Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 96
Filter
1.
Adv Exp Med Biol ; 1429: 173-189, 2023.
Article in English | MEDLINE | ID: mdl-37486522

ABSTRACT

Mitochondria are organelles present in the cytoplasm of eukaryotic cells; they play a key role in adenosine triphosphate (ATP) synthesis and oxidative phosphorylation. Mitochondria have their own DNA, mitochondrial DNA (mtDNA), keeping the function of the mitochondria. Mitochondrial transcription factor A (TFAM) is a member of the HMGB subfamily that binds to mtDNA promoters is and considered essential in mtDNA replication and transcription. More recently, TFAM has been shown to play a central role in the maintenance and regulation of mitochondrial copy number, inflammatory response, expression regulation, and mitochondrial genome activity. Gene editing tools such as the CRISPR-Cas 9 technique, TALENs, and other gene editing tools have been used to investigate the role of TFAM in mitochondrial mechanics and biogenesis as well as its correlation to mitochondrial disorders. Thus this chapter brings a summary of mitochondria function, dysfunction, the importance of TFAM in the maintenance of mitochondria, and state of the art of gene editing tools involving TFAM and mtDNA.


Subject(s)
Gene Editing , Mitochondrial Diseases , Humans , Gene Dosage , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Mitochondria/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Mitochondrial Diseases/genetics , Mitochondrial Diseases/therapy , Mitochondrial Diseases/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
2.
Acta Cir Bras ; 38: e382323, 2023.
Article in English | MEDLINE | ID: mdl-37377249

ABSTRACT

PURPOSE: Motor function is restored by axonal sprouting in ischemic stroke. Mitochondria play a crucial role in axonal sprouting. Taurine (TAU) is known to protect the brain against experimental stroke, but its role in axonal sprouting and the underlying mechanism are unclear. METHODS: We evaluated the motor function of stroke mice using the rotarod test on days 7, 14, and 28. Immunocytochemistry with biotinylated dextran amine was used to detect axonal sprouting. We observed neurite outgrowth and cell apoptosis in cortical neurons under oxygen and glucose deprivation (OGD), respectively. Furthermore, we evaluated the mitochondrial function, adenosine triphosphate (ATP), mitochondrial DNA (mtDNA), peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PCG-1α), transcription factor A of mitochondria (TFAM), protein patched homolog 1 (PTCH1), and cellular myelocytomatosis oncogene (c-Myc). RESULTS: TAU recovered the motor function and promoted axonal sprouting in ischemic mice. TAU restored the neuritogenesis ability of cortical neurons and reduced OGD-induced cell apoptosis. TAU also reduced reactive oxygen species, stabilized mitochondrial membrane potential, enhanced ATP and mtDNA content, increased the levels of PGC-1α, and TFAM, and restored the impaired levels of PTCH1, and c-Myc. Furthermore, these TAU-related effects could be blocked using an Shh inhibitor (cyclopamine). CONCLUSION: Taurine promoted axonal sprouting via Shh-mediated mitochondrial improvement in ischemic stroke.


Subject(s)
Hedgehog Proteins , Ischemic Stroke , Stroke , Taurine , Animals , Mice , Adenosine Triphosphate/metabolism , DNA, Mitochondrial/metabolism , Hedgehog Proteins/metabolism , Ischemic Stroke/metabolism , Mitochondria , Oxygen/metabolism , Stroke/metabolism , Transcription Factors/metabolism , Taurine/pharmacology
3.
Exp Gerontol ; 168: 111932, 2022 10 15.
Article in English | MEDLINE | ID: mdl-35995312

ABSTRACT

AIMS: Mitochondrial (mt) DNA replication is strongly associated with oxidative stress, a condition triggered by aging and hyperglycemia, both of which contribute to mitophagy disruption and inflammation. This observational exploratory study evaluated mtDNA-copy number (mtDNA-CN) and expression of genes involved in mitochondriogenesis (PPARGC1A, TFAM, TFB1M, TFB2M), mitophagy (PINK1, PRKN), and inflammatory pathways triggered by hyperglycemia (TXNIP, NLRP3, NFKB1), in the postcentral gyrus of adults and older individuals with and without type 2 diabetes mellitus (T2D). MAIN METHODS: Quantitative real-time PCR was employed to evaluate mtDNA-CN and gene expression; tissue autofluorescence, a marker of aging and of cells with damaged organelles, was also quantified. KEY FINDINGS: No correlation was found between age and mtDNA-CN, but a direct correlation was observed for cases with mtDNA-CN >1000 (r = 0.41). The mtDNA-CN >1000 group had greater tissue autofluorescence and higher body mass index compared to the mtDNA-CN <1000 group (BMI; 25.7 vs 22.0 kg/m2, respectively). mtDNA-CN correlated with tissue autofluorescence in the overall sample (r = 0.55) and in the T2D group (r = 0.64). PINK and PRKN expressions were inversely correlated with age. Mitochondriogenesis genes and TXNIP expressions were higher in the T2D group, and correlations among the mitochondriogenesis genes were also stronger in this group, relative to the subgroup with mtDNA-CN >1000.


Subject(s)
Diabetes Mellitus, Type 2 , Hyperglycemia , Aging/genetics , Body Mass Index , DNA Copy Number Variations , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Diabetes Mellitus, Type 2/genetics , Humans , NLR Family, Pyrin Domain-Containing 3 Protein , Protein Kinases/genetics , Protein Kinases/metabolism , Somatosensory Cortex/metabolism
4.
Autoimmunity ; 55(8): 497-505, 2022 12.
Article in English | MEDLINE | ID: mdl-35978536

ABSTRACT

Systemic lupus erythematosus (SLE) is a heterogeneous, multisystemic autoimmune disease with a broad clinical spectrum. Loss of self-tolerance and chronic inflammation are critical markers of SLE pathogenesis. Although alterations in adaptive immunity are widely recognized, increasing reports indicate the role of mitochondrial dysfunction in activating pathogenic pathways involving the innate immune system. Among these, disarrangements in mitochondrial DNA copy number and heteroplasmy percentage are related to SLE activity. Furthermore, increased oxidative stress contributes to post-translational changes in different molecules (proteins, nucleic acids, and lipids), release of oxidized mitochondrial DNA through a pore of voltage-dependent anion channel oligomers, and spontaneous mitochondrial antiviral signaling protein oligomerization. Finally, a reduction in mitophagy, apoptosis induction, and NETosis has been reported in SLE. Most of these pathways lead to persistent and inappropriate exposure to oxidized mitochondrial DNA, which can stimulate plasmacytoid dendritic cells, enhance autoreactive lymphocyte activation, and release increased amounts of interferons through stimulation of toll-like receptors and cytosolic DNA sensors. Likewise, abnormal T-cell receptor activation, decreased regulatory T cells, enhanced Th17 phenotypes, and increased monocyte maturation to dendritic cells have also been observed in SLE. Targeting the players involved in mitochondrial damage can ultimately help.


Subject(s)
Lupus Erythematosus, Systemic , Antiviral Agents/metabolism , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Humans , Interferons/metabolism , Lipids , Mitochondria/genetics , Mitochondria/metabolism , Receptors, Antigen, T-Cell/metabolism , Toll-Like Receptors/metabolism
6.
J Biol Chem ; 298(8): 102214, 2022 08.
Article in English | MEDLINE | ID: mdl-35779633

ABSTRACT

Mitochondrial translation is a highly regulated process, and newly synthesized mitochondrial products must first associate with several nuclear-encoded auxiliary factors to form oxidative phosphorylation complexes. The output of mitochondrial products should therefore be in stoichiometric equilibrium with the nuclear-encoded products to prevent unnecessary energy expense or the accumulation of pro-oxidant assembly modules. In the mitochondrial DNA of Saccharomyces cerevisiae, COX1 encodes subunit 1 of the cytochrome c oxidase and COB the central core of the cytochrome bc1 electron transfer complex; however, factors regulating the expression of these mitochondrial products are not completely described. Here, we identified Mrx9p as a new factor that controls COX1 and COB expression. We isolated MRX9 in a screen for mitochondrial factors that cause poor accumulation of newly synthesized Cox1p and compromised transition to the respiratory metabolism. Northern analyses indicated lower levels of COX1 and COB mature mRNAs accompanied by an accumulation of unprocessed transcripts in the presence of excess Mrx9p. In a strain devoid of mitochondrial introns, MRX9 overexpression did not affect COX1 and COB translation or respiratory adaptation, implying Mrx9p regulates processing of COX1 and COB RNAs. In addition, we found Mrx9p was localized in the mitochondrial inner membrane, facing the matrix, as a portion of it cosedimented with mitoribosome subunits and its removal or overexpression altered Mss51p sedimentation. Finally, we showed accumulation of newly synthesized Cox1p in the absence of Mrx9p was diminished in cox14 null mutants. Taken together, these data indicate a regulatory role of Mrx9p in COX1 RNA processing.


Subject(s)
Electron Transport Complex III/genetics , Electron Transport Complex IV/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Electron Transport Complex III/metabolism , Electron Transport Complex IV/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Oxidative Phosphorylation , RNA/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism
7.
Nutrients ; 14(9)2022 May 09.
Article in English | MEDLINE | ID: mdl-35565950

ABSTRACT

In patients with age-related macular degeneration (AMD), the crucial retinal pigment epithelial (RPE) cells are characterized by mitochondria that are structurally and functionally defective. Moreover, deficient expression of the mRNA-editing enzyme Dicer is noted specifically in these cells. This Dicer deficit up-regulates expression of Alu RNA, which in turn damages mitochondria-inducing the loss of membrane potential, boosting oxidant generation, and causing mitochondrial DNA to translocate to the cytoplasmic region. The cytoplasmic mtDNA, in conjunction with induced oxidative stress, triggers a non-canonical pathway of NLRP3 inflammasome activation, leading to the production of interleukin-18 that acts in an autocrine manner to induce apoptotic death of RPE cells, thereby driving progression of dry AMD. It is proposed that measures which jointly up-regulate mitophagy and mitochondrial biogenesis (MB), by replacing damaged mitochondria with "healthy" new ones, may lessen the adverse impact of Alu RNA on RPE cells, enabling the prevention or control of dry AMD. An analysis of the molecular biology underlying mitophagy/MB and inflammasome activation suggests that nutraceuticals or drugs that can activate Sirt1, AMPK, Nrf2, and PPARα may be useful in this regard. These include ferulic acid, melatonin urolithin A and glucosamine (Sirt1), metformin and berberine (AMPK), lipoic acid and broccoli sprout extract (Nrf2), and fibrate drugs and astaxanthin (PPARα). Hence, nutraceutical regimens providing physiologically meaningful doses of several or all of the: ferulic acid, melatonin, glucosamine, berberine, lipoic acid, and astaxanthin, may have potential for control of dry AMD.


Subject(s)
Berberine , Macular Degeneration , Melatonin , Thioctic Acid , AMP-Activated Protein Kinases/metabolism , Berberine/pharmacology , DNA, Mitochondrial/metabolism , Dietary Supplements , Glucosamine , Humans , Inflammasomes/metabolism , Macular Degeneration/drug therapy , Melatonin/metabolism , Mitochondria/metabolism , Mitophagy , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Organelle Biogenesis , Oxidative Stress , PPAR alpha/metabolism , RNA/metabolism , Retinal Pigment Epithelium/metabolism , Sirtuin 1/metabolism
8.
FEBS J ; 289(11): 3262-3279, 2022 06.
Article in English | MEDLINE | ID: mdl-34986513

ABSTRACT

Nek4 is a serine/threonine kinase which has been implicated in primary cilia stabilization, DNA damage response, autophagy and epithelial-to-mesenchymal transition. The role of Nek4 in cancer cell survival and chemotherapy resistance has also been shown. However, the precise mechanisms by which Nek4 operates remain to be elucidated. Here, we show that Nek4 overexpression activates mitochondrial respiration coupled to ATP production, which is paralleled by increased mitochondrial membrane potential, and resistance to mitochondrial DNA damage. Congruently, Nek4 depletion reduced mitochondrial respiration and mtDNA integrity. Nek4 deficiency caused mitochondrial elongation, probably via reduced activity of the fission protein DRP1. In Nek4 overexpressing cells, the increase in mitochondrial fission was concomitant to enhanced phosphorylation of DRP1 and Erk1/2 proteins, and the effects on mitochondrial respiration were abolished in the presence of a DRP1 inhibitor. This study shows Nek4 as a novel regulator of mitochondrial function that may explain the joint appearance of high mitochondrial respiration and mitochondrial fragmentation.


Subject(s)
Dynamins , Mitochondrial Dynamics , DNA, Mitochondrial/metabolism , Dynamins/genetics , Dynamins/metabolism , Mitochondria/metabolism , Mitochondrial Proteins/genetics , Phosphorylation , Respiration
9.
Autoimmun Rev ; 20(8): 102867, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34118452

ABSTRACT

Relevant reviews highlight the association between dysfunctional mitochondria and inflammation, but few studies address the contribution of mitochondria and mitochondria-endoplasmic reticulum (ER) contact sites (MERCs) to cellular homeostasis and inflammatory signaling. The present review outlines the important role of mitochondria in cellular homeostasis and how dysfunctional mitochondrion can release and misplace mitochondrial components (cardiolipin, mitochondrial DNA (mtDNA), and mitochondrial formylated peptides) through multiple mechanisms. These components can act as damage-associated molecular patterns (DAMPs) and induce an inflammatory response via pattern recognition receptors (PRRs). Accumulation of damaged ROS-generating mitochondria, accompanied by the release of mitochondrial DAMPs, can activate PRRs such as the NLRP3 inflammasome, TLR9, cGAS/STING, and ZBP1. This process would explain the chronic inflammation that is observed in autoimmune diseases such as systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), type I diabetes (T1D), and Sjögren's syndrome. This review also provides a comprehensive overview of the importance of MERCs to mitochondrial function and morphology, cellular homeostasis, and the inflammatory response. MERCs play an important role in calcium homeostasis by mediating the transfer of calcium from the ER to the mitochondria and thereby facilitating the production of ATP. They also contribute to the synthesis and transfer of phospholipids, protein folding in the ER, mitochondrial fission, mitochondrial fusion, initiation of autophagosome formation, regulation of cell death/survival signaling, and regulation of immune responses. Therefore, alterations within MERCs could increase inflammatory signaling, modulate ER stress responses, cell homeostasis, and ultimately, the cell fate. This study shows severe ultrastructural alterations of mitochondria in salivary gland cells from Sjögren's syndrome patients for the first time, which could trigger alterations in cellular bioenergetics. This finding could explain symptoms such as fatigue and malfunction of the salivary glands in Sjögren's syndrome patients, which would contribute to the chronic inflammatory pathology of the disease. However, this is only a first step in solving this complex puzzle, and several other important factors such as changes in mitochondrial morphology, functionality, and their important contacts with other organelles require further in-depth study. Future work should focus on detecting the key milestones that are related to inflammation in patients with autoimmune diseases, such as Sjögren´s syndrome.


Subject(s)
Sjogren's Syndrome , DNA, Mitochondrial/metabolism , Endoplasmic Reticulum/metabolism , Humans , Inflammation/metabolism , Mitochondria
10.
Methods Mol Biol ; 2281: 313-322, 2021.
Article in English | MEDLINE | ID: mdl-33847968

ABSTRACT

Defects in mitochondrial DNA (mtDNA) maintenance may lead to disturbances in mitochondrial homeostasis and energy production in eukaryotic cells, causing diseases. During mtDNA replication, the mitochondrial single-stranded DNA-binding protein (mtSSB) stabilizes and protects the exposed single-stranded mtDNA from nucleolysis; perhaps more importantly, it appears to coordinate the actions of both the replicative mtDNA helicase Twinkle and DNA polymerase gamma at the replication fork. Here, we describe a helicase stimulation protocol to test in vitro the functional interaction between mtSSB and variant forms of Twinkle. We show for the first time that the C-terminal tail of Twinkle is important for such an interaction, and that it negatively regulates helicase unwinding activity in a salt-dependent manner.


Subject(s)
DNA Helicases/chemistry , DNA Helicases/metabolism , DNA, Single-Stranded/metabolism , DNA-Binding Proteins/metabolism , Mitochondrial Proteins/chemistry , Mitochondrial Proteins/metabolism , Mutation , Binding Sites , DNA Helicases/genetics , DNA Replication , DNA, Mitochondrial/chemistry , DNA, Mitochondrial/metabolism , DNA, Single-Stranded/chemistry , DNA-Binding Proteins/chemistry , Humans , Mitochondrial Proteins/genetics , Models, Molecular , Protein Binding , Protein Conformation
11.
Sci Rep ; 11(1): 9210, 2021 04 28.
Article in English | MEDLINE | ID: mdl-33911164

ABSTRACT

Angomonas deanei coevolves in a mutualistic relationship with a symbiotic bacterium that divides in synchronicity with other host cell structures. Trypanosomatid mitochondrial DNA is contained in the kinetoplast and is composed of thousands of interlocked DNA circles (kDNA). The arrangement of kDNA is related to the presence of histone-like proteins, known as KAPs (kinetoplast-associated proteins), that neutralize the negatively charged kDNA, thereby affecting the activity of mitochondrial enzymes involved in replication, transcription and repair. In this study, CRISPR-Cas9 was used to delete both alleles of the A. deanei KAP4 gene. Gene-deficient mutants exhibited high compaction of the kDNA network and displayed atypical phenotypes, such as the appearance of a filamentous symbionts, cells containing two nuclei and one kinetoplast, and division blocks. Treatment with cisplatin and UV showed that Δkap4 null mutants were not more sensitive to DNA damage and repair than wild-type cells. Notably, lesions caused by these genotoxic agents in the mitochondrial DNA could be repaired, suggesting that the kDNA in the kinetoplast of trypanosomatids has unique repair mechanisms. Taken together, our data indicate that although KAP4 is not an essential protein, it plays important roles in kDNA arrangement and replication, as well as in the maintenance of symbiosis.


Subject(s)
Bacteria/metabolism , DNA Replication , DNA, Kinetoplast/genetics , DNA, Protozoan/genetics , Mitochondria/genetics , Protozoan Proteins/genetics , Trypanosomatina/genetics , Cell Division , Cell Nucleus , DNA, Kinetoplast/metabolism , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , DNA, Protozoan/metabolism , Mitochondria/metabolism , Protozoan Proteins/metabolism , Symbiosis , Trypanosomatina/metabolism , Trypanosomatina/microbiology
12.
Biochim Biophys Acta Mol Cell Res ; 1868(2): 118916, 2021 02.
Article in English | MEDLINE | ID: mdl-33276010

ABSTRACT

BACKGROUND: Different animal species have different characteristics regarding the transmission of mitochondrial DNA. While some species have biparental mitochondrial inheritance, others have developed pathways to remove paternal mtDNA. These pathways guarantee the uniparental mitochondrial inheritance, so far well known in mammals, avoiding heteroplasmy, which may have the potential to cause certain mitochondrial diseases in the offspring. SCOPE OF REVIEW: This review aims to address the main mechanisms that involve mitochondrial degradation in different animal species, as well as to describe what is present in the literature on the mechanisms involved in mitochondrial inheritance. MAJOR CONCLUSIONS: Two theories are proposed to explain the uniparental inheritance of mtDNA: (i) active degradation, where mechanisms for paternal mitochondrial DNA elimination involve mitochondrial degradation pathway by autophagy and, in some species, may also involve the endocytic degradation pathway; and (ii) passive dilution, where the paternal mitochondria are diluted in the cells of the embryo according to cell division, until becoming undetectable. GENERAL SIGNIFICANCE: This work brings a wide review of the already published evidence on mitochondrial inheritance in the animal kingdom and the possible mechanisms to mtDNA transmission already described in literature.


Subject(s)
DNA, Mitochondrial/metabolism , Embryo, Mammalian/metabolism , Mitochondria/metabolism , Mitophagy/physiology , Spermatozoa/metabolism , Animals , Endocytosis/physiology , Fertilization/physiology , Male , Ubiquitination/physiology
13.
Mol Biol Rep ; 47(9): 7297-7303, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32804305

ABSTRACT

Physical inactivity and unhealthy food intake are strongly associated with the growing prevalence of type 2 diabetes (T2D). Dyslipidemia, a characteristic of T2D patient, contributes to an increase in intra-myocellular lipid accumulation and mitochondria dysfunction, in skeletal muscle cells and further to insulin resistance. The aim of this study was to evaluate the effect of aerobic exercise on dyslipidemia, mitochondrial homeostasis and mitochondrial DNA (mtDNA) transcription in T2D- induced animals. Wistar rats (8 weeks old) were fed a diet containing 60% fat over 9 weeks, at day 14 a single injection of STZ (25 mg/kg) was administered (T2D-induced). At week 3 of the experiment half of the animals started on an aerobic exercise 5-days/week. Blood and soleus muscle were collected at 9th experimental week. Abdominal fat, blood glucose, triglyceride, low-density-lipoprotein and high-density lipoprotein (HDL), and cellular mtDNA copy number, cytochrome b (cytb) mRNA and 8-isoprostane were measured. T2D-induced animals exhibited changes in blood glucose, weight gain, abdominal fat, LDL and muscular 8-isoprostane, mtDNA copy number and cytb mRNA. Aerobic exercise attenuated the increase in weight gain and abdominal fat and the decreased cytb mRNA, and increased HDL. Our results suggest that aerobic exercise might not affect all characteristics related to the development of T2D in the same way. However, since T2D is a multifactorial disease, improvement in parameters such as HDL levels, abdominal fat and weight gain induced by aerobic exercise might delay or inhibit the onset of T2D.


Subject(s)
DNA, Mitochondrial/metabolism , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 2/metabolism , Dyslipidemias/metabolism , Mitochondria, Muscle/metabolism , Physical Conditioning, Animal , Transcription, Genetic , Animals , Diabetes Mellitus, Experimental/therapy , Diabetes Mellitus, Type 2/therapy , Dyslipidemias/therapy , Male , Rats , Rats, Wistar
14.
Life Sci ; 256: 117965, 2020 Sep 01.
Article in English | MEDLINE | ID: mdl-32544463

ABSTRACT

BACKGROUND: Several studies have proved that physical activity (PA) regulates energetic metabolism associated with mitochondrial dynamics through AMPK activation in healthy subjects. Obesity, a condition that induces oxidative stress, mitochondrial dysfunction, and low AMPK activity leads to mitochondrial fragmentation. However, few studies describe the effect of PA on mitochondrial dynamics regulation in obesity. AIM: The present study aimed to evaluate the effect of a single session of PA on mitochondrial dynamics regulation as well as its effect on mitochondrial function and organization in skeletal muscles of obese rats (Zucker fa/fa). MAIN METHODS: Male Zucker lean and Zucker fa/fa rats aged 12 to 13 weeks were divided into sedentary and subjected-to-PA (single session swimming) groups. Gastrocnemius muscle was dissected into isolated fibers, mitochondria, mRNA, and total proteins for their evaluation. KEY FINDINGS: The results showed that PA increased the Mfn-2 protein level in the lean and obese groups, whereas Drp1 levels decreased in the obese group. OMA1 protease levels increased in the lean group and decreased in the obese group. Additionally, AMPK analysis parameters (expression, protein level, and activity) did not increase in the obese group. These findings correlated with the partial restoration of mitochondrial function in the obese group, increasing the capacity to maintain the membrane potential after adding calcium as a stressor, and increasing the transversal organization level of the mitochondria analyzed in isolated fibers. SIGNIFICANCE: These results support the notion that obese rats subjected to PA maintain mitochondrial function through mitochondrial fusion activation by an AMPK-independent mechanism.


Subject(s)
Mitochondria/pathology , Muscle Fibers, Skeletal/pathology , Obesity/pathology , Physical Conditioning, Animal , Adenylate Kinase/metabolism , Animals , Biomarkers/metabolism , Citrate (si)-Synthase/metabolism , DNA, Mitochondrial/metabolism , Gene Expression Regulation , Male , Membrane Potential, Mitochondrial , Mitochondrial Dynamics , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Organ Size , Oxidative Stress , Phosphorylation , Rats, Zucker
15.
Methods Mol Biol ; 2144: 245-257, 2020.
Article in English | MEDLINE | ID: mdl-32410041

ABSTRACT

Reactive oxygen species (ROS) represent a number of highly reactive oxygen-derived by-products generated by the normal mitochondrial respiration and other cellular metabolic reactions. ROS can oxidize macromolecules including lipids, proteins, and nucleic acids. Under physiological condition, the cellular levels of ROS are controlled by several antioxidant enzymes. However, an imbalance between ROS production and detoxification results in oxidative stress, which leads to the accumulation of macromolecular damage and progressive decline in normal physiological functions.Oxidative deterioration of DNA can result in lesion that are mutagenic and contribute to aging and age-related diseases. Therefore, methods for the detection of ROS and oxidative deterioration of macromolecules such as DNA in cells provide important tool in aging research. Here, we described protocols for the detection of cytoplasmic and mitochondria pools of hydrogen peroxide, and the DNA modification 8-oxoguanine, a biomarker of oxidative damage, that are applicable to cell-based studies on aging and other related areas.


Subject(s)
Aging, Premature/genetics , Aging/genetics , DNA Damage/genetics , Hydrogen Peroxide/isolation & purification , Aging, Premature/pathology , Animals , Antioxidants/metabolism , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Humans , Hydrogen Peroxide/metabolism , Mice , Mitochondria , Mutagenesis/genetics , Mutation/genetics , Oxidation-Reduction , Oxidative Stress/genetics , Reactive Oxygen Species/metabolism
16.
PLoS One ; 15(4): e0230660, 2020.
Article in English | MEDLINE | ID: mdl-32255776

ABSTRACT

Spinner dolphins (Stenella longirostris, Gray 1828) are widely distributed in tropical waters around the world. Although they occur in large, pelagic groups in the Eastern Tropical Pacific, elsewhere in the Pacific they are found in small and genetically isolated populations associated with islands. This species is considered to be "Least Concern" (LC) by the World Conservation Union (IUCN). To assess genetic diversity and population structure of an island-associated population in the South Atlantic Ocean we surveyed 162 spinner dolphins throughout the Fernando de Noronha Archipelago of the northeast coast of Brazil using ten microsatellite loci and sequencing a 413-bp section of the mitochondrial DNA (mtDNA) control region. Eleven mtDNA haplotypes were identified and haplotype diversity (h) and nucleotide diversity (π) were 0.3747 and 0.0060, respectively. Median-Joining Network revealed the presence of two very divergent haplotypes and F-statistics indicated some heterogeneity between two sampling years. All microsatellite loci were polymorphic (Ho: 0.767; He: 0,764) but, revealed no detectable substructure. We also compared the mtDNA haplotypes from Noronha to 159 haplotypes representing 893 individuals from 14 locations worldwide. We found that the two common haplotypes from the Fernando de Noronha Archipelago were absent in all other populations. These comparisons showed that Noronha spinner dolphins are likely more differentiated than other island populations, suggesting that they form societies with strong site fidelity mediated by females.


Subject(s)
DNA, Mitochondrial/genetics , Genetics, Population , Stenella/genetics , Animals , Brazil , Conservation of Natural Resources , DNA, Mitochondrial/chemistry , DNA, Mitochondrial/metabolism , Female , Genetic Variation , Haplotypes , Islands , Linkage Disequilibrium , Male , Microsatellite Repeats/genetics , Phylogeography , Stenella/classification
17.
Biochim Biophys Acta Gen Subj ; 1864(7): 129608, 2020 07.
Article in English | MEDLINE | ID: mdl-32234506

ABSTRACT

BACKGROUND: Mutations in human gene encoding the mitochondrial DNA polymerase γ (HsPolγ) are associated with a broad range of mitochondrial diseases. Here we studied the impact on DNA replication by disease variants clustered around residue HsPolγ-K1191, a residue that in several family-A DNA polymerases interacts with the 3' end of the primer. METHODS: Specifically, we examined the effect of HsPolγ carrying pathogenic variants in residues D1184, I1185, C1188, K1191, D1196, and a stop codon at residue T1199, using as a model the yeast mitochondrial DNA polymerase protein, Mip1p. RESULTS: The introduction of pathogenic variants C1188R (yV945R), and of a stop codon at residue T1199 (yT956X) abolished both polymerization and exonucleolysis in vitro. HsPolγ substitutions in residues D1184 (yD941), I1185 (yI942), K1191 (yK948) and D1196 (yD953) shifted the balance between polymerization and exonucleolysis in favor of exonucleolysis. HsPolγ pathogenic variants at residue K1191 (yK948) and D1184 (yD941) were capable of nucleotide incorporation albeit with reduced processivity. Structural analysis of mitochondrial DNAPs showed that residue HsPolγ-N864 is placed in an optimal distance to interact with the 3' end of the primer and the phosphate backbone previous to the 3' end. Amino acid changes in residue HsPolγ-N864 to Ala, Ser or Asp result in enzymes that did not decrease their polymerization activity on short templates but exhibited a substantial decrease for processive DNA synthesis. CONCLUSION: Our data suggest that in mitochondrial DNA polymerases multiple amino acids are involved in the primer-stand stabilization.


Subject(s)
DNA Polymerase gamma/genetics , DNA, Mitochondrial/metabolism , Mitochondrial Diseases/metabolism , DNA Polymerase gamma/chemistry , DNA Polymerase gamma/metabolism , DNA Replication/genetics , DNA, Mitochondrial/chemistry , Humans , Models, Molecular , Mutation
18.
Enzymes ; 45: 257-287, 2019.
Article in English | MEDLINE | ID: mdl-31627879

ABSTRACT

The mitochondrial genome encodes proteins essential for the oxidative phosphorylation and, consequently, for proper mitochondrial function. Its localization and, possibly, structural organization contribute to higher DNA damage accumulation, when compared to the nuclear genome. In addition, the mitochondrial genome mutates at rates several times higher than the nuclear, although the causal relationship between these events are not clearly established. Maintaining mitochondrial DNA stability is critical for cellular function and organismal fitness, and several pathways contribute to that, including damage tolerance and bypass, degradation of damaged genomes and DNA repair. Despite initial evidence suggesting that mitochondria lack DNA repair activities, most DNA repair pathways have been at least partially characterized in mitochondria from several model organisms, including humans. In this chapter, we review what is currently known about how the main DNA repair pathways operate in mitochondria and contribute to mitochondrial DNA stability, with focus on the enzymology of mitochondrial DNA repair.


Subject(s)
DNA Damage , DNA Repair , DNA, Mitochondrial/metabolism , Mitochondria/genetics , Humans
19.
Mitochondrion ; 49: 25-34, 2019 11.
Article in English | MEDLINE | ID: mdl-31271879

ABSTRACT

Leigh syndrome represents a complex inherited neurometabolic and neurodegenerative disorder associated with different clinical, genetic and neuroimaging findings in the context of bilateral symmetrical lesions involving the brainstem and basal ganglia. Heterogeneous neurological manifestations such as spasticity, cerebellar ataxia, dystonia, choreoathetosis and parkinsonism are associated with multisystemic and ophthalmological abnormalities due to >75 different monogenic causes. Here, we describe the clinical and genetic features of a Brazilian cohort of patients with Leigh Syndrome in which muscle biopsy analysis showed mitochondrial DNA defects and determine the utility of whole exome sequencing for a final genetic diagnostic in this cohort.


Subject(s)
DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Exome Sequencing , Leigh Disease/genetics , Leigh Disease/metabolism , Adolescent , Adult , Aged , Brazil , Child , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Leigh Disease/diagnosis , Male , Middle Aged
20.
BMC Biotechnol ; 19(1): 42, 2019 06 28.
Article in English | MEDLINE | ID: mdl-31253149

ABSTRACT

BACKGROUND: Artificial Mitochondrial Transfer or Transplant (AMT/T) can be used to reduce the stress and loss of viability of damaged cells. In MitoCeption, a type of AMT/T, the isolated mitochondria and recipient cells are centrifuged together at 4 °C and then co-incubated at 37 °C in normal culture conditions, inducing the transfer. Ultraviolet radiation (UVR) can affect mitochondria and other cell structures, resulting in tissue stress, aging, and immunosuppression. AMT/T could be used to repair UVR cellular and mitochondrial damage. We studied if a mitochondrial mix from different donors (Primary Allogeneic Mitochondrial Mix, PAMM) can repair UVR damage and promote cell survival. RESULTS: Using a simplified adaption of the MitoCeption protocol, we used peripheral blood mononuclear cells (PBMCs) as the recipient cell model of the PAMM in order to determine if this protocol could repair UVR damage. Our results showed that when PBMCs are exposed to UVR, there is a decrease in metabolic activity, mitochondrial mass, and mtDNA sequence stability as well as an increase in p53 expression and the percentage of dead cells. When PAMM MitoCeption was used on UVR-damaged cells, it successfully transferred mitochondria from different donors to distinct PBMCs populations and repaired the observed UVR damage. CONCLUSION: Our results represent an advancement in the applications of MitoCeption and other AMT/T. We showed that PBMCs could be used as a PAMM source of mitochondria. We also showed that these mitochondria can be transferred in a mix from different donors (PAMM) to UVR-damaged, non-adherent primary cells. Additionally, we decreased the duration of the MitoCeption protocol.


Subject(s)
DNA Damage , Leukocytes, Mononuclear/metabolism , Mitochondria/metabolism , Mitochondria/transplantation , Ultraviolet Rays , Adult , Cell Survival/genetics , Cells, Cultured , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Female , Humans , Leukocytes, Mononuclear/radiation effects , Male , Mitochondria/genetics , Reactive Oxygen Species/metabolism , Transplantation, Homologous/methods , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL