Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
1.
J Biol Chem ; 300(8): 107495, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38925327

ABSTRACT

Transthyretin (TTR) is an homotetrameric protein involved in the transport of thyroxine. More than 150 different mutations have been described in the TTR gene, several of them associated with familial amyloid cardiomyopathy. Recently, our group described a new variant of TTR in Brazil, namely A39D-TTR, which causes a severe cardiac condition. Position 39 is in the AB loop, a region of the protein that is located within the thyroxine-binding channels and is involved in tetramer formation. In the present study, we solved the structure and characterize the thermodynamic stability of this new variant of TTR using urea and high hydrostatic pressure. Interestingly, during the process of purification, A39D-TTR turned out to be a dimer and not a tetramer, a variation that might be explained by the close contact of the four aspartic acids at position 39, where they face each other inside the thyroxine channel. In the presence of subdenaturing concentrations of urea, bis-ANS binding and dynamic light scattering revealed A39D-TTR in the form of a molten-globule dimer. Co-expression of A39D and WT isoforms in the same bacterial cell did not produce heterodimers or heterotetramers, suggesting that somehow a negative charge at the AB loop precludes tetramer formation. A39D-TTR proved to be highly amyloidogenic, even at mildly acidic pH values where WT-TTR does not aggregate. Interestingly, despite being a dimer, aggregation of A39D-TTR was inhibited by diclofenac, which binds to the thyroxine channel in the tetramer, suggesting the existence of other pockets in A39D-TTR able to accommodate this molecule.


Subject(s)
Cardiomyopathies , Prealbumin , Protein Multimerization , Thermodynamics , Prealbumin/genetics , Prealbumin/chemistry , Prealbumin/metabolism , Humans , Cardiomyopathies/metabolism , Cardiomyopathies/genetics , Thyroxine/metabolism , Thyroxine/chemistry , Mutation, Missense , Amyloid/metabolism , Amyloid/chemistry , Amyloid/genetics , Amino Acid Substitution , Urea/chemistry , Urea/metabolism
2.
Physiol Rep ; 12(8): e16020, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38658362

ABSTRACT

Desminopathy R350P is a human myopathy that is characterized by the progressive loss of muscle fiber organization. This results in the loss of muscle size, mobility, and strength. In desminopathy, inflammation affects muscle homeostasis and repair, and contributes to progressive muscle deterioration. Mitochondria morphology was also suggested to affect desminopathy progression. Epicatechin (Epi)-a natural compound found in cacao-has been proposed to regulate inflammatory signaling and mitochondria morphology in human and animal models. Hence, we hypothesize chronic Epi consumption to improve inflammatory pathway and mitochondria morphology in the peripheral blood mononuclear cells (PBMCs) of a desminopathy R350P patient. We found that 12 weeks of Epi consumption partially restored TRL4 signaling, indicative of inflammatory signaling and mitochondria morphology in the desminopathy patient. Moreover, Epi consumption improved blood health parameters, including reduced HOMA-IR and IL-6 levels in the desminopathy patient. This indicates that Epi consumption could be a useful tool to slow disease progression in desminopathy patients.


Subject(s)
Catechin , Leukocytes, Mononuclear , Mitochondria , Humans , Catechin/pharmacology , Catechin/administration & dosage , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/drug effects , Mitochondria/metabolism , Mitochondria/drug effects , Mitochondria/pathology , Male , Muscular Dystrophies/metabolism , Muscular Dystrophies/pathology , Muscular Dystrophies/drug therapy , Muscular Dystrophies/genetics , Adult , Female , Inflammation/metabolism , Inflammation/pathology , Cardiomyopathies/metabolism , Cardiomyopathies/pathology , Cardiomyopathies/drug therapy , Desmin/metabolism , Desmin/genetics
3.
Biochim Biophys Acta Bioenerg ; 1864(2): 148961, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36812958

ABSTRACT

Refsum disease is an inherited peroxisomal disorder caused by severe deficiency of phytanoyl-CoA hydroxylase activity. Affected patients develop severe cardiomyopathy of poorly known pathogenesis that may lead to a fatal outcome. Since phytanic acid (Phyt) concentrations are highly increased in tissues of individuals with this disease, it is conceivable that this branched-chain fatty acid is cardiotoxic. The present study investigated whether Phyt (10-30 µM) could disturb important mitochondrial functions in rat heart mitochondria. We also determined the influence of Phyt (50-100 µM) on cell viability (MTT reduction) in cardiac cells (H9C2). Phyt markedly increased mitochondrial state 4 (resting) and decreased state 3 (ADP-stimulated) and uncoupled (CCCP-stimulated) respirations, besides reducing the respiratory control ratio, ATP synthesis and the activities of the respiratory chain complexes I-III, II, and II-III. This fatty acid also reduced mitochondrial membrane potential and induced swelling in mitochondria supplemented by exogenous Ca2+, which were prevented by cyclosporin A alone or combined with ADP, suggesting the involvement of the mitochondrial permeability transition (MPT) pore opening. Mitochondrial NAD(P)H content and Ca2+ retention capacity were also decreased by Phyt in the presence of Ca2+. Finally, Phyt significantly reduced cellular viability (MTT reduction) in cultured cardiomyocytes. The present data indicate that Phyt, at concentrations found in the plasma of patients with Refsum disease, disrupts by multiple mechanisms mitochondrial bioenergetics and Ca2+ homeostasis, which could presumably be involved in the cardiomyopathy of this disease.


Subject(s)
Cardiomyopathies , Refsum Disease , Rats , Animals , Refsum Disease/metabolism , Phytanic Acid/pharmacology , Phytanic Acid/metabolism , Calcium/metabolism , Rats, Wistar , Cardiomyopathies/drug therapy , Cardiomyopathies/metabolism , Energy Metabolism , Mitochondria, Heart/metabolism , Fatty Acids/metabolism , Mitochondrial Permeability Transition Pore/metabolism , Homeostasis
4.
Front Immunol ; 13: 1035589, 2022.
Article in English | MEDLINE | ID: mdl-36713380

ABSTRACT

Introduction: Chronic Chagasic cardiomyopathy (CCC), caused by the protozoan Trypanosoma cruzi, is the most severe manifestation of Chagas disease.CCC is characterized by cardiac inflammation and fibrosis caused by a persistent inflammatory response. Following infection, macrophages secrete inflammatory mediators such as IL-1ß, IL-6, and TNF-α to control parasitemia. Although this response contains parasite infection, it causes damage to the heart tissue. Thus, the use of immunomodulators is a rational alternative to CCC. Rho-associated kinase (ROCK) 1 and 2 are RhoA-activated serine/threonine kinases that regulate the actomyosin cytoskeleton. Both ROCKs have been implicated in the polarization of macrophages towards an M1 (pro-inflammatory) phenotype. Statins are FDA-approved lipid-lowering drugs that reduce RhoA signaling by inhibiting geranylgeranyl pyrophosphate (GGPP) synthesis. This work aims to identify the effect of statins on U937 macrophage polarization and cardiac tissue inflammation and its relationship with ROCK activity during T. cruzi infection. Methods: PMA-induced, wild-type, GFP-, CA-ROCK1- and CA-ROCK2-expressing U937 macrophages were incubated with atorvastatin, or the inhibitors Y-27632, JSH-23, TAK-242, or C3 exoenzyme incubated with or without T. cruzi trypomastigotes for 30 min to evaluate the activity of ROCK and the M1 and M2 cytokine expression and secretion profiling. Also, ROCK activity was determined in T. cruzi-infected, BALB/c mice hearts. Results: In this study, we demonstrate for the first time in macrophages that incubation with T. cruzi leads to ROCK activation via the TLR4 pathway, which triggers NF-κB activation. Inhibition of ROCKs by Y-27632 prevents NF-κB activation and the expression and secretion of M1 markers, as does treatment with atorvastatin. Furthermore, we show that the effect of atorvastatin on the NF-kB pathway and cytokine secretion is mediated by ROCK. Finally, statin treatment decreased ROCK activation and expression, and the pro-inflammatory cytokine production, promoting anti-inflammatory cytokine expression in chronic chagasic mice hearts. Conclusion: These results suggest that the statin modulation of the inflammatory response due to ROCK inhibition is a potential pharmacological strategy to prevent cardiac inflammation in CCC.


Subject(s)
Cardiomyopathies , Chagas Disease , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Trypanosoma cruzi , Humans , Animals , Mice , Trypanosoma cruzi/metabolism , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , rho-Associated Kinases/metabolism , NF-kappa B/metabolism , Atorvastatin/pharmacology , U937 Cells , Macrophages/metabolism , Chagas Disease/genetics , Cytokines/metabolism , Cardiomyopathies/metabolism , Inflammation/metabolism
5.
FASEB J ; 35(8): e21761, 2021 08.
Article in English | MEDLINE | ID: mdl-34245616

ABSTRACT

Uremic cardiomyopathy is a common complication in chronic kidney disease (CKD) patients, accounting for a high mortality rate. Several mechanisms have been proposed to link CKD and cardiac alterations; however, the early cardiac modifications that occur in CKD that may trigger cardiac remodeling and dysfunction remain largely unexplored. Here, in a mouse model of CKD induced by 5/6 nephrectomy, we first analyzed the early transcriptional and inflammatory changes that occur in the heart. Five days after 5/6 nephrectomy, RNA-sequencing showed the upregulation of 54 genes in the cardiac tissue of CKD mice and the enrichment of biological processes related to immune system processes. Increased cardiac infiltration of T-CD4+ lymphocytes, myeloid cells, and macrophages during early CKD was observed. Next, since CC chemokine ligand-8 (CCL8) was one of the most upregulated genes in the heart of mice with early CKD, we investigated the effect of acute and transient CCL8 inhibition on uremic cardiomyopathy severity. An increase in CCL8 protein levels was confirmed in the heart of early CKD mice. CCL8 inhibition attenuated the early infiltration of T-CD4+ lymphocytes and macrophages to the cardiac tissue, leading to a protection against chronic cardiac fibrotic remodeling, inflammation and cardiac dysfunction induced by CKD. Altogether, our data show the occurrence of transcriptional and inflammatory changes in the heart during the early phases of CKD and identify CCL8 as a key contributor to the early cardiac inflammatory state that triggers further cardiac remodeling and dysfunction in uremic cardiomyopathy.


Subject(s)
Cardiomyopathies/metabolism , Chemokine CCL8/biosynthesis , Myocardium/metabolism , Renal Insufficiency, Chronic/metabolism , Up-Regulation , Uremia/metabolism , Animals , Cardiomyopathies/pathology , Inflammation/metabolism , Inflammation/pathology , Male , Mice , Myocardium/pathology , Renal Insufficiency, Chronic/pathology , Uremia/pathology
6.
Am J Obstet Gynecol ; 225(4): 439.e1-439.e10, 2021 10.
Article in English | MEDLINE | ID: mdl-34153234

ABSTRACT

BACKGROUND: Twin-twin transfusion syndrome presents many challenges for clinicians, and the optimal means of identifying pregnancies that will benefit most from intervention is controversial. There is currently no clinically available biomarker to detect twin-twin transfusion syndrome or to stratify cases based on the risk factors. microRNAs are small RNAs that regulate gene expression and are biomarkers for various disease processes, including adult and pediatric heart failure. To date, no studies have investigated amniotic fluid microRNAs as biomarkers for disease severity, specifically for severe recipient cardiomyopathy in twin-twin transfusion syndrome cases. OBJECTIVE: This study aimed to assess whether amniotic fluid microRNAs could be useful as biomarkers to identify pregnancies at greatest risk for severe recipient cardiomyopathy associated with twin-twin transfusion syndrome. STUDY DESIGN: Amniotic fluid was collected at the time of amnioreduction or selective fetoscopic laser photocoagulation from monochorionic diamniotic twin pregnancies with twin-twin transfusion syndrome at any stage. Fetal echocardiography was performed on all twins before the procedure, and severe cardiomyopathy was defined as a right ventricular myocardial performance index of the recipient fetus of >4 Z-scores. microRNA was extracted from the amniotic fluid samples and analyzed using an array panel assessing 379 microRNAs (TaqMan Open Array, ThermoFisher). Student t tests were performed to determine significant differences in microRNA expression between pregnancies with severe recipient cardiomyopathy and those with preserved cardiac function. A stringent q value of <.0025 was used to determine differential microRNA expression. Random forest plots identified the top 3 microRNAs that separated the 2 groups, and hierarchical cluster analysis was used to determine if these microRNAs properly segregated the samples according to their clinical groups. RESULTS: A total of 14 amniotic fluid samples from pregnancies with twin-twin transfusion syndrome with severe cardiomyopathy were compared with samples from 12 twin-twin transfusion syndrome control cases with preserved cardiac function. A total of 110 microRNAs were identified in the amniotic fluid samples. Twenty microRNAs were differentially expressed, and the top 3 differentiating microRNAs were hsa-miR-200c-3p, hsa-miR-17-5p, and hsa-miR-539-5p. Hierarchical cluster analysis based on these top 3 microRNAs showed a strong ability to differentiate severe cardiomyopathy cases from controls. The top 3 microRNAs were used to investigate the sensitivity and specificity of these microRNAs to differentiate between the 2 groups with a receiver operating characteristic curve demonstrating sensitivity and specificity of 80.8%. All 20 differentially expressed microRNAs were down-regulated in the group with severe cardiomyopathy. CONCLUSION: Amniotic fluid microRNAs demonstrated differential expression between twin-twin transfusion syndrome recipient fetuses with severe cardiomyopathy and those without and have the potential to be important biomarkers of disease severity in this population.


Subject(s)
Amniotic Fluid/metabolism , Cardiomyopathies/metabolism , Fetofetal Transfusion/metabolism , MicroRNAs/metabolism , Adult , Biomarkers/metabolism , Cardiomyopathies/diagnosis , Case-Control Studies , Cluster Analysis , Down-Regulation , Drainage , Echocardiography , Female , Fetofetal Transfusion/therapy , Fetoscopy , Humans , Light Coagulation , Pregnancy , Severity of Illness Index , Ultrasonography, Prenatal , Young Adult
7.
Arch Med Res ; 52(3): 284-293, 2021 04.
Article in English | MEDLINE | ID: mdl-33220932

ABSTRACT

BACKGROUND: Decreased cardiac contractility has been observed in cirrhosis, but the mechanisms that initiate and maintain cardiac dysfunction are not entirely understood. AIM OF THE STUDY: We test the hypothesis that cirrhotic cardiomyopathy is related to deterioration of myocardial contractility due to alterations in calcium-handling proteins expression. In addition, we evaluated whether cardiac pro-inflammatory cytokine levels are associated with this process. METHODS: Cirrhosis was induced by thioacetamide (TAA, 100 mg/kg/i.p., twice weekly for eight weeks). The myocardial performance was evaluated in isolated left ventricle papillary muscles under basal conditions and after inotropic challenge. The cardiac calcium handling protein expression was detected by Western blotting. Cardiac TNF-α and IL-6 levels were measured by ELISA. RESULTS: Thioacetamide induced liver cirrhosis, which was associated with cirrhotic cardiomyopathy characterized by in vivo left ventricular diastolic and systolic dysfunction as well as cardiac hypertrophy. In vitro baseline myocardial contractility was lower in cirrhosis. Also, myocardial responsiveness to post-rest contraction stimulus was declined. Protein expression for RYR2, SERCA2, NCX, pPBL Ser16 and L-type calcium channel was quantitatively unchanged; however, pPBL Thr17 was significantly lower while IL-6 was higher. CONCLUSIONS: Our study demonstrates that cirrhotic cardiomyopathy is associated with decreased cardiac contractility with alteration of phospholamban phosphorylation in association with higher cardiac pro-inflammatory IL-6 levels. These findings provided molecular and functional insights about the effects of liver cirrhosis on cardiac function.


Subject(s)
Calcium-Binding Proteins/metabolism , Interleukin-6/metabolism , Liver Cirrhosis/metabolism , Animals , Cardiomyopathies/chemically induced , Cardiomyopathies/metabolism , Cardiomyopathies/pathology , Cardiomyopathies/physiopathology , Liver Cirrhosis/chemically induced , Liver Cirrhosis/pathology , Liver Cirrhosis/physiopathology , Male , Myocardial Contraction/physiology , Myocardium/metabolism , Myocardium/pathology , Phosphorylation/drug effects , Random Allocation , Rats , Rats, Wistar , Thioacetamide/administration & dosage
8.
Oxid Med Cell Longev ; 2020: 4587024, 2020.
Article in English | MEDLINE | ID: mdl-33194003

ABSTRACT

A large number of cannabinoids have been discovered that could play a role in mitigating cardiac affections. However, none of them has been as widely studied as cannabidiol (CBD), most likely because, individually, the others offer only partial effects or can activate potential harmful pathways. In this regard, CBD has proven to be of great value as a cardioprotective agent since it is a potent antioxidant and anti-inflammatory molecule. Thus, we conducted a review to condensate the currently available knowledge on CBD as a therapy for different experimental models of cardiomyopathies and heart failure to detect the molecular pathways involved in cardiac protection. CBD therapy can greatly limit the production of oxygen/nitrogen reactive species, thereby limiting cellular damage, protecting mitochondria, avoiding caspase activation, and regulating ionic homeostasis. Hence, it can affect myocardial contraction by restricting the activation of inflammatory pathways and cytokine secretion, lowering tissular infiltration by immune cells, and reducing the area of infarct and fibrosis formation. These effects are mediated by the activation or inhibition of different receptors and target molecules of the endocannabinoid system. In the final part of this review, we explore the current state of CBD in clinical trials as a treatment for cardiovascular diseases and provide evidence of its potential benefits in humans.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Cannabidiol/therapeutic use , Cardiomyopathies , Cardiotonic Agents/therapeutic use , Heart Failure , Cardiomyopathies/drug therapy , Cardiomyopathies/metabolism , Cardiomyopathies/physiopathology , Heart Failure/drug therapy , Heart Failure/metabolism , Heart Failure/physiopathology , Humans , Myocardial Contraction/drug effects , Reactive Oxygen Species/metabolism
9.
Cells ; 9(7)2020 07 07.
Article in English | MEDLINE | ID: mdl-32645832

ABSTRACT

Chagas disease discovered more than a century ago remains an incurable disease. The objective of this work was to investigate the therapeutic potential of cardiomyocytes derived from mouse embryonic stem cells (CM-mESC) in a model of chronic Chagasic cardiomyopathy (CCC). Mouse embryonic stem cells (mESC) were characterized, transduced with luciferase, and submitted to cardiac differentiation. CM-mESC were labeled with superparamagnetic iron oxide particles. To induce CCC, mice were infected with Brazil strain trypomastigotes. At 150 days post-infection (dpi), infected animals were treated with CM-mESC or PBS. Cells were detected by magnetic resonance imaging (MRI) and bioluminescence. Cardiac function was evaluated by MRI and electrocardiogram at 150 and 196 dpi. CCC mice showed significant differences in MRI and ECG parameters compared to non-infected mice. However, no differences were observed in contractile and electrical parameters between cell and PBS injected groups, 45 days after cell transplantation. Cells were detected 24 h after transplantation by MRI. CM-mESC bioluminescence tracking demonstrated over 90% decrease in signal 8 days after treatment. Nevertheless, the Infected + CM-mESC group showed a significant reduction in the percentage of collagen fibers when compared to the Infected + PBS group. In conclusion, CM-mESC therapy was not effective in reversing cardiac functional changes induced by Chagas disease despite some improvement in myocardial fibrosis.


Subject(s)
Cardiomyopathies/metabolism , Cardiomyopathies/therapy , Cell- and Tissue-Based Therapy/methods , Myocytes, Cardiac/physiology , Animals , Cardiomyopathies/diagnostic imaging , Chagas Disease/diagnostic imaging , Chagas Disease/metabolism , Chagas Disease/therapy , Disease Models, Animal , Embryonic Stem Cells/cytology , Embryonic Stem Cells/physiology , Female , Flow Cytometry , Humans , Magnetic Resonance Imaging , Male , Mice , Myocytes, Cardiac/metabolism
10.
Biochim Biophys Acta Mol Basis Dis ; 1866(5): 165682, 2020 05 01.
Article in English | MEDLINE | ID: mdl-31931102

ABSTRACT

Propionic acidemia is caused by lack of propionyl-CoA carboxylase activity. It is biochemically characterized by accumulation of propionic (PA) and 3-hydroxypropionic (3OHPA) acids and clinically by severe encephalopathy and cardiomyopathy. High urinary excretion of maleic acid (MA) and 2-methylcitric acid (2MCA) is also found in the affected patients. Considering that the underlying mechanisms of cardiac disease in propionic acidemia are practically unknown, we investigated the effects of PA, 3OHPA, MA and 2MCA (0.05-5 mM) on important mitochondrial functions in isolated rat heart mitochondria, as well as in crude heart homogenates and cultured cardiomyocytes. MA markedly inhibited state 3 (ADP-stimulated), state 4 (non-phosphorylating) and uncoupled (CCCP-stimulated) respiration in mitochondria supported by pyruvate plus malate or α-ketoglutarate associated with reduced ATP production, whereas PA and 3OHPA provoked less intense inhibitory effects and 2MCA no alterations at all. MA-induced impaired respiration was attenuated by coenzyme A supplementation. In addition, MA significantly inhibited α-ketoglutarate dehydrogenase activity. Similar data were obtained in heart crude homogenates and permeabilized cardiomyocytes. MA, and PA to a lesser degree, also decreased mitochondrial membrane potential (ΔΨm), NAD(P)H content and Ca2+ retention capacity, and caused swelling in Ca2+-loaded mitochondria. Noteworthy, ΔΨm collapse and mitochondrial swelling were fully prevented or attenuated by cyclosporin A and ADP, indicating the involvement of mitochondrial permeability transition. It is therefore proposed that disturbance of mitochondrial energy and calcium homeostasis caused by MA, as well as by PA and 3OHPA to a lesser extent, may be involved in the cardiomyopathy commonly affecting propionic acidemic patients.


Subject(s)
Maleates/metabolism , Mitochondria, Heart/pathology , Myoblasts, Cardiac/pathology , Propionates/metabolism , Animals , Calcium/metabolism , Cardiomyopathies/etiology , Cardiomyopathies/metabolism , Cardiomyopathies/pathology , Cell Fractionation , Cell Line , Energy Metabolism , Humans , Male , Mitochondria, Heart/metabolism , Mitochondrial Swelling , Myoblasts, Cardiac/cytology , Myoblasts, Cardiac/metabolism , Oxygen/analysis , Oxygen/metabolism , Propionic Acidemia/complications , Propionic Acidemia/metabolism , Propionic Acidemia/pathology , Rats
11.
Cardiovasc Toxicol ; 20(3): 222-234, 2020 06.
Article in English | MEDLINE | ID: mdl-31435888

ABSTRACT

In the present study, we investigated the cardioprotective effects of coenzyme Q10 (Q10) against doxorubicin (DOXO) induced cardiomyopathy. Twenty adult rats were distributed in four experimental groups: group 1 received NaCl 0.9% at 1 ml/day for 14 days; group 2 received Q10 at 1 mg/kg/day for 14 days; group 3 received initial 7 days of treatment with NaCl 0.9% followed by a single dose of doxorubicin (12.5 mg/kg IP) and another 7 days of NaCl; and group 4 received initial 7 days of Q10 1 mg/kg/day, followed by a single dose of doxorubicin (12.5 mg/kg IP) and another 7 days of Q10. At the end of 14 days, systolic, diastolic and mean blood pressure, electrocardiogram (ECG), complete blood count, and serum biochemical profile were evaluated. We also analyzed heart histological and ultrastructure analysis, and estimated heart's oxidative stress and lipid peroxidation. DOXO administration altered ECG, with increase heart rate, P-wave duration, PR interval duration, and T-wave amplitude. All the parameters were significantly reduced following Q10 treatment. DOXO also caused increase in CK, CK-MB, LDH, and urea levels, which were not mitigated by Q10 treatment. However, Q10 reduced oxidative stress by interfering with superoxide dismutase, significantly decreasing lipid peroxidation in heart tissue. DOXO administration also leads to several histological and ultrastructure alterations including cardiomyocyte degeneration and intense intracelullar autophagosomes, all minimized by Q10 treatment. Q10 treatment prevented the ECG changes, minimized oxidative stress, lipid peroxidation, and DOXO-induced heart tissue alterations. Our findings suggest that pre- and post-treatment with Q10 exerts potential cardioprotective effect against the DOX-induced cardiotoxicity.


Subject(s)
Antioxidants/pharmacology , Cardiomyopathies/prevention & control , Doxorubicin , Myocytes, Cardiac/drug effects , Oxidative Stress/drug effects , Ubiquinone/analogs & derivatives , Animals , Cardiomyopathies/chemically induced , Cardiomyopathies/metabolism , Cardiomyopathies/pathology , Cardiotoxicity , Disease Models, Animal , Lipid Peroxidation/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/ultrastructure , Rats, Wistar , Ubiquinone/pharmacology
12.
Nutr Metab Cardiovasc Dis ; 30(1): 151-161, 2020 01 03.
Article in English | MEDLINE | ID: mdl-31753790

ABSTRACT

BACKGROUND AND AIMS: Cardiovascular diseases are the main cause of mortality in obesity. Despite advanced understanding, the mechanisms that regulate cardiac progenitor cells (CPC) survival in pathological conditions are not clear. Low IGF-1 plasma levels are correlated to obesity, cardiomyopathy and CPC death, so this work aimed to investigate IGF-1 therapeutic potential on cardiomyopathy and its relationship with the survival, proliferation and differentiation of CPC in Western diet-induced obesity. METHODS AND RESULTS: Male Swiss mice were divided into control group (CG, n = 8), fed with standard diet; and obese group (OG, n = 16), fed with Western diet, for 12 weeks. At 11th week, OG was subdivided to receive a daily subcutaneous injection of human recombinant IGF-1 (100 µg.Kg-1) for seven consecutive days (OG + IGF1, n = 8). Results showed that IGF-1 therapy improved the metabolic parameters negatively impacted by western diet in OG, reaching levels similar to CG. OG + IGF-1 also demonstrated restored heart energetic metabolism, fibrosis resolution, decreased apoptosis level, restored cardiac gap junctions and intracellular calcium balance. Cardiomyopathy improvement was accompanied by increased CPC survival, proliferation and newly cardiomyocytes formation related to increased pAkt/Akt ratio. CONCLUSION: These results suggest that only one week of IGF-1 therapy has cardioprotective effects through Akt pathway upregulation, ensuring CPC survival and differentiation, contributing to heart failure rescue.


Subject(s)
Cardiomyopathies/prevention & control , Insulin-Like Growth Factor I/administration & dosage , Myocytes, Cardiac/drug effects , Obesity/drug therapy , Stem Cells/drug effects , Animals , Apoptosis/drug effects , Calcium Signaling , Cardiomyopathies/etiology , Cardiomyopathies/metabolism , Cardiomyopathies/pathology , Cell Survival/drug effects , Disease Models, Animal , Drug Administration Schedule , Gap Junctions/drug effects , Gap Junctions/metabolism , Gap Junctions/pathology , Injections, Subcutaneous , Male , Mice , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Obesity/complications , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , Recombinant Proteins/administration & dosage , Stem Cells/metabolism , Stem Cells/pathology , Time Factors , Ventricular Remodeling/drug effects
13.
Cell Calcium ; 86: 102138, 2020 03.
Article in English | MEDLINE | ID: mdl-31838436

ABSTRACT

Stress-induced cardiomyopathy (SIC) results from a profound catecholaminergic surge during strong emotional or physical stress. SIC is characterized by acute left ventricular apex hypokinesia, in the absence of coronary arteries occlusion, and can lead to arrhythmias and acute heart failure. Although, most SIC patients recover, the process could be slow, and recurrence or death may occur. Despite that the SIC common denominator is a large catecholamine discharge, the pathophysiological mechanism is incompletely understood. It is thought that catecholamines have direct cytotoxicity on apical ventricular myocytes (VM), which have the highest ß-adrenergic receptors density, and whose overstimulation might cause acute Ca2+ overload and oxidative stress, causing death in some VM and stunning others. Rodents receiving acute isoproterenol (ISO) overdose (OV) mimic SIC development, however, they have not been used to simultaneously assess Ca2+ handling and contractility status in isolated VM, which might explain ventricular hypokinesia. Therefore, treating rats with a single ISO-OV (67 mg/kg body weight), we sought out to characterize, with confocal imaging, Ca2+ and shortening dynamics in Fluo-4-loaded VM, during the early (1-5 days) and late post-acute phases (15 days). We found that ISO-OV VM showed contractile dysfunction; blunted shortening with slower force development and relaxation. These correlated with Ca2+ mishandling; blunted Ca2+ transient, with slower time to peak and SR Ca2+ recovery. SR Ca2+ content was low, nevertheless, diastolic Ca2+ sparks were more frequent, and their duration increased. Contractility and Ca2+ dysfunction aggravated or remained altered over time, explaining slow recovery. We conclude that diminished VM contractility is the main determinant of ISO-OV hypokinesia and is mostly related to Ca2+ mishandling.


Subject(s)
Calcium Signaling , Cardiomyopathies/physiopathology , Cell Separation , Heart Ventricles/pathology , Myocardial Contraction , Myocytes, Cardiac/pathology , Animals , Calcium/metabolism , Cardiomyopathies/metabolism , Cytosol/metabolism , Diastole , Disease Models, Animal , Drug Overdose , Heart Ventricles/physiopathology , Isoproterenol , Male , Myocytes, Cardiac/metabolism , Rats, Wistar , Sarcoplasmic Reticulum/metabolism , Systole , Time Factors
14.
J Mol Cell Cardiol ; 134: 40-50, 2019 09.
Article in English | MEDLINE | ID: mdl-31226341

ABSTRACT

Although nitrite improves vascular function and lowers blood pressure, its cardiac effects are not completely known. We investigated whether nitrite improves the cardiac function in normotensive and in hypertensive rats. Two-kidney, one-clip hypertension model (2K1C) was induced in Wistar rats. Blood pressure was evaluated by tail-cuff plethysmography over 6 weeks. By the end of week 2, hypertensive and normotensive rats received nitrite (daily dose of 1 or 15 mg/kg) by gavage for 4 weeks. Cardiac morphology and function were performed by transthoracic echocardiography. Intrinsic heart function was evaluated using the isolated heart model (Langendorff's preparation). Starling curves were generated under nitrite (1 µmol/L) and/or ascorbate (1 mmol/L) or vehicle. Cardiac tissue was collected and snap frozen for biochemical analysis. Nitrite treatment (15 mg/kg) lowered both systolic blood pressure and the increases in left ventricular (LV) mass found in 2K1C rats (P < .05). In addition, nitrite treatment restored the decreased cardiac output in 2K1C rats (P < .05) and improved the cardiac function. These findings were associated with increased nitrite, S-nitrosothiols, and protein S-nitrosylation (all P < .05) assessed in heart tissue. The cardiac effects of nitrite were further investigated in the isolated heart model, and nitrite infusion (1 µmol/L) enhanced cardiac contractility and relaxation. This infusion increased S-nitrosothiols concentrations and protein S-nitrosylation in the heart. Ascorbate completely blunted all nitrite-induced effects. These findings show that treatment with oral nitrite improves cardiac function by mechanisms involving increased S-nitrosothiols generation and S-nitrosylation of cardiac proteins. Pharmacological strategies promoting cardiac S-nitrosylation may be useful to improve myocardial function in heart diseases.


Subject(s)
Cardiomyopathies/etiology , Cardiomyopathies/prevention & control , Hypertension/complications , Myocardium/metabolism , Nitrates/metabolism , Sodium Nitrite/pharmacology , Animals , Antihypertensive Agents/pharmacology , Antihypertensive Agents/therapeutic use , Blood Pressure/drug effects , Cardiomyopathies/metabolism , Heart/drug effects , Hypertension/drug therapy , Hypertension/metabolism , Hypertension/physiopathology , Male , Myocardium/pathology , Nitrosation/drug effects , Oxidative Stress/drug effects , Rats , Rats, Wistar , Sodium Nitrite/therapeutic use
15.
Pharmacol Rep ; 71(4): 583-590, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31174019

ABSTRACT

BACKGROUND: Doxorubicin (DOX)-related cardiotoxicity may expose cancer survivors to increased risk of cardiovascular morbidity and mortality. Here, we characterized the time course of DOX-induced cardiomyopathy in rats. METHODS: Sprague-Dawley male rats (12 wk old) received doxorubicin hydrochloride (1 mg/kg/d, ip) during 10 consecutive days and they were euthanized one (DOX1), two (DOX2) or four (DOX4) weeks after the last drug injection. Control group received NaCl 0.9% (ip). Hearts were mounted on a Langendorff perfusion system, left ventricle fragments were processed for microscopy and oxidative stress-related assays, and blood was collected for cardiac troponin I assay. RESULTS: All DOX-treated groups showed swollen and vacuolated cardiomyocytes with myofilaments disarray and mitochondrial damage. These changes were already evident after one week and became more pronounced after four weeks. Cardiac troponin I plasma levels were significantly increased in DOX1 and further increased in DOX4 compared to control group. Increased oxidative damage to lipids was observed in DOX1, and to proteins in DOX4. Glutathione peroxidase activity increased in DOX4. The morphological changes resulted in cardiac remodeling, including interstitial fibrosis, apoptosis and significant impairment of both contractile and relaxation function in DOX 4 compared to control group. Hearts from all animals displayed an early reduction in the responsiveness to norepinephrine. CONCLUSIONS: These findings support the view that DOX cardiotoxicity occurs in a "continuum", and as the hypothesis of an irreversible cardiac injury is being challenged, understanding the progression of morphological and functional changes caused by DOX may allow proper timing of initiation of prophylactic treatment.


Subject(s)
Antibiotics, Antineoplastic/adverse effects , Apoptosis/drug effects , Cardiomyopathies/chemically induced , Doxorubicin/adverse effects , Myocytes, Cardiac/drug effects , Oxidative Stress/drug effects , Animals , Cardiomyopathies/metabolism , Cardiomyopathies/pathology , Cardiotoxicity , Male , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Rats, Sprague-Dawley , Time Factors
16.
Crit Care Med ; 47(4): e292-e300, 2019 04.
Article in English | MEDLINE | ID: mdl-30855329

ABSTRACT

OBJECTIVES: Brain mitochondrial dysfunction limits neurologic recovery after cardiac arrest. Brain polyunsaturated cardiolipins, mitochondria-unique and functionally essential phospholipids, have unprecedented diversification. Since brain cardiolipins are not present in plasma normally, we hypothesized their appearance would correlate with brain injury severity early after cardiac arrest and return of spontaneous circulation. DESIGN: Observational case-control study. SETTING: Two medical centers within one city. PARTICIPANTS (SUBJECTS): We enrolled 41 adult cardiac arrest patients in whom blood could be obtained within 6 hours of resuscitation. Two subjects were excluded following outlier analysis. Ten healthy subjects were controls. Sprague-Dawley rats were used in asphyxial cardiac arrest studies. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: We developed a high-resolution liquid chromatography/mass spectrometry method and determined cardiolipins speciation in human brain, heart, and plasma within 6 hours of (return of spontaneous circulation) from 39 patients with cardiac arrest, 5 with myocardial infarction, and 10 healthy controls. Cerebral score was derived from brain-specific cardiolipins identified in plasma of patients with varying neurologic injury and outcome. Using a rat model of cardiac arrest, cardiolipins were quantified in plasma, brain, and heart. Human brain exhibited a highly diverse cardiolipinome compared with heart that allowed the identification of brain-specific cardiolipins. Nine of 26 brain-specific cardiolipins were detected in plasma and correlated with brain injury. The cerebral score correlated with early neurologic injury and predicted discharge neurologic/functional outcome. Cardiolipin (70:5) emerged as a potential point-of-care marker predicting injury severity and outcome. In rat cardiac arrest, a significant reduction in hippocampal cardiolipins corresponded to their release from the brain into systemic circulation. Cerebral score was significantly increased in 10 minutes versus 5 minutes no-flow cardiac arrest and naïve controls. CONCLUSIONS: Brain-specific cardiolipins accumulate in plasma early after return of spontaneous circulation and proportional to neurologic injury representing a promising novel biomarker.


Subject(s)
Brain Injuries/metabolism , Cardiolipins/blood , Cardiomyopathies/metabolism , Mitochondria, Heart/metabolism , Animals , Cardiopulmonary Resuscitation/methods , Case-Control Studies , Female , Gas Chromatography-Mass Spectrometry/methods , Heart Arrest/metabolism , Humans , Male , Oxidation-Reduction , Rats , Rats, Sprague-Dawley
18.
Braz J Med Biol Res ; 51(8): e6921, 2018 Jun 11.
Article in English | MEDLINE | ID: mdl-29898033

ABSTRACT

Preeclampsia is one of the most frequent and difficult illnesses in pregnancy, which jeopardizes both mother and fetus. There are several diagnostic criteria for preeclampsia. However, the preeclampsia-associated myocardial damage has not been described. In this study, we employed reduced uterine perfusion pressure (RUPP) to generate a rat model of preeclampsia for the evaluation of myocardial damage in late-gestation rats. The expressions of cardiac injury markers were analyzed by immunohistochemistry and ELISA. The arterial pressure and myocardial tissue velocities were also measured. The role of interleukin (IL)-6 in RUPP-associated myocardial damage was further explored. The results showed that RUPP rats had significant myocardial damage, as demonstrated by the high expressions of myoglobin, creatine kinase isoenzyme, cardiac troponin I, and brain natriuretic peptide. In addition, RUPP increased the mean arterial pressure and the early transmitral flow velocity to mitral annulus early diastolic velocity ratio (E/Ea). Furthermore, IL-6 deteriorated these abnormalities, whereas inhibition of IL-6 significantly relieved them. In conclusion, our study demonstrated that RUPP rats displayed myocardial damage in an IL-6-dependent manner.


Subject(s)
Cardiomyopathies/etiology , Interleukin-6/metabolism , Myocardium/metabolism , Pre-Eclampsia/metabolism , Animals , Antibodies, Monoclonal, Humanized/administration & dosage , Antibodies, Monoclonal, Humanized/metabolism , Arterial Pressure , Cardiomyopathies/metabolism , Cardiomyopathies/pathology , Creatine Kinase, MB Form/metabolism , Disease Models, Animal , Echocardiography, Doppler, Color , Female , Heart/diagnostic imaging , Heart/drug effects , Interleukin-6/antagonists & inhibitors , Myoglobin/metabolism , Natriuretic Peptide, Brain/metabolism , Perfusion , Pre-Eclampsia/etiology , Pregnancy , Random Allocation , Rats, Sprague-Dawley , Troponin I/metabolism
19.
Stem Cell Res Ther ; 9(1): 30, 2018 02 05.
Article in English | MEDLINE | ID: mdl-29402309

ABSTRACT

BACKGROUND: Doxorubicin (Dox) is a chemotherapy drug with limited application due to cardiotoxicity that may progress to heart failure. This study aims to evaluate the role of cardiomyocytes derived from mouse embryonic stem cells (CM-mESCs) in the treatment of Dox-induced cardiomyopathy (DIC) in mice. METHODS: The mouse embryonic stem cell (mESC) line E14TG2A was characterized by karyotype analysis, gene expression using RT-PCR and immunofluorescence. Cells were transduced with luciferase 2 and submitted to cardiac differentiation. Total conditioned medium (TCM) from the CM-mESCs was collected for proteomic analysis. To establish DIC in CD1 mice, Dox (7.5 mg/kg) was administered once a week for 3 weeks, resulting in a cumulative Dox dose of 22.5 mg/kg. At the fourth week, a group of animals was injected intramyocardially with CM-mESCs (8 × 105 cells). Cells were tracked by a bioluminescence assay, and the body weight, echocardiogram, electrocardiogram and number of apoptotic cardiomyocytes were evaluated. RESULTS: mESCs exhibited a normal karyotype and expressed pluripotent markers. Proteomic analysis of TCM showed proteins related to the negative regulation of cell death. CM-mESCs presented ventricular action potential characteristics. Mice that received Dox developed heart failure and showed significant differences in body weight, ejection fraction (EF), end-systolic volume (ESV), stroke volume (SV), heart rate and QT and corrected QT (QTc) intervals when compared to the control group. After cell or placebo injection, the Dox + CM-mESC group showed significant increases in EF and SV when compared to the Dox + placebo group. Reduction in ESV and QT and QTc intervals in Dox + CM-mESC-treated mice was observed at 5 or 30 days after cell treatment. Cells were detected up to 11 days after injection. The Dox + CM-mESC group showed a significant reduction in the percentage of apoptotic cardiomyocytes in the hearts of mice when compared to the Dox + placebo group. CONCLUSIONS: CM-mESC transplantation improves cardiac function in mice with DIC.


Subject(s)
Cardiomyopathies/therapy , Doxorubicin/adverse effects , Human Embryonic Stem Cells/metabolism , Induced Pluripotent Stem Cells/metabolism , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/transplantation , Cardiomyopathies/chemically induced , Cardiomyopathies/metabolism , Cardiomyopathies/pathology , Cell Line , Doxorubicin/therapeutic use , Human Embryonic Stem Cells/pathology , Humans , Induced Pluripotent Stem Cells/pathology , Myocytes, Cardiac/pathology
20.
Rev. bras. pesqui. méd. biol ; Braz. j. med. biol. res;51(8): e6921, 2018. graf
Article in English | LILACS | ID: biblio-951749

ABSTRACT

Preeclampsia is one of the most frequent and difficult illnesses in pregnancy, which jeopardizes both mother and fetus. There are several diagnostic criteria for preeclampsia. However, the preeclampsia-associated myocardial damage has not been described. In this study, we employed reduced uterine perfusion pressure (RUPP) to generate a rat model of preeclampsia for the evaluation of myocardial damage in late-gestation rats. The expressions of cardiac injury markers were analyzed by immunohistochemistry and ELISA. The arterial pressure and myocardial tissue velocities were also measured. The role of interleukin (IL)-6 in RUPP-associated myocardial damage was further explored. The results showed that RUPP rats had significant myocardial damage, as demonstrated by the high expressions of myoglobin, creatine kinase isoenzyme, cardiac troponin I, and brain natriuretic peptide. In addition, RUPP increased the mean arterial pressure and the early transmitral flow velocity to mitral annulus early diastolic velocity ratio (E/Ea). Furthermore, IL-6 deteriorated these abnormalities, whereas inhibition of IL-6 significantly relieved them. In conclusion, our study demonstrated that RUPP rats displayed myocardial damage in an IL-6-dependent manner.


Subject(s)
Animals , Female , Pregnancy , Pre-Eclampsia/metabolism , Interleukin-6/metabolism , Cardiomyopathies/etiology , Myocardium/metabolism , Perfusion , Pre-Eclampsia/etiology , Random Allocation , Interleukin-6/antagonists & inhibitors , Rats, Sprague-Dawley , Echocardiography, Doppler, Color , Troponin I/metabolism , Natriuretic Peptide, Brain/metabolism , Disease Models, Animal , Creatine Kinase, MB Form/metabolism , Antibodies, Monoclonal, Humanized/administration & dosage , Antibodies, Monoclonal, Humanized/metabolism , Arterial Pressure , Heart/drug effects , Heart/diagnostic imaging , Cardiomyopathies/metabolism , Cardiomyopathies/pathology , Myoglobin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL