Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 543
Filter
1.
Chem Biol Interact ; 402: 111217, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39197813

ABSTRACT

Snake venoms are a complex mixture of proteins and polypeptides that represent a valuable source of potential molecular tools for understanding physiological processes for the development of new drugs. In this study two major PLA2s, named PLA2-I (Asp49) and PLA2-II (Lys49), isolated from the venom of Bothrops diporus from Northeastern Argentina, have shown cytotoxic effects on LM3 murine mammary tumor cells, with PLA2-II-like exhibiting a stronger effect compared to PLA2-I. At sub-cytotoxic levels, both PLA2s inhibited adhesion, migration, and invasion of these adenocarcinoma cells. Moreover, these toxins hindered tubulogenesis in endothelial cells, implicating a potential role in inhibiting tumor angiogenesis. All these inhibitory effects were more pronounced for the catalytically-inactive toxin. Additionally, in silico studies strongly suggest that this PLA2-II-like myotoxin could effectively block fibronectin binding to the integrin receptor, offering a dual advantage over PLA2-I in interacting with the αVß3 integrin. In conclusion, this study reports for the first time, integrating both in vitro and in silico approaches, a comparative analysis of the antimetastatic and antiangiogenic potential effects of two isoforms, an Asp49 PLA2-I and a Lys49 PLA2-II-like, both isolated from Bothrops diporus venom.


Subject(s)
Bothrops , Crotalid Venoms , Phospholipases A2 , Animals , Bothrops/metabolism , Mice , Phospholipases A2/metabolism , Phospholipases A2/chemistry , Phospholipases A2/pharmacology , Cell Line, Tumor , Crotalid Venoms/chemistry , Cell Movement/drug effects , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/pathology , Neovascularization, Pathologic/metabolism , Cell Adhesion/drug effects , Female , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Endothelial Cells/cytology , Neoplasm Metastasis , Integrin alphaVbeta3/metabolism , Integrin alphaVbeta3/antagonists & inhibitors , Fibronectins/metabolism , Angiogenesis Inhibitors/pharmacology , Angiogenesis Inhibitors/chemistry , Humans , Lysine/chemistry , Lysine/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Mammary Neoplasms, Animal/drug therapy , Mammary Neoplasms, Animal/pathology , Mammary Neoplasms, Animal/metabolism , Angiogenesis
2.
Int J Artif Organs ; 47(8): 633-641, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39113566

ABSTRACT

Cardiovascular diseases, particularly myocardial infarction, have significant healthcare challenges due to the limited regenerative capacity of injured heart tissue. Cardiac tissue engineering (CTE) offers a promising approach to repairing myocardial damage using biomaterials that mimic the heart's extracellular matrix. This study investigates the potential of graphene nanopowder (Gnp)-enhanced polycaprolactone (PCL) scaffolds fabricated via electrospinning to improve the properties necessary for effective cardiac repair. This work aimed to analyze scaffolds with varying graphene concentrations (0.5%, 1%, 1.5%, and 2% by weight) to determine their morphological, chemical, mechanical, and biocompatibility characteristics. The results presented that incorporating graphene improves PCL scaffolds' mechanical properties and cellular interactions. The optimal concentration of 1% graphene significantly enhanced mechanical properties and biocompatibility, promoting cell adhesion and proliferation. These findings suggest that Gnp-enhanced PCL scaffolds at this concentration can serve as a potent substrate for CTE providing insights into designing more effective biomaterials for myocardial restoration.


Subject(s)
Cell Proliferation , Graphite , Nanofibers , Polyesters , Tissue Engineering , Tissue Scaffolds , Tissue Engineering/methods , Graphite/chemistry , Polyesters/chemistry , Cell Proliferation/drug effects , Biocompatible Materials , Cell Adhesion/drug effects , Materials Testing , Animals , Myocytes, Cardiac/drug effects , Humans , Myocardium/pathology
3.
J Appl Oral Sci ; 32: e20240034, 2024.
Article in English | MEDLINE | ID: mdl-39140581

ABSTRACT

OBJECTIVE: Bisphosphonates are prescribed to treat excessive bone resorption in patients with osteoporosis. However, its use is associated with potential adverse effects such as medication-related osteonecrosis of the jaw, prompting the introduction of the drug holiday concept in patients prior to dentoalveolar surgery. Furthermore, bisphosphonate discontinuation has been studied in vivo, in humans, and in animal models. However, it is not known whether this approach could affect bone cells in vitro. Therefore, the objective of this study was to investigate the potential effects of bisphosphonate discontinuation on pre-osteoblast and osteoblast activities in vitro. METHODOLOGY: Pre-osteoblasts (MC3T3) and osteoblasts were treated with bisphosphonate (alendronate) at concentrations of 1, 5, and 10 µM. Alendronate was then withdrawn at different time points. The negative control consisted of untreated cells (0 µM), while the positive control consisted of cells incubated with alendronate throughout the experiment. Cell viability, cell adhesion, cell cytoskeleton, mineralization, and gene expressions were investigated. RESULTS: Pre-osteoblasts and osteoblasts showed a decrease in cell viability after treatment with 5-10 µM alendronate for 4 days or longer. Two days of alendronate discontinuation significantly increased cell viability compared with the positive control. However, these levels did not reach those of the negative control. Bone nodule formation was reduced by alendronate. Discontinuation of alendronate regained bone nodule formation. Longer periods of discontinuation were more effective in restoring nodule formation than shorter periods. Addition of alendronate resulted in an increase in the percentage of dead cells, which, in turn, decreased when alendronate was discontinued. Alendronate affected the cell cytoskeleton by disassembling actin stress fibers. Cell adhesion and cell morphological parameters were also affected by alendronate. Discontinuation of alendronate restored cell adhesion and these parameters. Overall, the highest improvement after alendronate discontinuation was seen at 10 µM. However, alendronate treatment and discontinuation did not affect osteoblast gene expression. CONCLUSION: Discontinuation of alendronate helps to reverse the negative effects of the drug on cell viability, cell adhesion, and mineralization by restoring the cell cytoskeleton. Our data suggest the benefits of drug holiday and/or intermittent strategies for alendronate administration at the cellular level.


Subject(s)
Alendronate , Bone Density Conservation Agents , Calcification, Physiologic , Cell Adhesion , Cell Survival , Cytoskeleton , Osteoblasts , Osteoblasts/drug effects , Alendronate/pharmacology , Cell Survival/drug effects , Bone Density Conservation Agents/pharmacology , Cytoskeleton/drug effects , Animals , Cell Adhesion/drug effects , Time Factors , Calcification, Physiologic/drug effects , Mice , Gene Expression/drug effects , Real-Time Polymerase Chain Reaction , Analysis of Variance
4.
Clin Hemorheol Microcirc ; 88(2): 135-155, 2024.
Article in English | MEDLINE | ID: mdl-38995768

ABSTRACT

BACKGROUND: Despite the well-recognized effectiveness of Ruscus aculetus extract combined or not with ascorbic acid (AA) and hesperidine methyl chalcone (HMC) on ischemia reperfusion (I/R) injury protection, little is known about the contribution of each constituent for this effect. OBJECTIVE: To investigate the effects of AA and HMC combined or not with Ruscus extract on increased macromolecular permeability and leukocyte-endothelium interaction induced by I/R injury. METHODS: Hamsters were treated daily during two weeks with filtered water (placebo), AA (33, 100 and 300 mg/kg/day) and HMC (50, 150 and 450 mg/kg/day) combined or not with Ruscus extract (50, 150 and 450 mg/kg/day). On the day of experiment, the cheek pouch microcirculation underwent 30 min of ischemia, and the number of rolling and adherent leukocytes and leaky sites were evaluated before ischemia and during 45 min of reperfusion. RESULTS: Ruscus extract combined with AA and HMC (Ruscus extract mixture) significantly prevented post-ischemic increase in leukocyte rolling and adhesion and macromolecular permeability compared to placebo and these effects were more prominent than AA and HMC alone on leukocyte adhesion and macromolecular leakage. CONCLUSION: Ruscus extract mixture were more effective than its isolated constituents in protect the hamster cheek pouch microcirculation against I/R injury.


Subject(s)
Ascorbic Acid , Leukocytes , Plant Extracts , Reperfusion Injury , Animals , Reperfusion Injury/drug therapy , Reperfusion Injury/prevention & control , Reperfusion Injury/metabolism , Ascorbic Acid/pharmacology , Ascorbic Acid/therapeutic use , Leukocytes/drug effects , Leukocytes/metabolism , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Cricetinae , Male , Chalcones/pharmacology , Chalcones/therapeutic use , Mesocricetus , Endothelium, Vascular/drug effects , Endothelium, Vascular/metabolism , Capillary Permeability/drug effects , Cell Adhesion/drug effects , Hesperidin/analogs & derivatives
5.
Life Sci ; 352: 122895, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38986896

ABSTRACT

AIMS: To investigate the SARS-CoV-2 Spike protein (Spk)-induced inflammatory response and its downmodulation by diminazene aceturate (DIZE). MATERIALS AND METHODS: Through inducing Spk inflammation in murine models, leukocyte migration to the peritoneum, levels of myeloperoxidase (MPO), malondialdehyde (MDA), rolling and adhesion of mesenteric leukocytes, and vascular permeability were investigated. Extracellular DNA traps (DETs) induced by Spk and the production of IL-6 and TNF-α were analyzed using human neutrophils, monocytes, and macrophages. In silico assays assessed the molecular interaction between DIZE and molecules related to leukocyte migration and DETs induction. KEY FINDINGS: Spk triggered acute inflammation, demonstrated by increasing leukocyte migration. Oxidative stress was evidenced by elevated levels of MPO and MDA in the peritoneal liquid. DIZE attenuated cell migration, rolling, and leukocyte adhesion, improved vascular barrier function, mitigated DETs, and reduced the production of Spk-induced pro-inflammatory cytokines. Computational studies supported our findings, showing the molecular interaction of DIZE with targets such as ß2 integrin, PI3K, and PAD2 due to its intermolecular coupling. SIGNIFICANCE: Our results outline a novel role of DIZE as a potential therapeutic agent for mitigating Spk-induced inflammation.


Subject(s)
COVID-19 , Cell Movement , Diminazene , Extracellular Traps , Inflammation , Leukocytes , SARS-CoV-2 , Diminazene/pharmacology , Diminazene/analogs & derivatives , Animals , Mice , Humans , Cell Movement/drug effects , Extracellular Traps/metabolism , Extracellular Traps/drug effects , Leukocytes/metabolism , Leukocytes/drug effects , SARS-CoV-2/drug effects , Inflammation/metabolism , Inflammation/drug therapy , COVID-19/metabolism , Male , COVID-19 Drug Treatment , Cell Adhesion/drug effects , Oxidative Stress/drug effects , Spike Glycoprotein, Coronavirus
6.
J Endod ; 50(10): 1440-1447, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38908681

ABSTRACT

INTRODUCTION: The repair process of periradicular tissues depends, among other factors, on the properties of endodontic cements. Macrophages are among the main cells involved in this process. MATERIALS AND METHODS: Murine peritoneal macrophages obtained from C57BL/6 (MBL6) and BALB/c (MBalb) mice, respectively, were cultured with capillaries containing or not Endosequence BC Sealer (BC), Sealer Plus BC (MK), Bio-C Sealer (Ang), and mineral trioxide aggregate (MTA). Cell viability was measured by Trypan blue and MTT methods at 24, 48, and 72 hours. Cell adhesion, phagocytosis of Saccharomyces boulardii, production of reactive oxygen species (ROS), nitric oxide (NO), and the cytokines tumor necrosis factor-α and transforming growth factor (TGF)-ß were also evaluated. The data were analyzed using the analysis of variance test (P < .05). RESULTS: Cell viability was similar between bioceramic sealers and MTA (P > .05). There was no statistical difference between both macrophages when adherence and phagocytose were assayed. The presence of inflammation stimulus significantly altered the production of ROS by MBL6 macrophages in contact with the cements. The production of TGF-ß was similar for both lineages of macrophages. CONCLUSIONS: This study shows that the evaluated bioceramic cements do not interfere with MBL6 and MBalb macrophage adhesion, phagocytic capacity, or TGF-ß production. The cements stimulated the production of ROS by MBL6 macrophages in response to induced inflammation, potentially favoring the elimination of residual pathogens.


Subject(s)
Calcium Compounds , Mice, Inbred BALB C , Mice, Inbred C57BL , Root Canal Filling Materials , Silicates , Animals , Mice , Calcium Compounds/pharmacology , Root Canal Filling Materials/pharmacology , Silicates/pharmacology , Drug Combinations , Dental Cements/pharmacology , Cell Survival/drug effects , Oxides/pharmacology , Aluminum Compounds/pharmacology , Macrophages, Peritoneal/drug effects , Reactive Oxygen Species/metabolism , Ceramics , Phagocytosis/drug effects , Nitric Oxide/metabolism , Cell Adhesion/drug effects , Cells, Cultured , Macrophages/drug effects , Biocompatible Materials/pharmacology , Calcium Phosphates
7.
Int J Biol Macromol ; 273(Pt 1): 133064, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38866288

ABSTRACT

Bone tissue regeneration strategies have incorporated the use of natural polymers, such as hydroxyapatite (nHA), chitosan (CH), gelatin (GEL), or alginate (ALG). Additionally, platelet concentrates, such as platelet-rich fibrin (PRF) have been suggested to improve scaffold biocompatibility. This study aimed to develop scaffolds composed of nHA, GEL, and CH, with or without ALG and lyophilized PRF, to evaluate the scaffold's properties, growth factor release, and dental pulp stem cells (DPSC), and osteoblast (OB) derived from DPSC viability. Four scaffold variations were synthesized and lyophilized. Then, degradation, swelling profiles, and morphological analysis were performed. Furthermore, PDGF-BB and FGF-B growth factors release were quantified by ELISA, and cytotoxicity and cell viability were evaluated. The swelling and degradation profiles were similar in all scaffolds, with pore sizes ranging between 100 and 250 µm. FGF-B and PDGF-BB release was evidenced after 24 h of scaffold immersion in cell culture medium. DPSC and OB-DPSC viability was notably increased in PRF-supplemented scaffolds. The nHA-CH-GEL-PRF scaffold demonstrated optimal physical-biological characteristics for stimulating DPSC and OB-DPSC cell viability. These results suggest lyophilized PRF improves scaffold biocompatibility for bone tissue regeneration purposes.


Subject(s)
Alginates , Cell Survival , Chitosan , Dental Pulp , Durapatite , Gelatin , Osteoblasts , Platelet-Rich Fibrin , Stem Cells , Tissue Scaffolds , Humans , Dental Pulp/cytology , Chitosan/chemistry , Chitosan/pharmacology , Gelatin/chemistry , Platelet-Rich Fibrin/chemistry , Platelet-Rich Fibrin/metabolism , Tissue Scaffolds/chemistry , Stem Cells/drug effects , Stem Cells/cytology , Stem Cells/metabolism , Cell Survival/drug effects , Durapatite/chemistry , Durapatite/pharmacology , Alginates/chemistry , Alginates/pharmacology , Osteoblasts/drug effects , Osteoblasts/cytology , Cell Adhesion/drug effects , Tissue Engineering/methods , Cells, Cultured
8.
Sci Rep ; 14(1): 14178, 2024 06 19.
Article in English | MEDLINE | ID: mdl-38898058

ABSTRACT

Increasing evidence supports the hypothesis that cancer progression is under mitochondrial control. Mitochondrial fission plays a pivotal role in the maintenance of cancer cell homeostasis. The inhibition of DRP1, the main regulator of mitochondrial fission, with the mitochondrial division inhibitor (mdivi-1) had been associated with cancer cell sensitivity to chemotherapeutics and decrease proliferation. Here, using breast cancer cells we find that mdivi-1 induces the detachment of the cells, leading to a bulk of floating cells that conserved their viability. Despite a decrease in their proliferative and clonogenic capabilities, these floating cells maintain the capacity to re-adhere upon re-seeding and retain their migratory and invasive potential. Interestingly, the cell detachment induced by mdivi-1 is independent of DRP1 but relies on inhibition of mitochondrial complex I. Furthermore, mdivi-1 induces cell detachment rely on glucose and the pentose phosphate pathway. Our data evidence a novel DRP1-independent effect of mdivi-1 in the attachment of cancer cells. The generation of floating viable cells restricts the use of mdivi-1 as a therapeutic agent and demonstrates that mdivi-1 effect on cancer cells are more complex than anticipated.


Subject(s)
Breast Neoplasms , Dynamins , Extracellular Matrix , Mitochondrial Dynamics , Quinazolinones , Humans , Dynamins/metabolism , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/drug therapy , Female , Extracellular Matrix/metabolism , Extracellular Matrix/drug effects , Cell Line, Tumor , Quinazolinones/pharmacology , Mitochondrial Dynamics/drug effects , Cell Adhesion/drug effects , Cell Movement/drug effects , Cell Survival/drug effects , Cell Proliferation/drug effects , Mitochondria/metabolism , Mitochondria/drug effects
9.
Chem Biol Interact ; 398: 111115, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38908811

ABSTRACT

In the present study, the effect of sulfonamide-chalcone 185 (SSC185) was investigated against B16-F10 metastatic melanoma cells aggressive actions, besides migration and adhesion processes, by in silico and in vitro assays. In silico studies were used to characterize the pharmacokinetic profile and possible targets of SSC185, using the pkCSM web server, and docking simulations with AutoDock Tools. Furthermore, the antimetastatic effect of SSC185 was investigated by in vitro experiments using MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide), colony, scratch, and cell adhesion assays, and atomic force microscopy (AFM). The molecular docking results show better affinity of SSC185 with the metalloproteinases-2 (MMP-2) and α5ß1 integrin. SSC185 effectively restricts the formation of colonies, migration, and adhesion of B16-F10 metastatic melanoma cells. Through the AFM images changes in cells morphology was identified, with a decrease in the filopodia and increase in the average cellular roughness. The results obtained demonstrate the potential of this molecule in inhibit the primordial steps for metastasis, which is responsible for a worse prognosis of late stage cancer, being the main cause of morbidity among cancer patients.


Subject(s)
Cell Adhesion , Cell Movement , Chalcone , Molecular Docking Simulation , Sulfonamides , Cell Movement/drug effects , Cell Adhesion/drug effects , Sulfonamides/pharmacology , Sulfonamides/chemistry , Mice , Animals , Cell Line, Tumor , Chalcone/pharmacology , Chalcone/chemistry , Chalcone/analogs & derivatives , Matrix Metalloproteinase 2/metabolism , Melanoma, Experimental/pathology , Melanoma, Experimental/drug therapy , Melanoma, Experimental/metabolism , Microscopy, Atomic Force , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Chalcones/pharmacology , Chalcones/chemistry , Humans
10.
Cells ; 13(10)2024 May 16.
Article in English | MEDLINE | ID: mdl-38786068

ABSTRACT

Induction of the adenosine receptor A2B (A2BAR) expression in diabetic glomeruli correlates with an increased abundance of its endogenous ligand adenosine and the progression of kidney dysfunction. Remarkably, A2BAR antagonism protects from proteinuria in experimental diabetic nephropathy. We found that A2BAR antagonism preserves the arrangement of podocytes on the glomerular filtration barrier, reduces diabetes-induced focal adhesion kinase (FAK) activation, and attenuates podocyte foot processes effacement. In spreading assays using human podocytes in vitro, adenosine enhanced the rate of cell body expansion on laminin-coated glass and promoted peripheral pY397-FAK subcellular distribution, while selective A2BAR antagonism impeded these effects and attenuated the migratory capability of podocytes. Increased phosphorylation of the Myosin2A light chain accompanied the effects of adenosine. Furthermore, when the A2BAR was stimulated, the cells expanded more broadly and more staining of pS19 myosin was detected which co-localized with actin cables, suggesting increased contractility potential in cells planted onto a matrix with a stiffness similar to of the glomerular basement membrane. We conclude that A2BAR is involved in adhesion dynamics and contractile actin bundle formation, leading to podocyte foot processes effacement. The antagonism of this receptor may be an alternative to the intervention of glomerular barrier deterioration and proteinuria in the diabetic kidney disease.


Subject(s)
Cell Adhesion , Diabetes Mellitus, Experimental , Focal Adhesion Protein-Tyrosine Kinases , Podocytes , Proteinuria , Receptor, Adenosine A2B , Animals , Humans , Male , Rats , Adenosine/metabolism , Adenosine/pharmacology , Adenosine A2 Receptor Antagonists/pharmacology , Cell Adhesion/drug effects , Cell Movement/drug effects , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , Diabetic Nephropathies/drug therapy , Focal Adhesion Protein-Tyrosine Kinases/drug effects , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Myosin Light Chains/metabolism , Phosphorylation/drug effects , Podocytes/metabolism , Podocytes/drug effects , Podocytes/pathology , Proteinuria/metabolism , Receptor, Adenosine A2B/drug effects , Receptor, Adenosine A2B/metabolism
11.
Chem Biol Interact ; 394: 110986, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38583853

ABSTRACT

Snake venom metalloproteases (SVMPs) are hydrolytic enzymes dependent on metal binding, primarily zinc (Zn2+), at their catalytic site. They are classified into three classes (P-I to P-III). BjussuMP-II, a P-I SVMP isolated from Bothrops jararacussu snake venom, has a molecular mass of 24 kDa. It exhibits inhibitory activity on platelet aggregation and hydrolyzes fibrinogen. TNF-α upregulates the expression of adhesion molecules on endothelial cell surfaces, promoting leukocyte adhesion and migration during inflammation. Literature indicates that SVMPs may cleave the TNF-α precursor, possibly due to significant homology between metalloproteases from mammalian extracellular matrix and SVMPs. This study aimed to investigate BjussuMP-II's effects on human umbilical vein endothelial cells (HUVEC), focusing on viability, detachment, adhesion, release, and cleavage of TNF-α, IL-1ß, IL-6, IL-8, and IL-10. HUVEC were incubated with BjussuMP-II (1.5-50 µg/mL) for 3-24 h. Viability was determined using LDH release, MTT metabolization, and 7AAD for membrane integrity. Adhesion and detachment were assessed by incubating cells with BjussuMP-II and staining with Giemsa. Cytokines were quantified in HUVEC supernatants using EIA. TNF-α cleavage was evaluated using supernatants from PMA-stimulated cells or recombinant TNF-α. Results demonstrated BjussuMP-II's proteolytic activity on casein. It was not toxic to HUVEC at any concentration or duration studied but interfered with adhesion and promoted detachment. PMA induced TNF-α release by HUVEC, but this effect was not observed with BjussuMP-II, which cleaved TNF-α. Additionally, BjussuMP-II cleaved IL-1ß, IL-6, and IL-10. These findings suggest that the zinc metalloprotease BjussuMP-II could be a valuable biotechnological tool for treating inflammatory disorders involving cytokine deregulation.


Subject(s)
Cell Adhesion , Cytokines , Human Umbilical Vein Endothelial Cells , Metalloproteases , Humans , Human Umbilical Vein Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/drug effects , Cytokines/metabolism , Metalloproteases/metabolism , Cell Adhesion/drug effects , Cell Survival/drug effects , Bothrops/metabolism , Tumor Necrosis Factor-alpha/metabolism , Animals , Crotalid Venoms/metabolism , Crotalid Venoms/toxicity , Proteolysis/drug effects
12.
J Biomed Mater Res A ; 112(7): 1124-1137, 2024 07.
Article in English | MEDLINE | ID: mdl-38433700

ABSTRACT

This work presents the effect of the silicocarnotite (SC) and nagelschmidtite (Nagel) phases on in vitro osteogenesis. The known hydroxyapatite of biological origin (BHAp) was used as a standard of osteoconductive characteristics. The evaluation was carried out in conventional and osteogenic media for comparative purposes to assess the osteogenic ability of the bioceramics. First, the effect of the material on cell viability at 24 h, 7 and 14 days of incubation was evaluated. In addition, cell morphology and attachment on dense bioceramic surfaces were observed by fluorescence microscopy. Specifically, alkaline phosphatase (ALP) activity was evaluated as an osteogenic marker of the early stages of bone cell differentiation. Mineralized extracellular matrix was observed by calcium phosphate deposits and extracellular vesicle formation. Furthermore, cell phenotype determination was confirmed by scanning electron microscope. The results provided relevant information on the cell attachment, proliferation, and osteogenic differentiation processes after 7 and 14 days of incubation. Finally, it was demonstrated that SC and Nagel phases promote cell proliferation and differentiation, while the Nagel phase exhibited a superior osteoconductive behavior and could promote MC3T3-E1 cell differentiation to a higher extent than SC and BHAp, which was reflected in a higher number of deposits in a shorter period for both conventional and osteogenic media.


Subject(s)
Cell Differentiation , Ceramics , Durapatite , Osteoblasts , Osteogenesis , Silicates , Animals , Mice , Durapatite/chemistry , Durapatite/pharmacology , Ceramics/chemistry , Ceramics/pharmacology , Osteoblasts/cytology , Osteoblasts/metabolism , Osteoblasts/drug effects , Silicates/chemistry , Silicates/pharmacology , Cell Differentiation/drug effects , Osteogenesis/drug effects , Cell Proliferation/drug effects , Biocompatible Materials/chemistry , Alkaline Phosphatase/metabolism , Calcium Compounds/pharmacology , Calcium Compounds/chemistry , Cell Survival/drug effects , Cell Adhesion/drug effects , Extracellular Matrix/metabolism , 3T3 Cells , Cell Line
13.
Biomolecules ; 11(12)2021 11 24.
Article in English | MEDLINE | ID: mdl-34944393

ABSTRACT

Titanium and its alloys are used as biomaterials for medical and dental applications, due to their mechanical and physical properties. Surface modifications of titanium with bioactive molecules can increase the osseointegration by improving the interface between the bone and implant. In this work, titanium dioxide nanotubes (TiO2NTs) were functionalized with a lectin from the plasma of the fish Oreochromis niloticus aiming to favor the adhesion and proliferation of osteoblast-like cells, improving its biocompatibility. The TiO2NTs were obtained by anodization of titanium and annealed at 400 °C for 3 h. The resulting TiO2NTs were characterized by high-resolution scanning electron microscopy. The successful incorporation of OniL on the surface of TiO2NTs, by spin coating, was demonstrated by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIE), and attenuated total reflection-Fourier transform infrared spectrum (ATR-FTIR). Our results showed that TiO2NTs were successfully synthesized in a regular and well-distributed way. The modification of TiO2NTs with OniL favored adhesion, proliferation, and the osteogenic activity of osteoblast-like cells, suggesting its use to improve the quality and biocompatibility of titanium-based biomaterials.


Subject(s)
Cichlids/metabolism , Lectins/chemistry , Osteoblasts/cytology , Titanium/pharmacology , Alloys , Animals , Cell Adhesion/drug effects , Cell Line , Cell Proliferation/drug effects , Cell Survival/drug effects , Dielectric Spectroscopy , Microscopy, Electron, Scanning , Nanotubes , Osteogenesis , Surface Properties , Titanium/chemistry
14.
Toxins (Basel) ; 13(12)2021 12 18.
Article in English | MEDLINE | ID: mdl-34941745

ABSTRACT

The significant incidence of deforestation in South America culminates in the contact of humans with typical forests species. Among these species, one may highlight Lonomia obliqua caterpillar, which, when touched by humans, can poison them through their bristles. Therefore, better acknowledging the mechanisms involved in envenomation caused by Lonomia obliqua caterpillar bristle extract (LOCBE) may contribute to further treatments. Recently, we demonstrated that LOCBE induces a pro-inflammatory profile in endothelial cells; thus, we decided to investigate the effects of LOCBE on human polymorphonuclear neutrophils (PMN), which are the first leukocytes that migrate to the inflammatory focus. Our results showed that treatment with LOCBE induced PMN chemotaxis together with alterations in actin cytoskeleton and focal adhesion kinase (FAK) activation, favoring migration. Concurrently, LOCBE induced PMN adhesion to matrix proteins, such as collagen IV, fibronectin, and fibrinogen. Moreover, we observed that LOCBE attenuated PMN apoptosis and increased reactive oxygen species (ROS) production together with nuclear factor kB (NF-κB) activation-a redox-sensitive transcription factor-as well as interleukin (IL)-1ß and IL-8 release. We call attention to the ROS-dependent effect of LOCBE on increased cell migration once an antioxidant treatment reverted it. In summary, we report that LOCBE activates PMN, inducing pro-inflammatory responses modulated by ROS.


Subject(s)
Arthropod Venoms/toxicity , Lepidoptera/physiology , Neutrophils/drug effects , Animals , Cell Adhesion/drug effects , Cell Movement/drug effects , Chemotaxis , Cricetinae , Humans , Integumentary System , Larva/physiology , Reactive Oxygen Species/metabolism , Skin/drug effects
15.
J Biosci ; 462021.
Article in English | MEDLINE | ID: mdl-34815373

ABSTRACT

The prolactin hormone (PRL), in addition to its known effects on breast development and lactation, exerts effects on the immune system, including pleiotropic effects on the thymus. The aim of this study was to evaluate the influence of PRL on the epithelial compartment of the thymus. Thymic epithelial cells (TECs) (2BH4 cells) and fresh thymocytes were used. Immunofluorescence assay revealed that PRL treatment (10 ng/ mL) increases the deposition of laminin and expression of the chemokine CXCL12 in 2BH4 cells. However, no change was observed in the deposition of fibronectin. Moreover, PRL altered F-actin polymerisation, allowing the formation of focal adhesion complexes in treated cells. When 2BH4 cells were pre-treated with PRL, thymocyte adhesion was not altered. However, in the cell migration assay, pre-treatment with PRL potentiated the chemotactic effect of CXCL12 on the migration of total, double-positive, CD4-positive, and CD8-positive thymocytes. Together, the results of this study demonstrate the effect of PRL on thymic epithelial cells, particularly on CXCL12-driven thymocyte migration, confirming that this hormone is a regulator of thymic physiology.


Subject(s)
Chemokine CXCL12/metabolism , Prolactin/pharmacology , Thymocytes/cytology , Thymus Gland/cytology , Actins/metabolism , Animals , Cell Adhesion/drug effects , Cell Movement/drug effects , Cells, Cultured , Cytoskeleton/drug effects , Epithelial Cells , Extracellular Matrix/drug effects , Female , Fibronectins/metabolism , Male , Mice, Inbred C57BL , Thymocytes/drug effects , Thymocytes/physiology
16.
Molecules ; 26(17)2021 Sep 03.
Article in English | MEDLINE | ID: mdl-34500796

ABSTRACT

Cell adhesion to stromal support and the associated intracellular signaling are central to drug resistance, therefore blocking both has been effective in increasing drug sensitization in leukemia. The stromal Ser/Thr protein kinase C (PKC) has been found to be important for conferring protection to leukemic cells. We aimed at elucidating the intracellular signals connected to cell adhesion and to stromal PKC. We found that NF-κB and Akt were up-regulated in mesenchymal stem cells (MSC) after binding of B-cell acute lymphoblastic leukemia (B-ALL) cells. Nevertheless, Akt inhibition did not induce B-ALL cell detachment. In spite of a clear activation of the NF-κB signaling pathway after B-ALL cell binding (up-regulation NF-κB1/2, and down-regulation of the IKBε and IKBα inhibitors) and an important reduction in cell adhesion after NF-κB inhibition, sensitization to the drug treatment was not observed. This was opposite to the PKC inhibitors Enzastaurin and HKPS, a novel chimeric peptide inhibitor, that were able to increase sensitization to dexamethasone, methotrexate, and vincristine. PLCγ1, Erk1/2, and CREB appear to be related to PKC signaling and PKC effect on drug sensitization since they were contra-regulated by HKPS when compared to dexamethasone-treated cells. Additionally, PKC inhibition by HKPS, but not by Enzastaurin, in MSC reduced the activity of three ABC transporters in leukemic cells treated with dexamethasone, a new indirect mechanism to increase sensitization to drug treatment in B-ALL cells. Our results show the validity of targeting the functional characteristic acquired and modulated during cell-to-cell interactions occurring in the leukemic niche.


Subject(s)
ATP-Binding Cassette Transporters/antagonists & inhibitors , Antineoplastic Agents/pharmacology , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cells, B-Lymphoid/drug effects , Protein Kinase C/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , ATP-Binding Cassette Transporters/metabolism , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Adhesion/drug effects , Drug Screening Assays, Antitumor , Humans , NF-kappa B/metabolism , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Precursor Cells, B-Lymphoid/metabolism , Precursor Cells, B-Lymphoid/pathology , Protein Kinase C/metabolism , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Tumor Cells, Cultured
17.
Int J Biol Macromol ; 189: 528-536, 2021 Oct 31.
Article in English | MEDLINE | ID: mdl-34425118

ABSTRACT

Polymeric nanoparticles have previously been used as substrates for cell attachment and proliferation due to their ability to mimic the extracellular matrix, but in general, they require surface chemical modifications to achieve this purpose. In this study, polymeric nanoparticles were developed and used without any matrix ligands functionalized on their surface to promote cell attachment and proliferation of human osteoblasts (MG63s). First, telechelic, reduced molar mass and diol-functionalized poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) was prepared by transesterification using ethylene glycol. Then, PHBV-diol was used to prepare biodegradable nanoparticles via the solvent evaporation technique. MG63s were cultured in the presence of PHBV nanoparticles and growth kinetics were compared to that on tissue culture polystyrene (TCPS). Cell attachment on non-tissue culture polystyrene pre-coated with nanoparticles was assessed and compared to attachment on TCPS. The cell attachment study demonstrated that cells readily attached and were well spread onto the nanoparticle surfaces compared to non-tissue culture polystyrene. These findings reveal the potential of PHBV nanoparticles for cell attachment and growth to be used in tissue engineering.


Subject(s)
Nanoparticles/chemistry , Osteoblasts/cytology , Polyesters/pharmacology , Calorimetry, Differential Scanning , Cell Adhesion/drug effects , Cell Count , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Shape/drug effects , Dynamic Light Scattering , Humans , Hydrodynamics , Ligands , Nanoparticles/toxicity , Nanoparticles/ultrastructure , Polyesters/chemistry , Proton Magnetic Resonance Spectroscopy , Static Electricity , Temperature
18.
Biomed Pharmacother ; 141: 111947, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34328122

ABSTRACT

Cardiac fibroblasts (CF) play an important role in the healing process and in pathological remodeling of cardiac tissue. As sentinel cells in the heart, they respond to inflammatory stimuli, expressing cytokines and cell adhesion proteins, which ultimately lead to increased recruitment of monocytes and enhancement of the inflammatory response. Angiotensin II (Ang II) triggers an inflammatory response, leading to cardiac tissue remodeling. On the other hand, RvD1 has been shown to contribute to the resolution of inflammation; however, its role in Ang II-treated CF has not been addressed until now. The present research aimed to study the effect of RvD1 on cytokine levels, cell adhesion proteins expression in a model of Ang II-triggered inflammatory response. CF from adult Sprague Dawley rats were used to study mRNA and protein levels of MCP-1, IL-6, TNF-a, IL-10, ICAM-1 and VCAM-1; and adhesion of spleen mononuclear cells to CF after Ang II stimulation. Our results show that Ang II increased IL-6, MCP-1 and TNF-a mRNA levels, but only increased IL-6 and MCP-1 protein levels. These effects were blocked by Losartan, but not by PD123369. Moreover, RvD1 was able to prevent all Ang II effects in CF. Additionally, RvD1 reduced the intracellular Ca2+ increase triggered by Ang II, indicating that RvD1 acts in an early manner to block Ang II signaling. Conclusion: our findings confirm the pro-resolutive effects of inflammation by RvD1, which at the cardiovascular level, could contribute to repair damaged cardiac tissue.


Subject(s)
Angiotensin II/toxicity , Cell Adhesion/drug effects , Cytokines/antagonists & inhibitors , Docosahexaenoic Acids/pharmacology , Monocytes/drug effects , Myocytes, Cardiac/drug effects , Animals , Cell Adhesion/physiology , Cells, Cultured , Cytokines/biosynthesis , Fibroblasts/drug effects , Fibroblasts/metabolism , Gene Expression , Male , Monocytes/metabolism , Myocytes, Cardiac/metabolism , Rats , Rats, Sprague-Dawley
19.
Mol Cell Biochem ; 476(11): 3963-3974, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34191232

ABSTRACT

Intravascular hemolysis, a major manifestation of sickle cell disease (SCD) and other diseases, incurs the release of hemoglobin and heme from red blood cells, in turn triggering inflammatory processes. This study investigated the in vitro effects of heme, a major inflammatory DAMP, on the adhesive properties of isolated human neutrophils. Heme (20 and 50 µM) significantly increased the adhesion of neutrophils to fibronectin and to recombinant ICAM-1, under static conditions, even more efficiently than the potent pro-inflammatory cytokine, tumor necrosis factor-α (TNF); a microfluidic assay confirmed that heme stimulated neutrophil adhesion under conditions of shear stress. Heme-induced neutrophil adhesion was associated with the increased activities, but not expressions, of the Mac-1 and LFA-1 integrin subunits, CD11b and CD11a, on the cell surface. Notably, heme (50 µM) significantly induced NFκB translocation in neutrophils, and inhibition of NFκB activity with the BAY11-7082 molecule abolished heme-induced cell adhesion to fibronectin and significantly decreased CD11a activity. Flow cytometric analysis demonstrated major reactive oxygen species (ROS) generation in neutrophils following heme stimulation that could be inhibited by the antioxidant, α-tocopherol, and by BAY11-7082. Furthermore, co-incubation with α-tocopherol abrogated both heme-stimulated neutrophil adhesion and CD11a/CD11b activation. Thus, our data indicate that heme, at clinically relevant concentrations, is a potent activator of neutrophil adhesion, increasing the ligand affinity of the ß2 integrins via a mechanism that may be partially mediated by an NFkB-dependent pathway and the generation of ROS. Given the fundamental role that the adhesion of neutrophils to the vascular wall plays in SCD vaso-occlusion and other vascular inflammatory processes, our findings provide further evidence that cell-free heme is a major therapeutic target in the hemolytic diseases.


Subject(s)
Endothelium, Vascular/drug effects , Heme/pharmacology , NF-kappa B/metabolism , Neutrophils/drug effects , Reactive Oxygen Species/metabolism , Anemia, Sickle Cell/metabolism , Anemia, Sickle Cell/pathology , CD18 Antigens/metabolism , Cell Adhesion/drug effects , Cells, Cultured , Endothelium, Vascular/metabolism , Endothelium, Vascular/pathology , Hemolysis , Humans , Intercellular Adhesion Molecule-1/metabolism , Leukocytes, Mononuclear , Neutrophils/metabolism , Neutrophils/pathology , Signal Transduction
20.
Toxicol Lett ; 347: 12-22, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-33945863

ABSTRACT

p-Cresyl sulfate (PCS), indoxyl sulfate (IS), and inorganic phosphate (Pi) are uremic toxins found in chronic kidney disease (CKD) that are closely related to endothelial extracellular vesicles (EVs) formation. The present study aimed to understand the role of EVs and their role in cell adhesion and migration, inflammation, and oxidative stress. Human endothelial cells were treated with PCS, IS, and Pi in pre-established uremic and kinetic recommendations. EVs were characterized using scanning electron microscopy, flow cytometry, and NanoSight assays. The concentrations of EVs were established using Alamar Blue and MTT assays. Cell adhesion to extracellular matrix proteins was analyzed using an adhesion assay. Inflammation and oxidative stress were assessed by vascular cell adhesion molecule-1 expression/monocyte migration and reactive oxygen species production, respectively. The capacity of EVs to stimulate endothelial cell migration was evaluated using a wound-healing assay. Our data showed that endothelial cells stimulated with uremic toxins can induce the formation of EVs of different sizes, quantities, and concentrations, depending on the uremic toxin used. Cell adhesion was significantly (P < 0.01) stimulated in cells exposed to PCS-induced extracellular vesicles (PCSEVs) and inorganic phosphate-induced extracellular vesicles (PiEVs). Cell migration was significantly (P < 0.05) stimulated by PCSEVs. VCAM-1 expression was evident in cells treated with PCSEVs and IS-induced extracellular vesicles (ISEVs). EVs are not able to stimulate monocyte migration or oxidative stress. In conclusion, EVs may be a biomarker of endothelial injury and the inflammatory process, playing an important role in cell-to-cell communication and pathophysiological processes, although more studies are needed to better understand the mechanisms of EVs in uremia.


Subject(s)
Cell Adhesion/drug effects , Cell Movement/drug effects , Cresols/toxicity , Endothelial Cells/drug effects , Extracellular Vesicles/drug effects , Indican/toxicity , Inflammation Mediators/metabolism , Oxidative Stress/drug effects , Phosphates/toxicity , Sulfuric Acid Esters/toxicity , Uremia/pathology , Cell Line , Endothelial Cells/metabolism , Endothelial Cells/ultrastructure , Extracellular Vesicles/metabolism , Extracellular Vesicles/ultrastructure , Humans , Signal Transduction , Uremia/metabolism , Vascular Cell Adhesion Molecule-1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL