after the last cycle of chemotherapy. The statistical significance level adopted was 5%. RESULTS: The breast cancer group presented higher levels of GDF-15 (p<0.001), while control subjects had higher levels of FABP3 (p=0.038), FABP4 (p=0003), sCD14, and ucMGP (p<0.001 for both). Positive correlations were observed between FABPs and BMI in the cancer group. CONCLUSION: GDF15 is an emerging biomarker with potential clinical applicability in this scenario. FABPs are proteins related to adiposity, which are potentially involved in breast cancer biology. sCD14 and ucMGP engage in inflammatory and vascular calcification. The evaluation of these novel cardiovascular biomarkers could be useful in the management of breast cancer chemotherapy with DOXO.
FUNDAMENTO: Figura Central: Novos Biomarcadores Cardiovasculares em Pacientes com Câncer de Mama Submetidas a Quimioterapia à Base de Doxorrubicina. As doenças cardiovasculares (DCV) são relevantes para o manejo do tratamento do câncer de mama, uma vez que um número significativo de pacientes desenvolve essas complicações após a quimioterapia. OBJETIVO: Este estudo teve como objetivo avaliar novos biomarcadores cardiovasculares, sendo eles CXCL-16 (ligante de motivo C-X-C 16), FABP3 (proteína de ligação a ácidos graxos 3), FABP4 (proteína de ligação a ácidos graxos 4), LIGHT (membro da superfamília do fator de necrose tumoral 14/TNFS14), GDF-15 (fator de crescimento/diferenciação 15) , sCD4 (forma solúvel de CD14) e ucMGP (matriz Gla-proteína não carboxilada) em pacientes com câncer de mama tratadas com doxorrubicina (DOXO). MÉTODOS: Este estudo de caso-controle foi realizado em uma clínica oncológica, incluindo 34 mulheres com diagnóstico de câncer de mama tratadas com quimioterapia com DOXO e 34 mulheres controle, sem câncer ou DCV. Os marcadores foram determinados imediatamente após o último ciclo de quimioterapia. O nível de significância estatística adotado foi de 5%. RESULTADOS: O grupo com câncer de mama apresentou níveis mais elevados de GDF-15 (p<0,001), enquanto os indivíduos controle apresentaram níveis mais elevados de FABP3 (p=0,038), FABP4 (p=0003), sCD14 e ucMGP (p<0,001 para ambos). Correlações positivas foram observadas entre FABPs e IMC no grupo com câncer. CONCLUSÃO: GDF15 é um biomarcador emergente com potencial aplicabilidade clínica neste cenário. FABPs são proteínas relacionadas à adiposidade, potencialmente envolvidas na biologia do câncer de mama. sCD14 e ucMGP estão envolvidos na calcificação inflamatória e vascular. Acima de tudo, a avaliação destes novos biomarcadores cardiovasculares pode ser útil no tratamento da quimioterapia do câncer de mama com DOXO.
Subject(s)
Breast Neoplasms , Cardiovascular Diseases , Humans , Female , Cardiovascular Diseases/etiology , Calcium-Binding Proteins , Extracellular Matrix Proteins , Growth Differentiation Factor 15 , Lipopolysaccharide Receptors , Breast Neoplasms/drug therapy , Case-Control Studies , Biomarkers , Doxorubicin/therapeutic useABSTRACT
The NAIP/NLRC4 inflammasome is classically associated with the detection of bacterial invasion to the cytosol. However, recent studies have demonstrated that NAIP/NLRC4 is also activated in non-bacterial infections, and in sterile inflammation. Moreover, in addition to the well-established model for the detection of bacterial proteins by NAIP proteins, the participation of other cytosolic pathways in the regulation of NAIP/NLRC4-mediated responses has been reported in distinct contexts. Using pharmacological inhibition and genetic deletion, we demonstrate here that cathepsins, well known for their involvement in NLRP3 activation, also regulate NAIP/NLRC4 responses to cytosolic flagellin in murine and human macrophages. In contrast to that observed for NLRP3 agonists, cathepsins inhibition did not reduce ASC speck formation or caspase-1 maturation in response to flagellin, ruling out their participation in the effector phase of NAIP/NLRC4 activation. Moreover, cathepsins had no impact on NF-κB-mediated priming of pro-IL-1ß, thus suggesting these proteases act downstream of the NAIP/NLRC4 inflammasome activation. IL-1ß levels secreted in response to flagellin were reduced in the absence of either cathepsins or Gasdermin-D (GSDMD), a molecule involved in the induction of pyroptosis and cytokines release. Notably, IL-1ß secretion was abrogated in the absence of both GSDMD and cathepsins, demonstrating their non-redundant roles for the optimal IL-1ß release in response to cytosolic flagellin. Given the central role of NAIP/NLRC4 inflammasomes in controlling infection and, also, induction of inflammatory pathologies, many efforts have been made to uncover novel molecules involved in their regulation. Thus, our findings bring together a relevant contribution by describing the role of cathepsins as players in the NAIP/NLRC4-mediated responses.
Subject(s)
CARD Signaling Adaptor Proteins , Calcium-Binding Proteins , Cathepsins , Gasdermins , Lysosomes , Neuronal Apoptosis-Inhibitory Protein , Animals , Humans , Mice , Calcium-Binding Proteins/metabolism , CARD Signaling Adaptor Proteins/metabolism , Cathepsins/metabolism , Gene Deletion , Neuronal Apoptosis-Inhibitory Protein/metabolism , Gasdermins/metabolism , Interleukin-1beta/metabolismABSTRACT
Brisk walkers are physically more active, taller, have reduced body fat and greater physical fitness and muscle strength. The aim of our study was to determine whether genetic variants associated with increased walking pace were overrepresented in elite sprinters compared to controls. A total of 70 single-nucleotide polymorphisms (SNPs) previously identified in a genome-wide association study (GWAS) of self-reported walking pace in 450,967 European individuals were explored in relation to sprinter status. Genotyping of 137 Russian elite sprinters and 126 controls was performed using microarray technology. Favorable (i.e., high-speed-walking) alleles of 15 SNPs (FHL2 rs55680124 C, SLC39A8 rs13107325 C, E2F3 rs4134943 T, ZNF568 rs1667369 A, GDF5 rs143384 G, PPARG rs2920503 T, AUTS2 rs10452738 A, IGSF3 rs699785 A, CCT3 rs11548200 T, CRTAC1 rs2439823 A, ADAM15 rs11264302 G, C6orf106 rs205262 A, AKAP6 rs12883788 C, CRTC1 rs11881338 A, NRXN3 rs8011870 G) were identified as having positive associations with sprinter status (p < 0.05), of which IGSF3 rs699785 survived correction for multiple testing (p = 0.00004) and was linked (p = 0.042) with increased proportions of fast-twitch muscle fibers of m. vastus lateralis in physically active men (n = 67). Polygenic analysis revealed that individuals with ≥18 favorable alleles of the 15 SNPs have an increased odds ratio of being an elite sprinter when compared to those with ≤17 alleles (OR: 7.89; p < 0.0001). Using UK Biobank data, we also established the association of 14 favorable alleles with low BMI and fat percentage, 8 alleles with increased handgrip strength, and 7 alleles with increased height and fat-free mass. In conclusion, we have identified 15 new genetic markers associated with sprinter status.
Subject(s)
Genome-Wide Association Study , Hand Strength , Male , Humans , Hand Strength/physiology , Genetic Markers , PPAR gamma , Walking , Genomics , Calcium-Binding Proteins , Membrane Proteins/genetics , ADAM ProteinsABSTRACT
The Calmodulin Binding Transcription Activator 1 (CAMTA1) gene plays a central role in the human nervous system. Here evidence-based perspectives on its clinical value for the screening of CAMTA1 malfunction is provided and argued that in future, patients suffering from brain tumours and/or neurological disorders could benefit from this diagnostic. In neuroblastomas as well as in low-grade gliomas, the influence of reduced expression of CAMTA1 results in opposite prognosis, probably because of different carcinogenic pathways in which CAMTA1 plays different roles, but the exact genetics bases remains unsolved. Rearrangements, mutations and variants of CAMTA1 were associated with human neurodegenerative disorders, while some CAMTA1 single nucleotide polymorphisms were associated with poorer memory in clinical cases and also amyotrophic lateral sclerosis. So far, the follow-up of patients with neurological diseases with alterations in CAMTA1 indicates that defects (expression, mutations, and rearrangements) in CAMTA1 alone are not sufficient to drive carcinogenesis. It is necessary to continue studying CAMTA1 rearrangements and expression in more cases than done by now. To understand the influence of CAMTA1 variants and their role in nervous system tumours and in several psychiatric disorders is currently a challenge.
Subject(s)
Neuroblastoma , Trans-Activators , Humans , Trans-Activators/genetics , Trans-Activators/metabolism , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/metabolism , Calmodulin/metabolism , Neuroblastoma/genetics , Neuroblastoma/metabolism , Neuroblastoma/pathology , Nervous System/metabolism , Nervous System/pathologyABSTRACT
OBJECTIVES: Emerging evidence has demonstrated that LINC01857 exerts a pivotal function in many cancers. However, its function in Pancreatic Ductal Adenocarcinoma (PDAC) still remains unclear. This study was designed to investigate the regulatory character of LINC01857 in PDAC. METHODS: Bioinformatic tools and databases were used to seek potential miRNAs and mRNAs. Gene expression was evaluated by Reverse Transcription quantitative real-time Polymerase Chain Reaction (RT-qPCR), and western blot was used for protein level detection. A subcellular fraction assay was done to ascertain the location of LINC01857 in PANC-1 and BxPC-3 human pancreatic cancer cells. CCK-8, EdU, wound healing and Transwell assays were performed to inquire into the influence of LINC01857, and SPARC -related Modular Calcium-binding protein-2 (SMOC2) on cell viability, proliferation, migration, and invasion, respectively. The interaction between LINC01857 and its downstream genes was explored by RNA immunoprecipitation and luciferase reporter assays. RESULTS: LINC01857 levels were significantly elevated in PDAC. Knockdown of LINC01857 significantly restrained the proliferation, migration, invasion, and Epithelial-Mesenchymal Transition (EMT) process of PDAC cells. MiR-19a-3p was a downstream target of LINC01857, and miR-19a-3p levels were significantly decreased in PDAC cells. In addition, SMOC2 expression had a negative correlation with that of miR-19a-3p, and SMOC2 was a downstream target of miR-19a-3p. Furthermore, SMOC2 upregulation partially abolished the inhibitive influence of LINC01857 downregulation on cell proliferation, migration, invasion, and the EMT process. CONCLUSION: LINC01857 promotes malignant phenotypes of PDAC cells via upregulation of SMOC2 by interacting with miR-19a-3p.
Subject(s)
Adenocarcinoma , Carcinoma, Pancreatic Ductal , MicroRNAs , Pancreatic Neoplasms , RNA, Long Noncoding , Adenocarcinoma/genetics , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/metabolism , Carcinoma, Pancreatic Ductal/metabolism , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic/genetics , Humans , MicroRNAs/genetics , Pancreatic Neoplasms/pathology , RNA, Long Noncoding/genetics , Pancreatic NeoplasmsABSTRACT
Carotid plaque is a subclinical measure of atherosclerosis. We have previously shown measures of carotid plaque to be heritable in a sample of 100 Dominican families and found evidence for linkage and association of common variants (CVs) on 7q36, 11p15, 14q32 and 15q23 with plaque presence. Our current study aimed to refine these regions further and identify rare variants (RVs) influencing plaque presence. Therefore, we performed targeted sequencing of the one LOD unit down region on 7q36, 11p15, 14q32 and 15q23 in 12 Dominican families with evidence for linkage to plaque presence. Gene-based RV analyses were performed using the Sequence Association Test for familial data (F-SKAT) under two filtering algorithms; 1. all exonic RVs and 2. non-synonymous RVs. Replication analyses were performed using a sample of 22 Dominican families and 556 unrelated Dominicans with Exome Array data. To identify additional non-synonymous RVs influencing plaque, we looked for co-segregation of RVs with plaque in each of the sequenced families. Our most strongly associated gene with evidence for replication was AMPD3 which showed suggestive association with plaque presence in the sequenced families (exonic RV p = 0.003, nonsynonymous RV p = 0.005) and replication families (exonic RV p = 0.04, nonsynonymous RV p = 0.02). Examination of the sequenced family pedigrees revealed two missense variants on chromosome 11 which co-segregated with plaque presence in one of our families; rs61751342 (located in DENND2B), and rs61760882 (located in RNF141). The rs61751342 missense variant is an eQTL for SCUBE2 in the atrial appendage. Notably, SCUBE2 encodes a protein which interacts with vascular endothelial growth factor (VEGF) receptor 2 to regulate VEGF-induced angiogenesis, thus providing biologic plausibility for this gene in atherosclerosis. In conclusion, using targeted sequencing of previously-identified linkage regions, we have identified suggestive evidence for the role of RVs in carotid plaque pathogenesis.