Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 399
Filter
1.
Int J Mol Sci ; 25(19)2024 Sep 27.
Article in English | MEDLINE | ID: mdl-39408785

ABSTRACT

The determination of the cancer prognosis is paramount for patients and medical personnel so that they can devise treatment strategies. Transcriptional-based signatures and subtypes derived from cancer biopsy material have been used in clinical practice for several cancer types to aid in setting the patient prognosis and forming treatment strategies. Other genomic features in cancer biopsies, such as copy number alterations (CNAs), have been underused in clinical practice, and yet they represent a complementary source of molecular information that can add detail to the prognosis, which is supported by recent work in breast, ovarian, and lung cancers. Here, through a systematic strategy, we explored the prognostic power of CNAs in 37 cancer types. In this analysis, we defined two modes of informative features, deep and soft, depending on the number of alleles gained or lost. These informative modes were grouped by amplifications or deletions to form four single-data prognostic models. Finally, the single-data models were summed or combined to generate four additional multidata prognostic models. First, we show that the modes of features are cancer-type dependent, where deep alterations generate better models. Nevertheless, some cancers require soft alterations to generate a feasible model due to the lack of significant deep alterations. Then, we show that the models generated by summing coefficients from amplifications and deletions appear to be more practical for many but not all cancer types. We show that the CNA-derived risk group is independent of other clinical factors. Furthermore, overall, we show that CNA-derived models can define clinically relevant risk groups in 33 of the 37 (90%) cancer types analyzed. Our study highlights the use of CNAs as biomarkers that are potentially clinically relevant to survival in cancer patients.


Subject(s)
DNA Copy Number Variations , Neoplasms , Humans , Neoplasms/genetics , Neoplasms/pathology , Prognosis , Biomarkers, Tumor/genetics
2.
Mol Genet Genomic Med ; 12(10): e70019, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39400524

ABSTRACT

BACKGROUND: Retinal dystrophies (RDs) are the most common cause of inherited blindness worldwide and are caused by genetic defects in about 300 different genes. While targeted next-generation sequencing (NGS) has been demonstrated to be a reliable and efficient method to identify RD disease-causing variants, it doesn't routinely identify pathogenic structural variant as copy number variations (CNVs). Targeted NGS-based CNV detection has become a crucial step for RDs molecular diagnosis, particularly in cases without identified causative single nucleotide or Indels variants. Herein, we report the exome sequencing (ES) data-based read-depth bioinformatic analysis in a group of 30 unrelated Mexican RD patients with a negative or inconclusive genetic result after ES. METHODS: CNV detection was performed using ExomeDepth software, an R package designed to detect CNVs using exome data. Bioinformatic validation of identified CNVs was conducted through a commercially available CNV caller. All identified candidate pathogenic CNVs were orthogonally verified through quantitative PCR assays. RESULTS: Pathogenic or likely pathogenic CNVs were identified in 6 out of 30 cases (20%), and of them, a definitive molecular diagnosis was reached in 5 cases, for a final diagnostic rate of ~17%. CNV-carrying genes included CLN3 (2 cases), ABCA4 (novel deletion), EYS, and RPGRIP1. CONCLUSIONS: Our results indicate that bioinformatic analysis of ES data is a reliable method for pathogenic CNV detection and that it should be incorporated in cases with a negative or inconclusive molecular result after ES.


Subject(s)
DNA Copy Number Variations , Exome Sequencing , Retinal Dystrophies , Computational Biology , DNA Copy Number Variations/genetics , Mexico , Retinal Dystrophies/diagnosis , Retinal Dystrophies/genetics , Retinal Dystrophies/pathology , Humans , Male , Female , Child , Adolescent , Young Adult , Adult , Middle Aged , Sequence Deletion/genetics
3.
Sci Rep ; 14(1): 23645, 2024 10 09.
Article in English | MEDLINE | ID: mdl-39384827

ABSTRACT

The mechanisms involved with the pathogenesis of carcinoma ex pleomorphic adenoma (CXPA) seem to be associated with the accumulation of molecular alterations in the pleomorphic adenoma (PA). In this sense, using array-based comparative genomic hybridization (aCGH) a rare series of 27 cases of CXPA and 14 residual PA (rPA) adjacent to the transformation area, we investigated the profile of the copy number alterations (CNAs) comparing benign residual and transformed areas. The main findings were correlated with the histopathological classification by histologic subtype and degree of invasion. The distribution of losses (p = 0.187) and amplifications (p = 0.172) was not statistically different between rPA and CXPA. The number of gains was increased in the transformed areas compared to the benign residual areas (p = 0.005). PLAG1 gain was maintained along the malignant transformation, as it was observed in both residual PA and CXPA samples, likely being an earlier event during transformation. The amplification of GRB7 and ERBB2 may also be an initial step in the malignant transformation of PA to CXPA (salivary duct carcinoma subtype). Furthermore, the amplification of HMGA2 and RPSAP52 were the most prevalent alterations among the studied samples. It was noteworthy that amplified genes in the transformed areas of the tumors were enriched for biological processes related to immune signaling. In conclusion, our results underscored for the first-time crucial CNAs in CXPA, some of them shared with the residual benign area adjacent to the transformation site. These CNAs included PLAG1 gain, as well as amplification of GRB7, ERBB2, HMGA2, and RPSAP52.


Subject(s)
Adenoma, Pleomorphic , Comparative Genomic Hybridization , DNA Copy Number Variations , Humans , Adenoma, Pleomorphic/genetics , Adenoma, Pleomorphic/pathology , Male , Female , Middle Aged , Aged , Cell Transformation, Neoplastic/genetics , Salivary Gland Neoplasms/genetics , Salivary Gland Neoplasms/pathology , Adult , HMGA2 Protein/genetics , Receptor, ErbB-2/genetics , Receptor, ErbB-2/metabolism , DNA-Binding Proteins/genetics
4.
Biol Res ; 57(1): 59, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39223638

ABSTRACT

BACKGROUND: Tumour dormancy, a resistance mechanism employed by cancer cells, is a significant challenge in cancer treatment, contributing to minimal residual disease (MRD) and potential relapse. Despite its clinical importance, the mechanisms underlying tumour dormancy and MRD remain unclear. In this study, we employed two syngeneic murine models of myeloid leukemia and melanoma to investigate the genetic, epigenetic, transcriptomic and protein signatures associated with tumour dormancy. We used a multiomics approach to elucidate the molecular mechanisms driving MRD and identify potential therapeutic targets. RESULTS: We conducted an in-depth omics analysis encompassing whole-exome sequencing (WES), copy number variation (CNV) analysis, chromatin immunoprecipitation followed by sequencing (ChIP-seq), transcriptome and proteome investigations. WES analysis revealed a modest overlap of gene mutations between melanoma and leukemia dormancy models, with a significant number of mutated genes found exclusively in dormant cells. These exclusive genetic signatures suggest selective pressure during MRD, potentially conferring resistance to the microenvironment or therapies. CNV, histone marks and transcriptomic gene expression signatures combined with Gene Ontology (GO) enrichment analysis highlighted the potential functional roles of the mutated genes, providing insights into the pathways associated with MRD. In addition, we compared "murine MRD genes" profiles to the corresponding human disease through public datasets and highlighted common features according to disease progression. Proteomic analysis combined with multi-omics genetic investigations, revealed a dysregulated proteins signature in dormant cells with minimal genetic mechanism involvement. Pathway enrichment analysis revealed the metabolic, differentiation and cytoskeletal remodeling processes involved in MRD. Finally, we identified 11 common proteins differentially expressed in dormant cells from both pathologies. CONCLUSIONS: Our study underscores the complexity of tumour dormancy, implicating both genetic and nongenetic factors. By comparing genomic, transcriptomic, proteomic, and epigenomic datasets, our study provides a comprehensive understanding of the molecular landscape of minimal residual disease. These results provide a robust foundation for forthcoming investigations and offer potential avenues for the advancement of targeted MRD therapies in leukemia and melanoma patients, emphasizing the importance of considering both genetic and nongenetic factors in treatment strategies.


Subject(s)
Disease Models, Animal , Melanoma , Neoplasm, Residual , Animals , Melanoma/genetics , Melanoma/pathology , Mice , Leukemia/genetics , Leukemia/pathology , DNA Copy Number Variations , Exome Sequencing , Mice, Inbred C57BL , Proteomics , Transcriptome , Gene Expression Profiling , Multiomics
5.
J Assist Reprod Genet ; 41(9): 2279-2288, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38995507

ABSTRACT

PURPOSE: To analyze the copy number variation (CNV) in the X-linked genes BCORL1, POF1B, and USP9X in idiopathic diminished ovarian reserve (DOR). METHODS: This case-control study included 47 women, 26 with DOR and 21 in the control group. Age, weight, height, BMI, and FSH level were evaluated, as well as antral follicle count (AFC), oocyte retrieval after controlled ovarian stimulation, and metaphase II (MII) oocytes. The CNVs of BCORL1, USP9X, and POF1B genes were measured by quantitative real time PCR (qPCR) using two reference genes, the HPRT1 (X-linked) and MFN2 (autosomal). Protein-protein interaction network and functional enrichment analysis were performed using the STRING database. RESULTS: The mean age was 36.52 ± 4.75 in DOR women and 35.38 ± 4.14 in control. Anthropometric measures did not differ between the DOR and control groups. DOR women presented higher FSH (p = 0.0025) and lower AFC (p < .0001), oocyte retrieval after COS (p = 0.0004), and MII oocytes (p < .0001) when compared to the control group. BCORL1 and POF1B did not differ in copy number between DOR and control. However, DOR women had more copies of USP9X than the control group (p = 0.028). CONCLUSION: The increase in the number of copies of the USP9X gene may lead to overexpression in idiopathic DOR and contribute to altered folliculogenesis and oocyte retrieval.


Subject(s)
DNA Copy Number Variations , Ovarian Reserve , Ubiquitin Thiolesterase , Humans , Female , Ovarian Reserve/genetics , Adult , DNA Copy Number Variations/genetics , Ubiquitin Thiolesterase/genetics , Case-Control Studies , Primary Ovarian Insufficiency/genetics , Primary Ovarian Insufficiency/pathology , Oocyte Retrieval , Repressor Proteins/genetics , Oocytes/growth & development , Oocytes/metabolism , Oocytes/pathology
6.
Breast Cancer Res Treat ; 207(3): 615-624, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38874686

ABSTRACT

PURPOSE: To define the spectrum of germline pathogenic variants (PVs) and copy number variant (CNV) in cancer susceptibility genes to the burden of breast and ovarian cancer (BC, OvC) in high-risk Brazilians in Minas Gerais with health insurance, southeast Brazil, undergoing multigene panel testing (MGPT). METHODS: Genotyping eligible individuals with health insurance in the Brazilian healthcare system for Hereditary Breast and Ovarian Cancer Syndrome to undergo molecular testing for 44 or 141-gene panels, a decision that was insurance driven. RESULTS: Overall, 701 individuals clinically defined as high BC/OvC risk, underwent MGPT from 1/2021 to 10/2022, with ~ 50% genotyped with a 44-gene panel and the rest with a 141-gene panel. Overall, 16.4% and 22.6% of genotyped individuals harbored PVs using 44-gene and the 141 gene panel, respectively. The most frequently mutated genes were: BRCA2 (3.7%); BRCA1 (3.6%) and monoallelic MUTYH (3.1%). CONCLUSION: The rate of PVs detected in high-risk individuals in this study was twice the 10% threshold used in Brazilian health guidelines. MGPT doubled the detection rate of PVs in cancer susceptibility genes in high-risk individuals compared with BRCA1/BRCA2 genotyping alone. The spectrum of PVs in Southern Brazil is diverse, with few recurring variants such as TP53 (0.6%), suggesting regional founder effects. The use of MGPT in hereditary cancer in Minas Gerais significantly increased the detection rate of P/LPVs compared to existing guidelines and should be considered as the primary genotyping modality in assessing hereditary cancer risk in Brazil.


Subject(s)
Genetic Predisposition to Disease , Genetic Testing , Germ-Line Mutation , Humans , Female , Brazil/epidemiology , Middle Aged , Adult , Genetic Testing/methods , Hereditary Breast and Ovarian Cancer Syndrome/genetics , Hereditary Breast and Ovarian Cancer Syndrome/epidemiology , DNA Copy Number Variations , Ovarian Neoplasms/genetics , Ovarian Neoplasms/epidemiology , Ovarian Neoplasms/pathology , Aged , BRCA2 Protein/genetics , Breast Neoplasms/genetics , Breast Neoplasms/epidemiology , Breast Neoplasms/pathology , Genotype , BRCA1 Protein/genetics , DNA Glycosylases
7.
Int J Mol Sci ; 25(11)2024 May 31.
Article in English | MEDLINE | ID: mdl-38892284

ABSTRACT

SMYD4 is a member of the SMYD family that has lysine methyltransferase function. Little is known about the roles of SMYD4 in cancer. The aim of this study is to investigate genetic alterations in the SMYD4 gene across the most prevalent solid tumors and determine its potential as a biomarker. We performed an integrative multi-platform analysis of the most common mutations, copy number alterations (CNAs), and mRNA expression levels of the SMYD family genes using cohorts available at the Cancer Genome Atlas (TCGA), cBioPortal, and the Catalogue of Somatic Mutations in Cancer (COSMIC). SMYD genes displayed a lower frequency of mutations across the studied tumors, with none of the SMYD4 mutations detected demonstrating sufficient discriminatory power to serve as a biomarker. In terms of CNAs, SMYD4 consistently exhibited heterozygous loss and downregulation across all tumors evaluated. Moreover, SMYD4 showed low expression in tumor samples compared to normal samples, except for stomach adenocarcinoma. SMYD4 demonstrated a frequent negative correlation with other members of the SMYD family and a positive correlation between CNAs and mRNA expression. Additionally, patients with low SMYD4 expression in STAD and LUAD tumors exhibited significantly poorer overall survival. SMYD4 demonstrated its role as a tumor suppressor in the majority of tumors evaluated. The consistent downregulation of SMYD4, coupled with its association with cancer progression, underscores its potential usefulness as a biomarker.


Subject(s)
Mutation , Neoplasms , Humans , Neoplasms/genetics , Biomarkers, Tumor/genetics , Gene Expression Regulation, Neoplastic , DNA Copy Number Variations , Histone-Lysine N-Methyltransferase/genetics
8.
Am J Med Genet A ; 194(11): e63802, 2024 Nov.
Article in English | MEDLINE | ID: mdl-38924610

ABSTRACT

Low-pass whole genome sequencing (LP-WGS) has been applied as alternative method to detect copy number variants (CNVs) in the clinical setting. Compared with chromosomal microarray analysis (CMA), the sequencing-based approach provides a similar resolution of CNV detection at a lower cost. In this study, we assessed the efficiency and reliability of LP-WGS as a more affordable alternative to CMA. A total of 1363 patients with unexplained neurodevelopmental delay/intellectual disability, autism spectrum disorders, and/or multiple congenital anomalies were enrolled. Those patients were referred from 15 nonprofit organizations and university centers located in different states in Brazil. The analysis of LP-WGS at 1x coverage (>50kb) revealed a positive testing result in 22% of the cases (304/1363), in which 219 and 85 correspond to pathogenic/likely pathogenic (P/LP) CNVs and variants of uncertain significance (VUS), respectively. The 16% (219/1363) diagnostic yield observed in our cohort is comparable to the 15%-20% reported for CMA in the literature. The use of commercial software, as demonstrated in this study, simplifies the implementation of the test in clinical settings. Particularly for countries like Brazil, where the cost of CMA presents a substantial barrier to most of the population, LP-WGS emerges as a cost-effective alternative for investigating copy number changes in cytogenetics.


Subject(s)
DNA Copy Number Variations , Whole Genome Sequencing , Humans , DNA Copy Number Variations/genetics , Whole Genome Sequencing/economics , Whole Genome Sequencing/methods , Brazil , Male , Female , Child , Intellectual Disability/genetics , Intellectual Disability/diagnosis , Cost-Benefit Analysis , Microarray Analysis/economics , Microarray Analysis/methods , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/diagnosis , Child, Preschool , Abnormalities, Multiple/genetics , Abnormalities, Multiple/diagnosis , Developing Countries , Adolescent , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/diagnosis , Genetic Testing/economics , Genetic Testing/methods
9.
Article in English | MEDLINE | ID: mdl-38765507

ABSTRACT

Endometriosis is a complex disease that affects 10-15% of women of reproductive age. Familial studies show that relatives of affected patients have a higher risk of developing the disease, implicating a genetic role for this disorder. Little is known about the impact of germline genomic copy number variant (CNV) polymorphisms on the heredity of the disease. In this study, we describe a rare CNV identified in two sisters with familial endometriosis, which contain genes that may increase the susceptibility and progression of this disease. We investigated the presence of CNVs from the endometrium and blood of the sisters with endometriosis and normal endometrium of five women as controls without the disease using array-CGH through the Agilent 2x400K platform. We excluded common CNVs that were present in the database of genomic variation. We identified, in both sisters, a rare CNV gain affecting 113kb at band 3q12.2 involving two candidate genes: ADGRG7 and TFG. The CNV gain was validated by qPCR. ADGRG7 is located at 3q12.2 and encodes a G protein-coupled receptor influencing the NF-kappaß pathway. TFG participates in chromosomal translocations associated with hematologic tumor and soft tissue sarcomas, and is also involved in the NF-kappa B pathway. The CNV gain in this family provides a new candidate genetic marker for future familial endometriosis studies. Additional longitudinal studies of affected families must confirm any associations between this rare CNV gain and genes involved in the NF-kappaß pathway in predisposition to endometriosis.


Subject(s)
DNA Copy Number Variations , Endometriosis , Humans , Endometriosis/genetics , Female , Adult , Chromosomes, Human, Pair 3/genetics , Genetic Predisposition to Disease , Polymorphism, Genetic
10.
Sci Rep ; 14(1): 12471, 2024 05 30.
Article in English | MEDLINE | ID: mdl-38816397

ABSTRACT

Breast cancer (BRCA) is a prevalent malignancy with the highest incidence among females. BRCA can be categorized into five intrinsic molecular subtypes (LumA, LumB, HER2, Basal, and Normal), each characterized by varying molecular and clinical features determined by the expression of intrinsic genes (PAM50). The Heat Shock Protein (HSP) family is composed of 95 genes evolutionary conservated, they have critical roles in proteostasis in both normal and cancerous processes. Many studies have linked HSP to the development and spread of cancer. They modulate the activity of multiple proteins expressed by oncogenes and anti-oncogenes through a range of interactions. In this study, we evaluate the mutational changes that HSP undergoes in BRCA mainly from the TCGA database. We observe that Copy Number Variations (CNV) are the more frequent events analyzed surpassing the occurrence of point mutations, indels, and translation start site mutations. The Basal subtype showcased the highest count of amplified CNV, including subtype-specific changes, whereas the Luminals tumors accumulated the greatest number of deletion CNV. Meanwhile, the HER2 subtype exhibited a comparatively lower frequency of CNV alterations when compared to the other subtypes. This study integrates CNV and expression data, finding associations between these two variables and the influence of CNV on the deregulation of HSP expression. To enhance the role of HSP as a risk predictor in BRCA, we succeeded in identifying CNV profiles as a prognostic marker. We included Artificial Intelligence to improve the clustering of patients, and we achieved a molecular CNV signature as a significant risk factor independent of known classic markers, including molecular subtypes PAM50. This research enhances the comprehension of HSP DNA alterations in BRCA and its relation with predicting the risk of affected individuals providing insights to develop guide personalized treatment strategies.


Subject(s)
Breast Neoplasms , DNA Copy Number Variations , Heat-Shock Proteins , Mutation , Humans , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Female , Heat-Shock Proteins/genetics , Gene Expression Regulation, Neoplastic , Biomarkers, Tumor/genetics
11.
J Med Genet ; 61(8): 769-776, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-38719348

ABSTRACT

BACKGROUND: Exploring the expression of X linked disorders like haemophilia A (HA) in females involves understanding the balance achieved through X chromosome inactivation (XCI). Skewed XCI (SXCI) may be involved in symptomatic HA carriers. We aimed to develop an approach for dissecting the specific cause of SXCI and verify its value in HA. METHODS: A family involving three females (two symptomatic with severe/moderate HA: I.2, the mother, and II.1, the daughter; one asymptomatic: II.2) and two related affected males (I.1, the father and I.3, the maternal uncle) was studied. The genetic analysis included F8 mutational screening, multiplex ligation-dependent probe amplification, SNP microarray, whole exome sequencing (WES) and Sanger sequencing. XCI patterns were assessed in ectoderm/endoderm and mesoderm-derived tissues using AR-based and RP2-based systems. RESULTS: The comprehensive family analysis identifies I.2 female patient as a heterozygous carrier of F8:p.(Ser1414Ter) excluding copy number variations. A consistent XCI pattern of 99.5% across various tissues was observed. A comprehensive filtering algorithm for WES data was designed, developed and applied to I.2. A Gly58Arg missense variant in VMA21 was revealed as the cause for SXCI.Each step of the variant filtering system takes advantage of publicly available genomic databases, non-SXCI controls and case-specific molecular data, and aligns with established concepts in the theoretical background of SXCI. CONCLUSION: This study acts as a proof of concept for our genomic filtering algorithm's clinical utility in analysing X linked disorders. Our findings clarify the molecular aspects of SXCI and improve genetic diagnostics and counselling for families with X linked diseases like HA.


Subject(s)
Hemophilia A , Pedigree , X Chromosome Inactivation , Humans , X Chromosome Inactivation/genetics , Female , Hemophilia A/genetics , Male , Algorithms , Exome Sequencing/methods , Factor VIII/genetics , Chromosomes, Human, X/genetics , Genomics/methods , DNA Copy Number Variations/genetics , Mutation/genetics , Adult
12.
Cell Oncol (Dordr) ; 47(4): 1441-1457, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38564163

ABSTRACT

PURPOSE: Managing high-grade endometrial cancer in Martinique poses significant challenges. The diversity of copy number alterations in high-grade endometrial tumors, often associated with a TP53 mutation, is a key factor complicating treatment. Due to the high incidence of high-grade tumors with poor prognosis, our study aimed to characterize the molecular signature of these tumors within a cohort of 25 high-grade endometrial cases. METHODS: We conducted a comprehensive pangenomic analysis to categorize the copy number alterations involved in these tumors. Whole-Exome Sequencing (WES) and Homologous Recombination (HR) analysis were performed. The alterations obtained from the WES were classified into various signatures using the Copy Number Signatures tool available in COSMIC. RESULTS: We identified several signatures that correlated with tumor stage and disctinct prognoses. These signatures all seem to be linked to replication stress, with CCNE1 amplification identified as the primary driver of oncogenesis in over 70% of tumors analyzed. CONCLUSION: The identification of CCNE1 amplification, which is currently being explored as a therapeutic target in clinical trials, suggests new treatment strategies for high-grade endometrial cancer. This finding holds particular significance for Martinique, where access to care is challenging.


Subject(s)
Cyclin E , DNA Copy Number Variations , Endometrial Neoplasms , Gene Amplification , Neoplasm Grading , Oncogene Proteins , Female , Endometrial Neoplasms/genetics , Endometrial Neoplasms/pathology , Humans , Cyclin E/genetics , Oncogene Proteins/genetics , DNA Copy Number Variations/genetics , Carcinogenesis/genetics , Middle Aged , Exome Sequencing , DNA Replication/genetics , Prognosis , Aged
13.
Clin Transl Oncol ; 26(10): 2701-2717, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38642258

ABSTRACT

BACKGROUND: Transmembrane protein 92 (TMEM92) has been implicated in the facilitation of tumor progression. Nevertheless, comprehensive analyses concerning the prognostic significance of TMEM92, as well as its role in immunological responses across diverse cancer types, remain to be elucidated. METHODS: In this study, data was sourced from a range of publicly accessible online platforms and databases, including TCGA, GTEx, UCSC Xena, CCLE, cBioPortal, HPA, TIMER2.0, GEPIA, CancerSEA, GDSC, exoRBase, and ImmuCellAI. We systematically analyzed the expression patterns of TMEM92 at both mRNA and protein levels across diverse human organs, tissues, extracellular vesicles (EVs), and cell lines associated with multiple cancer types. Subsequently, analyses were conducted to determine the relationship between TMEM92 and various parameters such as prognosis, DNA methylation, copy number variation (CNV), the tumor microenvironment (TME), immune cell infiltration, genes with immunological relevance, tumor mutational burden (TMB), microsatellite instability (MSI), mismatch repair (MMR), and half-maximal inhibitory concentration (IC50) values. RESULTS: In the present study, we observed a pronounced overexpression of TMEM92 across a majority of cancer types, which was concomitantly associated with a less favorable prognosis. A notable association emerged between TMEM92 expression and both DNA methylation and CNV. Furthermore, a pronounced relationship was discerned between TMEM92 expression, the TME, and the degree of immune cell infiltration. Intriguingly, while TMEM92 expression displayed a positive correlation with macrophage presence, it inversely correlated with the infiltration level of CD8 + T cells. Concurrently, significant associations were identified between TMEM92 and the major histocompatibility complex, TMB, MSI, and MMR. Results derived from Gene Set Enrichment Analysis and Gene Set Variation Analysis further substantiated the nexus of TMEM92 with both immune and metabolic pathways within the oncogenic context. CONCLUSIONS: These findings expanded the understanding of the roles of TMEM92 in tumorigenesis and progression and suggest that TMEM92 may have an immunoregulatory role in several malignancies.


Subject(s)
Membrane Proteins , Neoplasms , Tumor Microenvironment , Humans , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , DNA Copy Number Variations , DNA Methylation , Extracellular Vesicles/genetics , Extracellular Vesicles/metabolism , Gene Expression Regulation, Neoplastic , Lymphocytes, Tumor-Infiltrating/immunology , Membrane Proteins/genetics , Membrane Proteins/metabolism , Microsatellite Instability , Neoplasms/genetics , Neoplasms/immunology , Neoplasms/pathology , Neoplasms/metabolism , Prognosis , Tumor Microenvironment/immunology
14.
Mol Ecol ; 33(9): e17339, 2024 May.
Article in English | MEDLINE | ID: mdl-38556927

ABSTRACT

Copy number variation is a common contributor to phenotypic diversity, yet its involvement in ecological adaptation is not easily discerned. Instances of parallelly evolving populations of the same species in a similar environment marked by strong selective pressures present opportunities to study the role of copy number variants (CNVs) in adaptation. By identifying CNVs that repeatedly occur in multiple populations of the derived ecotype and are not (or are rarely) present in the populations of the ancestral ecotype, the association of such CNVs with adaptation to the novel environment can be inferred. We used this paradigm to identify CNVs associated with recurrent adaptation of the Mexican tetra (Astyanax mexicanus) to cave environment. Using a read-depth approach, we detected CNVs from previously re-sequenced genomes of 44 individuals belonging to two ancestral surfaces and three derived cave populations. We identified 102 genes and 292 genomic regions that repeatedly diverge in copy number between the two ecotypes and occupy 0.8% of the reference genome. Functional analysis revealed their association with processes previously recognized to be relevant for adaptation, such as vision, immunity, oxygen consumption, metabolism, and neural function and we propose that these variants have been selected for in the cave or surface waters. The majority of the ecotype-divergent CNVs are multiallelic and display copy number increases in cavefish compared to surface fish. Our findings suggest that multiallelic CNVs - including gene duplications - and divergence in copy number provide a fast route to produce novel phenotypes associated with adaptation to subterranean life.


Subject(s)
Caves , Characidae , DNA Copy Number Variations , DNA Copy Number Variations/genetics , Animals , Characidae/genetics , Genetics, Population , Adaptation, Physiological/genetics , Ecotype , Mexico
15.
Environ Mol Mutagen ; 65(3-4): 143-152, 2024.
Article in English | MEDLINE | ID: mdl-38523463

ABSTRACT

Cervical cancer is the fourth most commonly diagnosed cancer in women and is considered a preventable disease, as vaccination and screening programs effectively reduce its incidence and mortality rates. Disease physiopathology and malignant cell transformation is a complex process, but it is widely known that high-risk HPV (hrHPV) infection is a necessary risk factor for cancer development. Mitochondria, cell organelles with important bioenergetic and biosynthetic functions, are important for cell energy production, cell growth, and apoptosis. Mitochondrial DNA is a structure that is particularly susceptible to quantitative (mtDNA copy number variation) and qualitative (sequence variations) alterations that are associated with various types of cancer. Novel biomarkers with diagnostic and prognostic value in cervical cancer can be evaluated to provide higher specificity and complement hrHPV molecular testing, which is the most recommended method for primary screening. In accordance with this, this review aimed to assess mitochondrial alterations associated with cervical cancer in clinical cervicovaginal samples, in order to unravel their possible role as specific diagnostic and prognostic biomarkers for cervical malignancy, and also to guide the understanding of their involvement in carcinogenesis, HPV infection, and disease progression.


Subject(s)
DNA Copy Number Variations , DNA, Mitochondrial , Papillomavirus Infections , Uterine Cervical Neoplasms , Humans , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/virology , Uterine Cervical Neoplasms/pathology , DNA, Mitochondrial/genetics , Female , Papillomavirus Infections/complications , Papillomavirus Infections/genetics , Papillomavirus Infections/virology , Mitochondria/genetics , Mitochondria/metabolism , Biomarkers, Tumor/genetics , Prognosis
16.
Chromosome Res ; 32(2): 6, 2024 03 19.
Article in English | MEDLINE | ID: mdl-38504027

ABSTRACT

Structural variants (SVs) pose a challenge to detect and interpret, but their study provides novel biological insights and molecular diagnosis underlying rare diseases. The aim of this study was to resolve a 9p24 rearrangement segregating in a family through five generations with a congenital heart defect (congenital pulmonary and aortic valvular stenosis and pulmonary artery stenosis), by applying a combined genomic analysis. The analysis involved multiple techniques, including karyotype, chromosomal microarray analysis (CMA), FISH, genome sequencing (GS), RNA-seq, and optical genome mapping (OGM). A complex 9p24 SV was hinted at by CMA results, showing three interspersed duplicated segments. Combined GS and OGM analyses revealed that the 9p24 duplications constitute a complex SV, on which a set of breakpoints matches the boundaries of the CMA duplicated sequences. The proposed structure for this complex rearrangement implies three duplications associated with an inversion of ~ 2 Mb region on chromosome 9 and a SINE element insertion at the more distal breakpoint. Interestingly, this genomic structure of rearrangement forms a chimeric transcript of the KANK1/DMRT1 loci, which was confirmed by both RNA-seq and Sanger sequencing on blood samples from 9p24 rearrangement carriers. Altogether with breakpoint amplification and FISH analysis, this combined approach allowed a deep characterization of this complex rearrangement. Although the genotype-phenotype correlation remains elusive from the molecular mechanism point of view, this study identified a large genomic rearrangement at 9p24 segregating with a familial congenital heart defect, revealing a genetic biomarker that was successfully applied for embryo selection, changing the reproductive perspective of affected individuals.


Subject(s)
Chromosomes , DNA Copy Number Variations , Humans , Chromosome Inversion , Base Sequence , Germ Cells , Cytoskeletal Proteins/genetics , Adaptor Proteins, Signal Transducing/genetics
17.
Obesity (Silver Spring) ; 32(5): 989-998, 2024 05.
Article in English | MEDLINE | ID: mdl-38454311

ABSTRACT

OBJECTIVE: The objective of this study was to examine associations between umbilical cord mitochondrial DNA copy number (mtDNAcn) and adiposity across childhood. METHODS: In a prospective birth cohort of Dominican and African American children from New York City, New York (1998-2006), mtDNAcn was measured in cord blood. Children (N = 336) were evaluated for their height, weight, and bioimpedance at age 5, 7, 9, and 11 years. We used linear mixed-effects models to assess associations of mtDNAcn tertiles in cord blood with child BMI, BMI z scores, fat mass index, and body fat percentage. Latent class growth models and interactions between mtDNAcn and child age or child age2 were used to assess associations between age and adiposity trajectories. RESULTS: BMI was, on average, 1.5 kg/m2 higher (95% CI: 0.58, 2.5) in individuals with mtDNAcn in the low- compared with the middle-mtDNAcn tertile. Results were similar for BMI z score, fat mass index, and body fat percentage. Moreover, children in the low-mtDNAcn group had increased odds of being in an "increasing" or "high-stable" adiposity class. CONCLUSIONS: Lower mtDNAcn at birth may predict greater childhood adiposity, highlighting the potential key role of perinatal mitochondrial function in adiposity during development.


Subject(s)
Adiposity , Body Mass Index , DNA Copy Number Variations , DNA, Mitochondrial , Fetal Blood , Pediatric Obesity , Humans , DNA, Mitochondrial/blood , DNA, Mitochondrial/genetics , Fetal Blood/metabolism , Fetal Blood/chemistry , Adiposity/genetics , Female , Male , Child , Child, Preschool , Prospective Studies , Pediatric Obesity/genetics , Pediatric Obesity/blood , New York City , Black or African American/genetics , Birth Cohort , Dominican Republic
18.
Head Neck ; 46(5): 985-1000, 2024 05.
Article in English | MEDLINE | ID: mdl-38482546

ABSTRACT

OBJECTIVE: This study used array comparative genomic hybridization to assess copy number alterations (CNAs) involving miRNA genes in pleomorphic adenoma (PA), recurrent pleomorphic adenoma (RPA), residual PA, and carcinoma ex pleomorphic adenoma (CXPA). MATERIALS AND METHODS: We analyzed 13 PA, 4 RPA, 29 CXPA, and 14 residual PA using Nexus Copy Number Discovery software. The miRNAs genes affected by CNAs were evaluated based on their expression patterns and subjected to pathway enrichment analysis. RESULTS: Across the groups, we found 216 CNAs affecting 2261 miRNA genes, with 117 in PA, 59 in RPA, 846 in residual PA, and 2555 in CXPA. The chromosome 8 showed higher involvement in altered miRNAs in PAs and CXPA patients. Six miRNA genes were shared among all groups. Additionally, miR-21, miR-455-3p, miR-140, miR-320a, miR-383, miR-598, and miR-486 were prominent CNAs found and is implicated in carcinogenesis of several malignant tumors. These miRNAs regulate critical signaling pathways such as aerobic glycolysis, fatty acid biosynthesis, and cancer-related pathways. CONCLUSION: This study was the first to explore CNAs in miRNA-encoding genes in the PA-CXPA sequence. The findings suggest the involvement of numerous miRNA genes in CXPA development and progression by regulating oncogenic signaling pathways.


Subject(s)
Adenocarcinoma , Adenoma, Pleomorphic , MicroRNAs , Salivary Gland Neoplasms , Humans , Adenoma, Pleomorphic/genetics , Adenoma, Pleomorphic/pathology , DNA Copy Number Variations , Salivary Gland Neoplasms/pathology , MicroRNAs/genetics , Comparative Genomic Hybridization , Cell Transformation, Neoplastic/pathology , Adenocarcinoma/pathology
19.
Sci Rep ; 14(1): 3762, 2024 02 14.
Article in English | MEDLINE | ID: mdl-38355898

ABSTRACT

Chromosomal microarray (CMA) is the reference in evaluation of copy number variations (CNVs) in individuals with neurodevelopmental disorders (NDDs), such as intellectual disability (ID) and/or autism spectrum disorder (ASD), which affect around 3-4% of the world's population. Modern platforms for CMA, also include probes for single nucleotide polymorphisms (SNPs) that detect homozygous regions in the genome, such as long contiguous stretches of homozygosity (LCSH). These regions result from complete or segmental chromosomal homozygosis and may be indicative of uniparental disomy (UPD), inbreeding, population characteristics, as well as replicative DNA repair events. In this retrospective study, we analyzed CMA reading files requested by geneticists and neurologists for diagnostic purposes along with available clinical data. Our objectives were interpreting CNVs and assess the frequencies and implications of LCSH detected by Affymetrix CytoScan HD (41%) or 750K (59%) platforms in 1012 patients from the south of Brazil. The patients were mainly children with NDDs and/or congenital anomalies (CAs). A total of 206 CNVs, comprising 132 deletions and 74 duplications, interpreted as pathogenic, were found in 17% of the patients in the cohort and across all chromosomes. Additionally, 12% presented rare variants of uncertain clinical significance, including LPCNVs, as the only clinically relevant CNV. Within the realm of NDDs, ASD carries a particular importance, owing to its escalating prevalence and its growing repercussions for individuals, families, and communities. ASD was one clinical phenotype, if not the main reason for referral to testing, for about one-third of the cohort, and these patients were further analyzed as a sub-cohort. Considering only the patients with ASD, the diagnostic rate was 10%, within the range reported in the literature (8-21%). It was higher (16%) when associated with dysmorphic features and lower (7%) for "isolated" ASD (without ID and without dysmorphic features). In 953 CMAs of the whole cohort, LCSH (≥ 3 Mbp) were analyzed not only for their potential pathogenic significance but were also explored to identify common LCSH in the South Brazilians population. CMA revealed at least one LCSH in 91% of the patients. For about 11.5% of patients, the LCSH suggested consanguinity from the first to the fifth degree, with a greater probability of clinical impact, and in 2.8%, they revealed a putative UPD. LCSH found at a frequency of 5% or more were considered common LCSH in the general population, allowing us to delineate 10 regions as potentially representing ancestral haplotypes of neglectable clinical significance. The main referrals for CMA were developmental delay (56%), ID (33%), ASD (33%) and syndromic features (56%). Some phenotypes in this population may be predictive of a higher probability of indicating a carrier of a pathogenic CNV. Here, we present the largest report of CMA data in a cohort with NDDs and/or CAs from the South of Brazil. We characterize the rare CNVs found along with the main phenotypes presented by each patient and show the importance and usefulness of LCSH interpretation in CMA results that incorporate SNPs, as well as we illustrate the value of CMA to investigate CNV in ASD.


Subject(s)
Autism Spectrum Disorder , Intellectual Disability , Neurodevelopmental Disorders , South American People , Child , Humans , Autism Spectrum Disorder/diagnosis , Autism Spectrum Disorder/genetics , Cohort Studies , Retrospective Studies , Brazil/epidemiology , DNA Copy Number Variations/genetics , Neurodevelopmental Disorders/diagnosis , Neurodevelopmental Disorders/genetics , Intellectual Disability/genetics , Intellectual Disability/diagnosis , Uniparental Disomy , Chromosomes
20.
Clin Transl Oncol ; 26(6): 1508-1518, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38310203

ABSTRACT

PURPOSE: We investigated the impact of anthracycline-based chemotherapy on methylation status of RB1 gene in peripheral blood leukocytes together with parameters of oxidative stress and inflammation in sarcoma patients. PATIENTS/METHODS: Blood samples were collected from 51 consecutive newly diagnosed sarcoma patients admitted to University Hospital Center Zagreb (Zagreb, Croatia) for first-line chemotherapy before the first cycle and post-chemotherapy. Methylation and copy number variation (CNV) of leukocyte RB1 gene were assessed using MS-MLPA probes. In addition, in blood samples, parameters of oxidative stress (ROS, MDA, SOD, and GSH) and inflammation (CRP, WBC, and NBC) were followed. RESULTS: In pre-chemotherapy samples, no CNVs and aberrant methylation of CpG106 promoter region of RB1 gene were detected; however, one patient had hypermethylation (by approximately 10%) of imprinted locus CpG85 in intron 2 of RB1 gene. In addition, a very good correlation of the tumor burden and CRP and tumor burden and GSH was found. The anthracycline-based chemotherapy reverts methylation of RB1 gene-imprinted locus CpG85 to normal level. Moreover, inflammation and oxidative stress parameters such as CRP, WBC, ROS, and MDA were significantly decreased in post-chemotherapy samples. CONCLUSION: This single-centered study on a cohort of consecutive sarcoma patients indicates that sarcoma patients can have aberrant germline DNA methylation and confirms the relationship of tumor burden with inflammation and oxidative stress. The applied chemotherapy protocols reverted RB1 gene methylation to normal level and decreased the level of inflammation and oxidative damage, thus indicating chemotherapy benefit to the patient's health status.


Subject(s)
Anthracyclines , DNA Methylation , Inflammation , Leukocytes , Oxidative Stress , Retinoblastoma Binding Proteins , Sarcoma , Adolescent , Adult , Aged , Female , Humans , Male , Middle Aged , Young Adult , Anthracyclines/therapeutic use , DNA Copy Number Variations , Inflammation/genetics , Leukocytes/metabolism , Oxidative Stress/drug effects , Retinoblastoma Binding Proteins/drug effects , Retinoblastoma Binding Proteins/genetics , Sarcoma/drug therapy , Sarcoma/genetics , Sarcoma/pathology , Ubiquitin-Protein Ligases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL