Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.970
Filter
1.
Braz J Med Biol Res ; 57: e13278, 2024.
Article in English | MEDLINE | ID: mdl-39383379

ABSTRACT

Despite the widespread use of R-CHOP therapy in diffuse large B-cell lymphoma (DLBCL), the therapeutic efficacy for this disease remains suboptimal, primarily due to the heterogeneity of refractory and/or relapsed diseases. To address this challenge, optimization of DLBCL treatment regimens has focused on the strategy of combining an additional drug "X" with R-CHOP to enhance efficacy. However, the failure of R-CHOP combined with the BTK inhibitor ibrutinib in treating ABC-type DLBCL patients has raised significant concerns regarding ibrutinib resistance. While some studies suggest that venetoclax may synergize with ibrutinib to kill ibrutinib-resistant cells, the underlying mechanisms remain unclear. Our study aimed to validate the enhanced tumor-suppressive effect of combining ibrutinib with venetoclax against ibrutinib-resistant cells and elucidate its potential mechanisms. Our experimental results demonstrated that ibrutinib-resistant cells exhibited significant cytotoxicity to the combination therapy of ibrutinib and venetoclax, inducing cell apoptosis through activation of the mitochondrial pathway and inhibition of aerobic respiration. Furthermore, we validated the inhibitory effect of this combination therapy on tumor growth in in vivo models. Therefore, our study proposes that the combination therapy of ibrutinib and venetoclax is a promising treatment strategy that can be applied in clinical practice for ABC-type DLBCL, offering a new solution to overcome the urgent challenge of ibrutinib resistance.


Subject(s)
Adenine , Apoptosis , Bridged Bicyclo Compounds, Heterocyclic , Drug Resistance, Neoplasm , Drug Synergism , Lymphoma, Large B-Cell, Diffuse , Piperidines , Pyrazoles , Pyrimidines , Sulfonamides , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Bridged Bicyclo Compounds, Heterocyclic/administration & dosage , Sulfonamides/pharmacology , Sulfonamides/administration & dosage , Sulfonamides/therapeutic use , Lymphoma, Large B-Cell, Diffuse/drug therapy , Lymphoma, Large B-Cell, Diffuse/pathology , Adenine/analogs & derivatives , Adenine/pharmacology , Adenine/therapeutic use , Humans , Piperidines/pharmacology , Drug Resistance, Neoplasm/drug effects , Cell Line, Tumor , Apoptosis/drug effects , Pyrimidines/pharmacology , Pyrimidines/therapeutic use , Pyrimidines/administration & dosage , Pyrazoles/pharmacology , Animals , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Mice , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use
2.
Int J Biol Macromol ; 280(Pt 4): 136386, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39378921

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) remains a highly malignant cancer with a grim prognosis due to its early metastasis and resistance to current chemotherapies, such as Gemcitabine (GEM). We have previously demonstrated that cAMP exclusion by MRP4 is critical for PDAC cell proliferation, establishing this transporter as a promising prognostic marker and therapeutic target. In search for novel therapeutic options to improve GEM efficacy, we conducted a drug repositioning screening to identify potential inhibitors of cAMP transport by MRP4. Several non-steroidal anti-inflammatory drugs (NSAIDs) can inhibit the transport of certain MRP4 substrates. In this study, we assessed the efficacy of sixteen NSAIDs in inhibiting cAMP transport mediated by MRP4, identifying seven potent inhibitors based on their IC50 values. The most potent inhibitors were further tested for their effect on cell proliferation and migration. Flurbiprofen emerged as the most potent inhibitor of both MRP4-mediated cAMP transport and cell proliferation. Overexpression of MRP4 in BxPC-3 cells significantly increased GEM resistance, and co-administration of flurbiprofen with GEM markedly enhanced the latter's potency inhibiting PDAC cells proliferation. These findings position flurbiprofen as a potent inhibitor of cAMP transport by MRP4 and a promising adjunctive therapy to enhance GEM effectiveness in PDAC treatment.


Subject(s)
Carcinoma, Pancreatic Ductal , Cell Movement , Cell Proliferation , Cyclic AMP , Deoxycytidine , Flurbiprofen , Gemcitabine , Multidrug Resistance-Associated Proteins , Humans , Deoxycytidine/analogs & derivatives , Deoxycytidine/pharmacology , Multidrug Resistance-Associated Proteins/metabolism , Cyclic AMP/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Movement/drug effects , Flurbiprofen/pharmacology , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/pathology , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Drug Resistance, Neoplasm/drug effects , Biological Transport/drug effects , Drug Synergism , Anti-Inflammatory Agents, Non-Steroidal/pharmacology
3.
J Med Microbiol ; 73(9)2024 Sep.
Article in English | MEDLINE | ID: mdl-39292222

ABSTRACT

Introduction. Multidrug-resistant infections present a critical public health due to scarce treatment options and high mortality. Ocimum gratissimum L. essential oil (O.geo) is a natural resource rich in eugenol known for its antimicrobial activity.Hypothesis/Gap Statement. O.geo may exert effective antimicrobial activity against polymyxin-resistant Klebsiella pneumoniae and, when combined with Polymyxin B (PMB), may exhibit a synergistic effect, enhancing treatment efficacy and reducing antimicrobial resistance.Aim. This study aims to investigate the antimicrobial activity of O.geo against polymyxin-resistant K. pneumoniae using in vitro tests and an in vivo Caenorhabditis elegans model.Methodology. The O.geo was obtained by hydrodistillation followed by gas chromatography. The MIC and antibiofilm activity were determined using broth microdilution. Checkerboard and time-kill assays evaluated the combination of O.geo and polymyxin B (PMB), whereas a protein leakage assay verified its action.Results. Eugenol (39.67%) was a major constituent identified. The MIC of the O.geo alone ranged from 128 to 512 µg ml-1. The fractional inhibitory concentration index (0.28) and time-kill assay showed a synergism. In addition, O.geo and PMB inhibited biofilm formation and increased protein leakage in the plasma membrane. The treatment was tested in vivo using a Caenorhabditis elegans model, and significantly increased survival without toxicity was observed.Conclusion. O.geo could be used as a potential therapeutic alternative to combat infections caused by multidrug-resistant bacteria, especially in combination with PMB.


Subject(s)
Anti-Bacterial Agents , Biofilms , Caenorhabditis elegans , Drug Synergism , Klebsiella pneumoniae , Microbial Sensitivity Tests , Ocimum , Oils, Volatile , Polymyxin B , Klebsiella pneumoniae/drug effects , Caenorhabditis elegans/drug effects , Animals , Anti-Bacterial Agents/pharmacology , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Ocimum/chemistry , Biofilms/drug effects , Polymyxin B/pharmacology , Klebsiella Infections/drug therapy , Klebsiella Infections/microbiology , Drug Resistance, Bacterial , Polymyxins/pharmacology , Drug Resistance, Multiple, Bacterial
4.
Molecules ; 29(18)2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39339412

ABSTRACT

Candida sp. infections are a threat to global health, with high morbidity and mortality rates due to drug resistance, especially in immunocompromised people. For this reason, the search for new alternatives is urgent, and in recent years, a combined therapy with natural compounds has been proposed. Considering the biological potential of isoespintanol (ISO) and continuing its study, the objective of this research was to assess the effect of ISO in combination with the antifungals fluconazole (FLZ), amphotericin B (AFB) and caspofungin (CASP) against clinical isolates of C. tropicalis and to evaluate the cytotoxic effect of this compound in the acute phase (days 0 and 14) and chronic phase (days 0, 14, 28, 42, 56, 70 and 84) in female mice (Mus musculus) of the Balb/c lineage. The results show that ISO can potentiate the effect of FLZ, AFB and CASP, showing synergism with these antifungals. An evaluation of the mice via direct observation showed no behavioral changes or variations in weight during treatment; furthermore, an analysis of the cytokines IFN-γ and TNF in plasma, peritoneal cavity lavage (PCL) and bronchoalveolar lavage (BAL) indicated that there was no inflammation process. In addition, histopathological studies of the lungs, liver and kidneys showed no signs of toxicity caused by ISO. This was consistent with an analysis of oxaloacetic transaminases (GOT) and pyruvic transaminases (GPT), which remained in the standard range. These findings indicate that ISO does not have a cytotoxic effect at the doses evaluated, placing it as a monoterpene of interest in the search for compounds with pharmacological potential.


Subject(s)
Antifungal Agents , Drug Synergism , Mice, Inbred BALB C , Animals , Antifungal Agents/pharmacology , Mice , Female , Monoterpenes/pharmacology , Microbial Sensitivity Tests , Amphotericin B/pharmacology , Amphotericin B/toxicity , Candidiasis/drug therapy , Candida tropicalis/drug effects , Fluconazole/pharmacology , Cytokines/metabolism , Cytokines/blood , Caspofungin/pharmacology
5.
Nutrients ; 16(18)2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39339648

ABSTRACT

Colorectal cancer (CRC) is one of the top 10 most common cancers worldwide and caused approximately 10 million deaths in 2022. CRC mortality has increased by 10% since 2020 and 52.000 deaths will occur in 2024, highlighting the limitations of current treatments due to ineffectiveness, toxicity, or non-adherence. The widely used chemotherapeutic agent, 5-fluorouracil (5-FU), is associated with several adverse effects, including renal, cardiac, and hepatic toxicity; mucositis; and resistance. Taurine (TAU), an essential ß-amino acid with potent antioxidant, antimutagenic, and anti-inflammatory properties, has demonstrated protective effects against tissue toxicity from chemotherapeutic agents like doxorubicin and cisplatin. Taurine deficiency is linked to aging and cancers such as breast and colon cancer. This study hypothesized that TAU may mitigate the adverse effects of 5-fluorouracil (5-FU). Carcinogenesis was chemically induced in rats using 1,2-dimethylhydrazine (DMH). Following five months of cancer progression, taurine (100 mg/kg) was administered orally for 8 days, and colon tissues were analyzed. The results showed 80% of adenocarcinoma (AC) in DMH-induced control animals. Notably, the efficacy of 5-FU showed 70% AC and TAU 50% while, in the 5-FU + TAU group, no adenocarcinoma was observed. No differences were observed in the inflammatory infiltrate or the expression of genes such as K-ras, p53, and Ki-67 among the cancer-induced groups whereas APC/ß-catenin expression was increased in the 5FU + TAU-treated group. The mitotic index and dysplasia were increased in the induced 5-FU group and when associated with TAU, the levels returned to normal. These data suggest that 5-FU exhibits a synergic anticancer effect when combined with taurine.


Subject(s)
Colonic Neoplasms , Drug Synergism , Fluorouracil , Taurine , Taurine/pharmacology , Animals , Fluorouracil/pharmacology , Colonic Neoplasms/drug therapy , Colonic Neoplasms/metabolism , Rats , Male , Disease Models, Animal , Adenocarcinoma/drug therapy , 1,2-Dimethylhydrazine , Rats, Wistar , Antineoplastic Combined Chemotherapy Protocols/pharmacology
6.
Curr Microbiol ; 81(11): 371, 2024 Sep 22.
Article in English | MEDLINE | ID: mdl-39307852

ABSTRACT

We investigated the in vitro antibacterial activity of the combination rifampicin (RIF) + polymyxin B (PB) against extensively drug-resistant (XDR) Klebsiella pneumoniae isolates. We evaluated clinical isolates co-resistant to PB (non-mcr carriers; eptB, mgrB, pmr operon, and ramA mutations) and to carbapenems (KPC, CTX-M, and SHV producers; including KPC + NDM co-producer), belonging to sequence types (ST) ST16, ST11, ST258, ST340, and ST437. We used the standard broth microdilution method to determine RIF and PB minimum inhibitory concentration (MIC) and the checkerboard assay to evaluate the fractional inhibitory concentration index (FICI) of RIF + PB as well as to investigate the lowest concentrations of RIF and PB that combined (RIF + PB) had antibacterial activity. Time-kill assays were performed to evaluate the synergistic effect of the combination against selected isolates. PB MIC (32-256 µg/mL) and RIF MIC (32-1024 µg/mL) were determined. FICI (<0.5) indicated a synergistic effect for all isolates evaluated for the combination RIF + PB. Our results showed that low concentrations of PB (PB minimal effective antibiotic concentration [MEAC], ≤0.25-1 µg/mL) favor RIF (≤0.03-0.125 µg/mL) to reach the bacterial target and exert antibacterial activity against PB-resistant isolates, and the synergistic effect was also observed in time-kill results. The combination of RIF + PB showed in vitro antibacterial activity against XDR, carbapenem-, and PB-resistant K. pneumoniae and could be further studied as a potential combination therapy, with cost-effectiveness and promising efficacy.


Subject(s)
Anti-Bacterial Agents , Carbapenems , Drug Resistance, Multiple, Bacterial , Drug Synergism , Klebsiella pneumoniae , Microbial Sensitivity Tests , Polymyxin B , Rifampin , Polymyxin B/pharmacology , Rifampin/pharmacology , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/genetics , Anti-Bacterial Agents/pharmacology , Humans , Carbapenems/pharmacology , Klebsiella Infections/microbiology , Klebsiella Infections/drug therapy
7.
Future Microbiol ; 19(17): 1475-1488, 2024.
Article in English | MEDLINE | ID: mdl-39268668

ABSTRACT

Aim: To search for potential inhibitors to homoserine dehydrogenase (HSD) in Paracoccidioides brasiliensis the causative agent of paracoccidioidomycosis, an infection with a high mortality rate in Brazil.Materials & methods: The enzyme was modeled and used in the virtual screening of the compounds. The library was first screened by the Autodock, in which 66 molecules were better ranked than substrate, and then, also evaluated by the Molegro and Gold programs.Results: The HS23 and HS87 molecules were selected in common by the three programs, and ADME/Tox evaluation indicates they are not toxic. The molecular dynamics of PbHSD bonded to ligands showed stable complexes until 50 ns. To validate the results, compounds were purchased for assays of minimum inhibitory concentration (MIC), minimum fungicidal concentration (MFC), synergic profile with Amphotericin B (AmB) and cytotoxicity. The two molecules presented MIC of 32 µg/ml and MFC of 64 µg/ml against the P. brasiliensis (strain Pb18). They also showed synergistic activity with AmB and a lack of toxicity against Hela and Vero cell lines.Conclusion: These results suggest that the HS23 and HS87 are promising candidates as PbHSD inhibitors and may be used as hits for the development of new drugs against paracoccidioidomycosis.


[Box: see text].


Subject(s)
Antifungal Agents , Enzyme Inhibitors , Homoserine Dehydrogenase , Microbial Sensitivity Tests , Paracoccidioides , Paracoccidioides/drug effects , Paracoccidioides/enzymology , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Humans , Homoserine Dehydrogenase/antagonists & inhibitors , Homoserine Dehydrogenase/metabolism , Homoserine Dehydrogenase/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Animals , Vero Cells , Chlorocebus aethiops , Molecular Docking Simulation , Paracoccidioidomycosis/drug therapy , Paracoccidioidomycosis/microbiology , HeLa Cells , Brazil , Amphotericin B/pharmacology , Molecular Dynamics Simulation , Computer Simulation , Drug Synergism , Fungal Proteins/antagonists & inhibitors , Fungal Proteins/metabolism , Fungal Proteins/chemistry
8.
Future Med Chem ; 16(18): 1839-1852, 2024.
Article in English | MEDLINE | ID: mdl-39235081

ABSTRACT

Aim: This work aimed to synthesize a new pyrimidine PYB01 with potential application against antimicrobial resistance.Materials & methods: PYB01 was synthesized through condensation reaction between 3a and 3b. The antimicrobial evaluation was carried out using the microdilution method in Mueller-Hinton Agar and in silico predictions using different software.Results: PYB01 has moderate antibiotic activity and high capacity to efficiently modulate antibiotic resistance in Staphylococcus aureus. In silico evaluations demonstrated that PYB01 is probably an allosteric inhibitor of Protein Binding Penicilin 2a and modulates the action of oxacillin by decreasing the minimum inhibitory concentration by 64-times. PYB01 demonstrate a good pharmacokinetic profile and toxicological.Conclusion: PYB01 has great potential to go further in investigating its use against antimicrobial resistance.


[Box: see text].


Subject(s)
Anti-Bacterial Agents , Methicillin-Resistant Staphylococcus aureus , Microbial Sensitivity Tests , Oxacillin , Pyrimidines , Methicillin-Resistant Staphylococcus aureus/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Pyrimidines/chemistry , Pyrimidines/pharmacology , Pyrimidines/chemical synthesis , Oxacillin/pharmacology , Molecular Structure , Drug Synergism , Animals , Humans
9.
Antimicrob Agents Chemother ; 68(10): e0093024, 2024 Oct 08.
Article in English | MEDLINE | ID: mdl-39254296

ABSTRACT

Antibiotic combination therapy is a promising approach to address the urgent need for novel treatment options for infections caused by carbapenem-polymyxin-resistant Klebsiella pneumoniae (CPR-Kp). The present study aimed to investigate the synergistic potential of four cephalosporins in combination with polymyxin B (PMB). A checkerboard assay was performed to evaluate the synergistic effects of cephalexin (CLX), cefixime, cefotaxime (CTX), and cefmenoxime (CMX) in combination with PMB. Subsequently, experiments evaluating the use of CTX or CMX in combination with PMB (CTX-PMB or CMX-PMB, respectively), including growth curve and SynergyFinder analysis, antibiofilm activity assays, cell membrane integrity assays, and scanning electron microscopy, were performed. Safety assessments were also conducted, including hemolysis and toxicity evaluations, using Caenorhabditis elegans. Furthermore, an in vivo model in C. elegans was adopted to assess the treatment efficacy against CPR-Kp infections. CTX-PMB and CMX-PMB exhibited low fractional inhibitory concentration indexes ranging from 0.19 to 0.50 and from 0.25 to 1.5, respectively, and zero interaction potency scores of 37.484 and 15.076, respectively. The two combinations significantly reduced growth and biofilm formation in CPR-Kp. Neither CTX-PMB nor CMX-PMB compromised bacterial cell integrity. Safety assessments revealed a low hemolysis percentage and high survival rates in the C. elegans toxicity evaluations. The in vivo model revealed that the CTX-PMB and CMX-PMB treatments improved the survival rates of C. elegans. The synergistic effects of the CTX-PMB and CMX-PMB combinations, both in vitro and in vivo, indicate that these antibiotic pairings could represent effective therapeutic options for infections caused by CPR-Kp.


Subject(s)
Anti-Bacterial Agents , Biofilms , Caenorhabditis elegans , Cephalosporins , Drug Synergism , Klebsiella pneumoniae , Microbial Sensitivity Tests , Polymyxin B , Polymyxin B/pharmacology , Polymyxin B/therapeutic use , Klebsiella pneumoniae/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Animals , Caenorhabditis elegans/drug effects , Biofilms/drug effects , Cephalosporins/pharmacology , Cephalosporins/therapeutic use , Carbapenems/pharmacology , Carbapenems/therapeutic use , Klebsiella Infections/drug therapy , Klebsiella Infections/microbiology , Drug Resistance, Multiple, Bacterial/drug effects , Drug Therapy, Combination
10.
Future Microbiol ; 19(17): 1445-1454, 2024.
Article in English | MEDLINE | ID: mdl-39258398

ABSTRACT

Aim: Polymyxin B (PMB) is one of the few therapeutic options for treating infections caused by carbapenem-resistant Gram-negative bacteria (CR-GNB). However, the emergence of PMB-resistant CR-GNB strains has prompted the exploration of antibiotic adjuvants as potential therapeutic avenues. Thus, this study evaluates the potential of 3,5-dinitrobenzoic acid derivatives (DNH01, DNH11, DNH13 and DNH20) and isoniazid-N-acylhydrazones (INZ1-7, INZ9 and INZ11) as adjuvants to enhance PMB efficacy against CR-GNB.Materials & methods: MIC, MBC and drug combination assays were conducted using multidrug-resistant clinical isolates of Enterobacterales and Acinetobacter baumannii. In addition, the effects of PMB and PMB + DNH derivatives were assessed through flow cytometry and scanning electron microscopy (SEM).Results: DNH01, DNH11 and DNH20, unlike the INH-acylhydrazones, significantly restored PMB activity (MIC ≤ 2 µg/ml) in 80% of the tested isolates. Flow cytometry and SEM assays confirmed that DNH derivatives rescued the activity of PMB, yielding results comparable to those expected for PMB alone but at 256-fold lower concentrations.Conclusion: These findings suggest DNH derivatives hold substantial promise as PMB adjuvants to combat PMB-resistant CR-GNB infections.


[Box: see text].


Subject(s)
Anti-Bacterial Agents , Carbapenems , Gram-Negative Bacteria , Microbial Sensitivity Tests , Polymyxin B , Polymyxin B/pharmacology , Anti-Bacterial Agents/pharmacology , Gram-Negative Bacteria/drug effects , Carbapenems/pharmacology , Humans , Acinetobacter baumannii/drug effects , Drug Resistance, Multiple, Bacterial/drug effects , Adjuvants, Pharmaceutic/pharmacology , Gram-Negative Bacterial Infections/drug therapy , Gram-Negative Bacterial Infections/microbiology , Drug Synergism
11.
Future Microbiol ; 19(15): 1309-1320, 2024.
Article in English | MEDLINE | ID: mdl-39101446

ABSTRACT

Aim: Evaluate the anticandidal effect of Croton heliotropiifolius Kunth essential oil and its interaction with azoles and N-acetylcysteine (NAC) against planktonic cells and biofilms.Materials & methods: Broth microdilution and checkerboard methods were used to evaluate the individual and combined activity with fluconazole and itraconazole (ITRA). The antibiofilm effect of the oil was assessed in 96-well plates alone and combined with ITRA and NAC, and cytotoxicity determined by MTT.Results: The oil inhibited all Candida species growth. The activity was enhanced when associated with ITRA and NAC for planktonic cells and biofilms in formation. The effective concentrations were lower than the toxic ones to V79 cells.Conclusion: C. heliotropiifolius Kunth essential oil is an anticandidal alternative, and can be associated with ITRA and NAC.


Candida is a type of fungus that can cause disease in people. In recent years, the number of available drugs to treat this disease have declined. It is important to search for new drugs. Plants are often used to improve health, so we tested the essential oil of a plant called Croton heliotropiifolius to see if it could kill the fungus. We found that the essential oil could kill the fungus, and could be used with other drugs to improve their effects.


Subject(s)
Acetylcysteine , Antifungal Agents , Biofilms , Candida , Croton , Itraconazole , Microbial Sensitivity Tests , Oils, Volatile , Croton/chemistry , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Itraconazole/pharmacology , Antifungal Agents/pharmacology , Acetylcysteine/pharmacology , Biofilms/drug effects , Candida/drug effects , Drug Synergism , Animals , Cell Line , Fluconazole/pharmacology , Cricetinae
12.
Arch Microbiol ; 206(9): 368, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39107625

ABSTRACT

This study investigated crotamine (CTA), a peptide derived from the venom of the South American rattlesnake Crotalus durissus terrificus, known for its exceptional cell penetration potential. The objective was to explore the antibacterial and antifungal activity of CTA, its ability to inhibit efflux pumps and evaluate the effectiveness of its pharmacological combination with antibiotics and antifungals. In microbiological assays, CTA in combination with antibiotics was tested against strains of S. aureus and the inhibition of NorA, Tet(K) and MepA efflux pumps was also evaluated. CTA alone did not present clinically relevant direct antibacterial action, presenting MIC > 209.7 µM against strains S. aureus 1199B, IS-58, K2068. The standard efflux pump inhibitor CCCP showed significant effects in all negative relationships to assay reproducibility. Against the S. aureus 1199B strain, CTA (20.5 µM) associated with norfloxacin diluted 10 × (320.67 µM) showed a potentiating effect, in relation to the control. Against the S. aureus IS-58 strain, the CTA associated with tetracycline did not show a significant combinatorial effect, either with 2304 or 230.4 µM tetracycline. CTA at a concentration of 2.05 µM associated with ciprofloxacin at a concentration of 309.4 µM showed a significant potentiating effect. In association with EtBr, CTA at concentrations of 2.05 and 20.5 µM potentiated the effect in all strains tested, reducing the prevention of NorA, Tet(K) and MepA efflux pumps. In the C. albicans strain, a potentiating effect of fluconazole (334.3 µM) was observed when combined with CTA (2.05 µM). Against the C. tropicalis strain, a significant effect was also observed in the association of fluconazole 334.3 µM, where CTA 2.05 µM considerably reduced fungal growth and decreased the potentiation of fluconazole. Against the C. krusei strain, no significant potentiating effect of fluconazole was obtained by CTA. Our results indicate that CTA in pharmacological combination potentiates the effects of antibiotics and antifungal. This represents a new and promising antimicrobial strategy for treating a wide variety of infections.


Subject(s)
Anti-Bacterial Agents , Antifungal Agents , Crotalid Venoms , Crotalus , Microbial Sensitivity Tests , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Anti-Bacterial Agents/pharmacology , Crotalid Venoms/pharmacology , Animals , Staphylococcus aureus/drug effects , Drug Synergism , Candida albicans/drug effects , Venomous Snakes
13.
Braz J Med Biol Res ; 57: e13679, 2024.
Article in English | MEDLINE | ID: mdl-39166605

ABSTRACT

The objective of this study was to explore the effects and mechanisms of the combination of isobavachalcone (IBC) and doxorubicin (DOX) on the progression of anaplastic thyroid cancer (ATC). Cell viability of 8505C and CAL62 cells was observed by CCK-8 assay. Kits were used to detect the presence of reactive oxygen species (ROS), glutathione (GSH), malondialdehyde (MDA), and cellular iron. Protein expression of solute carrier family 7 member 11 (SLC7A11) and glutathione peroxidase 4 (GPX4) was detected using western blot, and CD31 was detected through immunofluorescence. Tumor xenograft models of 8505C cells were constructed to observe the effect of IBC and DOX on ATC growth in vivo. The co-administration of IBC and DOX exhibited a synergistic effect of suppressing the growth of 8505C and CAL62 cells. The concurrent use of IBC and DOX resulted in elevated iron, ROS, and MDA levels, while reducing GSH levels and protein expression of SLC7A11 and GPX4. However, the Fer-1 ferroptosis inhibitor effectively counteracted this effect. In vitro and in vivo, the inhibitory effect on ATC cell proliferation and tumor growth was significantly enhanced by the combination of IBC and DOX. The combination of IBC and DOX can inhibit the growth of ATC by activating ferroptosis, and might prove to be a potent chemotherapy protocol for addressing ATC.


Subject(s)
Chalcones , Doxorubicin , Drug Synergism , Ferroptosis , Reactive Oxygen Species , Thyroid Carcinoma, Anaplastic , Thyroid Neoplasms , Ferroptosis/drug effects , Doxorubicin/pharmacology , Thyroid Carcinoma, Anaplastic/drug therapy , Thyroid Carcinoma, Anaplastic/pathology , Thyroid Carcinoma, Anaplastic/metabolism , Animals , Humans , Chalcones/pharmacology , Thyroid Neoplasms/drug therapy , Thyroid Neoplasms/pathology , Thyroid Neoplasms/metabolism , Cell Line, Tumor , Reactive Oxygen Species/metabolism , Disease Progression , Mice , Xenograft Model Antitumor Assays , Cell Proliferation/drug effects , Mice, Nude , Cell Survival/drug effects , Glutathione/metabolism , Glutathione/drug effects , Antibiotics, Antineoplastic/pharmacology , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism
14.
Int J Mol Sci ; 25(16)2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39201605

ABSTRACT

Acute myelogenous leukemia (AML) is one of the most lethal cancers, lacking a definitive curative therapy due to essential constraints related to the toxicity and efficacy of conventional treatments. This study explores the co-adjuvant potential of Lippia alba essential oils (EO) for enhancing the effectiveness and selectivity of two chemotherapy agents (cytarabine and clofarabine) against AML cells. EO derived from L. alba citral chemotype were produced using optimized and standardized environmental and extraction protocols. Rational fractionation techniques were employed to yield bioactive terpene-enriched fractions, guided by relative chemical composition and cytotoxic analysis. Pharmacological interactions were established between these fractions and cytarabine and clofarabine. The study comprehensively evaluated the cytotoxic, genotoxic, oxidative stress, and cell death phenotypes induced by therapies across AML (DA-3ER/GM/EVI1+) cells. The fraction rich in citral (F2) exhibited synergistic pharmacological interactions with the studied chemotherapies, intensifying their selective cytotoxic, genotoxic, and pro-oxidant effects. This shift favored transitioning from necrosis to a programmed cell death phenotype (apoptotic). The F2-clofarabine combination demonstrated remarkable synergistic anti-leukemic performance while preserving cell integrity in healthy cells. The observed selective antiproliferative effects may be attributed to the potential dual prooxidant/antioxidant behavior of citral in L. alba EO.


Subject(s)
Acyclic Monoterpenes , Lippia , Oils, Volatile , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Lippia/chemistry , Acyclic Monoterpenes/pharmacology , Humans , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Cytarabine/pharmacology , Leukemia, Myeloid, Acute/drug therapy , Clofarabine/pharmacology , Apoptosis/drug effects , Drug Synergism , Oxidative Stress/drug effects , Cell Proliferation/drug effects
15.
Int J Mol Sci ; 25(16)2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39201622

ABSTRACT

Previous reports have demonstrated that the peptide derived from LfcinB, R-1-R, exhibits anti-Candida activity, which is enhanced when combined with an extract from the Bidens pilosa plant. However, the mechanism of action remains unexplored. In this research, a proteomic study was carried out, followed by a bioinformatic analysis and biological assays in both the SC5314 strain and a fluconazole-resistant isolate of Candida albicans after incubation with R-1-R. The proteomic data revealed that treatment with R-1-R led to the up-regulation of most differentially expressed proteins compared to the controls in both strains. These proteins are primarily involved in membrane and cell wall biosynthesis, membrane transport, oxidative stress response, the mitochondrial respiratory chain, and DNA damage response. Additionally, proteomic analysis of the C. albicans parental strain SC5314 treated with R-1-R combined with an ethanolic extract of B. pilosa was performed. The differentially expressed proteins following this combined treatment were involved in similar functional processes as those treated with the R-1-R peptide alone but were mostly down-regulated (data are available through ProteomeXchange with identifier PXD053558). Biological assays validated the proteomic results, evidencing cell surface damage, reactive oxygen species generation, and decreased mitochondrial membrane potential. These findings provide insights into the complex antifungal mechanisms of the R-1-R peptide and its combination with the B. pilosa extract, potentially informing future studies on natural product derivatives.


Subject(s)
Antifungal Agents , Bidens , Candida albicans , Plant Extracts , Proteomics , Antifungal Agents/pharmacology , Proteomics/methods , Bidens/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Candida albicans/drug effects , Drug Synergism , Fungal Proteins/metabolism , Peptides/pharmacology , Peptides/chemistry , Microbial Sensitivity Tests , Drug Resistance, Fungal/drug effects , Fluconazole/pharmacology
16.
PLoS One ; 19(8): e0303878, 2024.
Article in English | MEDLINE | ID: mdl-39137202

ABSTRACT

The limited arsenal of antifungal drugs have prompted the search for novel molecules with biological activity. This study aimed to characterize the antifungal mechanism of action of Eugenia uniflora extract and its synergistic activity with commercially available antifungal drugs on the following Candida species: C. albicans, C. tropicalis, C. glabrata, C. parapsilosis and C. dubliniensis. In silico analysis was performed to predict antifungal activity of the major compounds present in the extract. Minimal inhibitory concentrations (MICs) were determined in the presence of exogenous ergosterol and sorbitol. Yeast cells were grown in the presence of stressors. The loss of membrane integrity was assessed using propidium iodide staining (fluorescence emission). Synergism between the extract and antifungal compounds (in addition to time kill-curves) was determined. Molecular docking revealed possible interactions between myricitrin and acid gallic and enzymes involved in ergosterol and cell wall biosynthesis. Candida cells grown in the presence of the extract with addition of exogenous ergosterol and sorbitol showed 2 to 8-fold increased MICs. Strains treated with the extract revealed greater loss of membrane integrity when compared to their Fluconazole counterparts, but this effect was less pronounced than the membrane damage caused by Amphotericin B. The extract also made the strains more susceptible to Congo red and Calcofluor white. A synergistic action of the extract with Fluconazole and Micafungin was observed. The E. uniflora extract may be a viable option for the treatment of Candida infections.


Subject(s)
Antifungal Agents , Candida , Drug Synergism , Eugenia , Microbial Sensitivity Tests , Plant Extracts , Eugenia/chemistry , Antifungal Agents/pharmacology , Plant Extracts/pharmacology , Plant Extracts/chemistry , Candida/drug effects , Ergosterol , Molecular Docking Simulation , Fluconazole/pharmacology , Cell Membrane/drug effects , Cell Membrane/metabolism
17.
Braz J Microbiol ; 55(3): 2789-2796, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39023813

ABSTRACT

Acinetobacter baumannii is a bacteria associated with nosocomial infections and outbreaks, difficult to control due to its antibiotic resistance, ability to survive in adverse conditions, and biofilm formation adhering to biotic and abiotic surfaces. Therefore, this study aimed to evaluate the antibiofilm activity of biogenic silver nanoparticle (Bio-AgNP) and polymyxin B alone and combined in biofilms formed by isolates of carbapenem-resistant A. baumannii (CR-Ab). In the biofilm formation inhibition assay, CR-Ab strains were exposed to different concentrations of the treatments before inducing biofilm formation, to determine the ability to inhibit/prevent bacterial biofilm formation. While in the biofilm rupture assay, the bacterial biofilm formation step was previously carried out and the adhered cells were exposed to different concentrations of the treatments to evaluate their ability to destroy the bacterial biofilm formed. All CR-Ab isolates and ATCC® 19606™ used in this study are strong biofilm formers. The antibiofilm activity of Bio-AgNP and polymyxin B against CR-Ab and ATCC® 19606™ demonstrated inhibitory and biofilm-disrupting activity. When used in combination, Bio-AgNP and polymyxin B inhibited 4.9-100% of biofilm formation in the CR-Ab isolates and ATCC® 19606™. Meanwhile, when Bio-AgNP and polymyxin B were combined, disruption of 6.8-77.8% of biofilm formed was observed. Thus, antibiofilm activity against CR-Ab was demonstrated when Bio-AgNP was used alone or in combination with polymyxin B, emerging as an alternative in the control of CR-Ab strains.


Subject(s)
Acinetobacter baumannii , Anti-Bacterial Agents , Biofilms , Carbapenems , Metal Nanoparticles , Microbial Sensitivity Tests , Polymyxin B , Silver , Biofilms/drug effects , Acinetobacter baumannii/drug effects , Acinetobacter baumannii/physiology , Polymyxin B/pharmacology , Silver/pharmacology , Silver/chemistry , Anti-Bacterial Agents/pharmacology , Metal Nanoparticles/chemistry , Carbapenems/pharmacology , Acinetobacter Infections/microbiology , Acinetobacter Infections/drug therapy , Humans , Drug Synergism , Drug Resistance, Bacterial
18.
J Med Microbiol ; 73(7)2024 Jul.
Article in English | MEDLINE | ID: mdl-38979984

ABSTRACT

Introduction. The development of new antifungal drugs has become a global priority, given the increasing cases of fungal diseases together with the rising resistance to available antifungal drugs. In this scenario, drug repositioning has emerged as an alternative for such development, with advantages such as reduced research time and costs.Gap statement. Propafenone is an antiarrhythmic drug whose antifungal activity is poorly described, being a good candidate for further study.Aim. This study aims to evaluate propafenone activity against different species of Candida spp. to evaluate its combination with standard antifungals, as well as its possible action mechanism.Methodology. To this end, we carried out tests against strains of Candida albicans, Candida auris, Candida parapsilosis, Candida tropicalis, Candida glabrata and Candida krusei based on the evaluation of the MIC, minimum fungicidal concentration and tolerance level, along with checkerboard and flow cytometry tests with clinical strains and cell structure analysis by scanning electron microscopy (SEM).Results. The results showed that propafenone has a 50% MIC ranging from 32 to 256 µg ml-1, with fungicidal activity and positive interactions with itraconazole in 83.3% of the strains evaluated. The effects of the treatments observed by SEM were extensive damage to the cell structure, while flow cytometry revealed the apoptotic potential of propafenone against Candida spp.Conclusion. Taken together, these results indicate that propafenone has the potential for repositioning as an antifungal drug.


Subject(s)
Antifungal Agents , Candida , Microbial Sensitivity Tests , Propafenone , Antifungal Agents/pharmacology , Candida/drug effects , Candida/growth & development , Propafenone/pharmacology , Humans , Itraconazole/pharmacology , Drug Synergism , Drug Resistance, Fungal/drug effects , Candidiasis/microbiology , Candidiasis/drug therapy , Drug Repositioning
19.
Microb Pathog ; 193: 106782, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38969186

ABSTRACT

The natural antimicrobial properties of essential oils (EOs) have contributed to the battle against multidrug-resistant microorganisms by providing new ways to develop more effective antibiotic agents. In this study, we investigated the chemical composition of Ocotea diospyrifolia essential oil (OdOE) and its antimicrobial properties combined with amikacin (AMK). Through gas chromatography-mass spectrometry (GCMS) analysis, the primary constituents of OdOE were identified as α-bisabolol (45.8 %), ß-bisabolene (9.4 %), γ-elemene (7.6 %), (Z)- ß-farnesene (5.2 %), spathulenol (3.5 %), (Z)-caryophyllene (3.3 %), and (E)-caryophyllene (3.1 %). In vitro assessments showed that the combined administration of OdOE and AMK exerted a synergistic antibacterial effect on the multidrug-resistant K. pneumoniae strain. This synergistic effect demonstrated bacteriostatic action. OdEO combined with amikacin showed protein extravasation within 2 h of treatment, leading to bacterial death, which was determined by a reduction in viable cell count. The effective concentrations showed hemocompatibility. In vivo assessments using Caenorhabditis elegans as a model showed the survival of 85 % of infected nematodes. Therefore, the combination OdEO combined with amikacin exhibited antimicrobial activity against a multidrug-resistant K. pneumoniae strain. Thus, OdOE is a promising agent that may be considered for development of antimicrobial treatment.


Subject(s)
Amikacin , Anti-Bacterial Agents , Drug Resistance, Multiple, Bacterial , Drug Synergism , Klebsiella pneumoniae , Microbial Sensitivity Tests , Oils, Volatile , Amikacin/pharmacology , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Animals , Drug Resistance, Multiple, Bacterial/drug effects , Anti-Bacterial Agents/pharmacology , Klebsiella pneumoniae/drug effects , Gas Chromatography-Mass Spectrometry , Caenorhabditis elegans/drug effects , Klebsiella Infections/drug therapy , Klebsiella Infections/microbiology , Monocyclic Sesquiterpenes/pharmacology , Polycyclic Sesquiterpenes/pharmacology , Polycyclic Sesquiterpenes/chemistry , Sesquiterpenes/pharmacology
20.
Int J Mol Sci ; 25(14)2024 Jul 09.
Article in English | MEDLINE | ID: mdl-39062770

ABSTRACT

Glioblastoma (GBM) is an aggressive brain cancer characterized by significant molecular and cellular heterogeneity, which complicates treatment efforts. Current standard therapies, including surgical resection, radiation, and temozolomide (TMZ) chemotherapy, often fail to achieve long-term remission due to tumor recurrence and resistance. A pro-oxidant environment is involved in glioma progression, with oxidative stress contributing to the genetic instability that leads to gliomagenesis. Evaluating pro-oxidant therapies in brain tumors is crucial due to their potential to selectively target and eradicate cancer cells by exploiting the elevated oxidative stress levels inherent in these malignant cells, thereby offering a novel and effective strategy for overcoming resistance to conventional therapies. This study investigates the therapeutic potential of doxorubicin (DOX) and photodynamic therapy (PDT) with Me-ALA, focusing on their effects on redox homeostasis. Basal ROS levels and antioxidant gene expression (NFE2L2, CAT, GSR) were quantitatively assessed across GBM cell lines, revealing significant variability probably linked to genetic differences. DOX and PDT treatments, both individually and in combination, were analyzed for their efficacy in inducing oxidative stress and cytotoxicity. An in silico analysis further explored the relationship between gene mutations and oxidative stress in GBM patients, providing insights into the molecular mechanisms underlying treatment responses. Our findings suggest that pro-oxidant therapies, such as DOX and PDT in combination, could selectively target GBM cells, highlighting a promising avenue for improving therapeutic outcomes in GBM.


Subject(s)
Brain Neoplasms , Doxorubicin , Glioblastoma , Oxidative Stress , Photochemotherapy , Reactive Oxygen Species , Glioblastoma/drug therapy , Glioblastoma/metabolism , Glioblastoma/pathology , Glioblastoma/genetics , Humans , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Photochemotherapy/methods , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Cell Line, Tumor , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Drug Synergism , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL