ABSTRACT
The synthesis and differential allocation of reserve compounds is an important adaptive mechanism that enables species to resprout in fire-prone ecosystems. The analysis of compound allocation dynamics (differential accumulation of compounds between plant organs) provides insights into plant responses to disturbances. The aim was to quantify reserves in eight legume species from Cerrado open savannas with high fire frequency in order to investigate the patterns of allocation and distribution of compounds between leaves and underground organs, drawing ecophysiological inferences. The species were collected in 'campo sujo' areas of the Cerrado. Leaves and underground organs (xylopodium, taproot tubers) were subjected to physiological analyses. Overall, underground organs were characterised by greater deposits of carbohydrates, mainly soluble sugars, and also with the accumulation of proteins and amino acids. This suggests that nitrogen reserves, as well as carbohydrates, may have an ecophysiological function in response to fire, being allocated to the underground organs. Phenols were mainly evident in leaves, but a morphophysiological pattern was identified, where the two species with taproot tubers tended to concentrate more phenols in the underground portion compared to species with xylopodium, possibly due to functional differences between these organs. Such data allow inferring relevant ecophysiological dynamics in legumes from open savannas.
Subject(s)
Fabaceae , Plant Leaves , Fabaceae/metabolism , Plant Leaves/metabolism , Fires , Grassland , Brazil , Phenols/metabolism , Plant Roots/metabolism , Amino Acids/metabolism , Plant Tubers/metabolismABSTRACT
Introducing legumes into C4-dominated tropical pastures, may enhance their sustainability but has some pasture management constraints. One potential alternative is using arboreal legumes, but several of these species have relatively high condensed tannin (CT) concentrations, which negatively impact forage quality. There is limited knowledge, however, on how arboreal legume leaf CT content varies over the year and how this might impact forage quality. The objective of this 2 year study was to assess the seasonal variation of CT and nutritive value for ruminants of the tropical tree legumes gliricidia [Gliricidia sepium (Jacq.) Kunth ex. Walp.] and mimosa (Mimosa caesalpiniifolia Benth). The research was carried out in the sub-humid tropical region of Brazil on well-established pastures in which either legume was present with signalgrass (Urochloa decumbens Stapf.). We determined CT and nitrogen concentrations, in vitro digestible organic matter (IVDOM), and leaf δ13C and δ15N from January to October of 2017 and 2018. All parameters were affected (P < 0.05) by the interaction between legume species and sampling time, with generally higher leaf CT content for mimosa than gliricidia, and both were reduced at the start of the dry season, although much more drastically for mimosa. The IVDOM was strongly affected by CT content and increased at the start of the dry season, coincidentally when C4 grass forage quality typically decreased. There is a marked species effect, with CT from gliricidia impacting IVDOM more than the same CT content from mimosa. While N concentration from mimosa also increased at the start of the dry season, that for gliricidia did not vary over the year. We conclude that although these arboreal legumes have relatively high CT contents, these reduce during the dry season when CT concentrations coinciding with a reduced forage quality as the protein content for C4 grasses is usually inadequate in this season.
Subject(s)
Fabaceae , Nutritive Value , Proanthocyanidins , Trees , Proanthocyanidins/analysis , Fabaceae/chemistry , Fabaceae/metabolism , Plant Leaves/chemistry , Seasons , Mimosa/chemistry , Animals , Brazil , Animal Feed/analysis , Nitrogen/analysisABSTRACT
DVL is a Man/Glc-binding lectin from Dioclea violacea seeds that has the ability to interact with the antibiotic gentamicin. The present work aimed to evaluate whether the DVL has the ability to interact with neomycin via CRD and to examine the ability of this lectin to modulate the antibiotic effect of neomycin against multidrug-resistant strains (MDR). The hemagglutinating activity test revealed that neomycin inhibited the hemagglutinating activity of DVL with a minimum inhibitory concentration of 50 mM, indicating that the antibiotic interacts with DVL via the carbohydrate recognition domain (CRD). DVL immobilized on cyanogen bromide-activated Sepharose® 4B bound 41 % of the total neomycin applied to the column, indicating that the DVL-neomycin interaction is efficient for purification processes. Furthermore, the minimum inhibitory concentrations (MIC) obtained for DVL against all strains studied were not clinically relevant. However, when DVL was combined with neomycin, a significant increase in antibiotic activity was observed against S. aureus and P. aeruginosa. These results demonstrate the first report of lectin-neomycin interaction, indicating that immobilized DVL has the potential to isolate neomycin by affinity chromatography. Moreover, DVL increased the antibiotic activity of neomycin against MDR, suggesting that it is a potent adjuvant in the treatment of infectious diseases.
Subject(s)
Dioclea , Fabaceae , Humans , Male , Lectins/pharmacology , Anti-Bacterial Agents/pharmacology , Dioclea/chemistry , Neomycin/pharmacology , Plant Lectins/chemistry , Staphylococcus aureus/metabolism , Fabaceae/metabolismABSTRACT
KEY MESSAGE: We highlight the newly emerged regulatory role of a mitotic kinase AUR1, its activator, and its microtubule-associated proteins (MAPs) in infection thread formation for root nodule symbiosis.
Subject(s)
Fabaceae , Rhizobium , Fabaceae/metabolism , Nitrogen Fixation , Root Nodules, Plant/metabolism , Vegetables , SymbiosisABSTRACT
Lectins are a heterogeneous group of proteins that reversibly bind to simple sugars or complex carbohydrates. The plant lectin purified from the seed of Parkia platycephala (PPL) was studied. This study aimed to investigate the possible orofacial antinociceptive of PPL lectin in adult zebrafish and rodents. Acute nociception was induced by cinnamaldehyde (0.66 µg/mL), 0.1% acidified saline, glutamate (12.5 µM) or hypertonic saline (5 M NaCl) applied into the upper lip (5.0 µL) of adult wild zebrafish. Zebrafish were pretreated by intraperitoneal injection (20 µL) with vehicle (Control) or PPL (0.025; 0.05 or 0.1 mg/mL) 30 min before induction. The effect of PPL on zebrafish locomotor behaviour was evaluated in the open field test. Naive groups were included in all tests. In one experiment, animals were pre-treated with capsazepine to investigate the mechanism of antinociception. The involvement of central afferent C-fibres was also investigated. In another experiment, rats pre-treated with PPL or saline were submitted to the temporomandibular joint formalin test. Other groups of rats were submitted to infraorbital nerve transection to induce chronic pain, followed by induction of mechanical sensitivity using von Frey. PPL reduced nociceptive behaviour in adult zebrafish, and this is related to the activation of the TRPV1 channels since antinociception was effectively inhibited by capsazepine and by capsaicin-induced desensitization. PPL reduced nociceptive behaviour associated with temporomandibular joint and neuropathic pain. The results confirm the potential pharmacological relevance of PPL as an inhibitor of orofacial nociception in acute and chronic pain.
Subject(s)
Chronic Pain , Fabaceae , Rats , Animals , Nociception , Zebrafish/metabolism , Analgesics/pharmacology , Analgesics/therapeutic use , Facial Pain/drug therapy , Facial Pain/metabolism , Lectins/metabolism , Chronic Pain/drug therapy , Fabaceae/metabolism , Rodentia/metabolism , TRPV Cation Channels/metabolism , Zebrafish Proteins/metabolismABSTRACT
This study aimed to investigate the roles of selenium (Se) application on the profile of photosynthetic pigments, oxidant metabolism, flavonoids biosynthesis, nodulation, and its relation to agronomic traits of peanut plants. Two independent experiments were carried out: one conducted in soil and the other in a nutrient solution. When the plants reached the V2 growth stage, five Se doses (0, 7.5, 15, 30, and 45 µg kg-1) and four Se concentrations (0, 5, 10, and 15 µmol L-1) were supplied as sodium selenate. The concentration of photosynthetic pigments, activity of antioxidant enzymes and the concentration of total sugars in peanut leaves increased in response to Se fertilization. In addition, Se improves nitrogen assimilation efficiency by increasing nitrate reductase activity which results in a higher concentration of ureides, amino acids and proteins. Se increases the synthesis of daidzein and genistein in the root, resulting in a greater number of nodules and concentration and transport of ureides to the leaves. Se-treated plants showed greater growth, biomass accumulation in shoots and roots, yield and Se concentration in leaves and grains. Our results contribute to food security and also to increase knowledge about the effects of Se on physiology, biochemistry and biological nitrogen fixation in legume plants.
Subject(s)
Fabaceae , Selenium , Amino Acids/metabolism , Antioxidants/metabolism , Arachis/metabolism , Fabaceae/metabolism , Genistein/metabolism , Isoflavones , Nitrate Reductases/metabolism , Nitrogen/metabolism , Oxidants/metabolism , Selenic Acid , Selenium/pharmacology , Soil , Sugars/metabolismABSTRACT
In this study, we tested whether waterlogging priming at the vegetative stage would mitigate a subsequent waterlogging event at the reproductive stage in soybean [Glycine max (L.) Merr.]. Plants (V3 stage) were subjected to priming for 7days and then exposed to waterlogging stress for 5days (R2 stage) with non-primed plants. Roots and leaves were sampled on the fifth day of waterlogging and the second and fifth days of reoxygenation. Overall, priming decreased the H2 O2 concentration and lipid peroxidation in roots and leaves during waterlogging and reoxygenation. Priming also decreased the activity of antioxidative enzymes in roots and leaves and increased the foliar concentration of phenols and photosynthetic pigments. Additionally, priming decreased fermentation and alanine aminotransferase activity during waterlogging and reoxygenation. Finally, priming increased the concentration of amino acids, sucrose, and total soluble sugars in roots and leaves during waterlogging and reoxygenation. Thus, primed plants were higher and more productive than non-primed plants. Our study shows that priming alleviates oxidative stress, fermentation, and carbohydrate consumption in parallel to increase the yield of soybean plants exposed to waterlogging and reoxygenation.
Subject(s)
Fabaceae , Glycine max , Glycine max/metabolism , Water/metabolism , Plant Leaves/metabolism , Fabaceae/metabolism , Carbohydrates , Oxidative StressABSTRACT
Samanea tubulosa Benth. it has been widely used in traditional medicine to treat inflammatory processes. The present study aimed to investigate the antinociceptive effect and mechanism of action of the fractions obtained from the Samanea tubulosa pods in mice. The antinociceptive activity was evaluated in formalin, capsaicin and glutamate tests and the. The possible mechanisms of action involved in the antinociceptive effect of the hexane and ethyl acetate fraction in the opioid system, also the the K + ATP channels and the L-arigine pathways of nitric oxide were evaluated. The chemical characterization analysis revealed in the hexane fraction the presence of triterpenes such as lupenone and lupeol. In the glutamate test, the hexane and ethyl acetate fractions showed antinociceptive activity at the dose of 12.5 and 25 mg kg-1. The antinociception produced by the hexane and ethyl acetate fractions was significantly reversed by naloxone, indicating that the fractions act through the opioid pathway. Antinociceptive response of the ethyl acetate fraction was blocked by glibenclamide, indicating that this fraction acts via the K + ATP channels activation. It is concluded that the fractions under study exert antinociceptive activity possibly related to the opioid route and through K+ ATP channels activation.
Subject(s)
Acute Pain , Fabaceae , Acute Pain/drug therapy , Adenosine Triphosphate , Analgesics/pharmacology , Analgesics/therapeutic use , Analgesics, Opioid , Animals , Fabaceae/metabolism , Glutamic Acid , Hexanes , MiceABSTRACT
OBJECTIVE: To investigate the effect and mechanisms of Andira anthelmia lectin in rat models of acute inflammation. MATERIAL: AAL anti-inflammatory activity was evaluated in Wistar rat models of paw edema and peritonitis. METHODS: AAL (0.01-1 mg/kg i.v.) was injected 30 min before stimulation with carrageenan and with initial and late phase inflammatory mediators into the animals paw or peritoneum for evaluation of cell migration (optical and intravital microscopy), paw edema (plethysmometry and histopathology); hyperalgesia (analgesimetry). RESULTS: AAL inhibited leukocyte migration induced by carrageenan, mainly neutrophils to the peritoneal fluid, decreasing leukocyte adhesion. In the peritoneal fluid, AAL reduced the gene expression of TNF-α and cyclooxygenase, as well the levels of PGE2. AAL inhibited the paw edema induced by carrageenan, serotonin, histamine, TNF-α, PLA2 and PGE2, but not by L-arginine. In this model, AAL also inhibited mechanical hypernociception induced by TNF-α, PGE2, db-cAMP and capsaicin, and the activity of myeloperoxidase in the paw tissues. CONCLUSION: AAL presents anti-inflammatory effect in acute models of rat inflammation involving the participation of prostaglandins, TNF-α and lectin domain.
Subject(s)
Fabaceae , Tumor Necrosis Factor-alpha , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Carrageenan , Dinoprostone/metabolism , Edema/chemically induced , Edema/drug therapy , Edema/pathology , Fabaceae/metabolism , Inflammation/pathology , Lectins , Prostaglandins , Rats , Rats, WistarABSTRACT
Mimosine is a nonprotein amino acid biosynthesized from OAS (O-acetylserine) and 3H4P (3-hydroxy-4-pyridone or its tautoisomer 3,4-dihydroxypyridine). This amino acid constitutively occurs in all parts of Leucaena leucocephala (Lam.) de Wit plants and is found at higher concentrations in seeds and leaves. This metabolite has several useful activities, such as antioxidant, allelochemical, insecticidal, antimicrobial, metal chelating, and antitumor. Mimosine is well studied in biomedical research due its ability to inhibit cells in the late G1 phase and to induce cell apoptosis. Two simple methods of mimosine extraction from leucaena leaves, pulverized and whole maceration, are described herein in detail.
Subject(s)
Fabaceae , Mimosine , Amino Acids/metabolism , Fabaceae/metabolism , Mimosine/chemistry , Mimosine/metabolism , Mimosine/pharmacology , Plant Leaves/metabolism , Seeds/metabolismABSTRACT
The galactomannans property of forming viscous solutions, along with the traditional use of Delonix regia as anti-inflammatory, antinociceptive and wound healing, justify the investigation of the healing mechanism of Delonix regia galactomannan (GM-DR) in a model of excisional cutaneous wound. GM-DR (% 0.01-1) was topically applied to the wounds of female Swiss mice during 14 days. The wound healing effect of GM-DR was evaluated by the following parameters: wound closure and clinical signs (hyperemia, edema and exudate by macroscopy, nociception by analgesimetry), oxidative stress markers (malondialdehyde - MDA, reduced glutathione - GSH) by ELISA, histopathological (HE and Picrosirius red), and histomorphometric (collagenesis, blood vessels, polymorphonuclear, mononuclear, fusiform cells) and immunohistochemistry (inflammatory and growth factor mediators) by tissue microarrayer. GM-DR reduced wound area (7-14th day) and hypernociception (6 h - 5th day), leukocyte infiltration (2 -7th days), expression and levels of IL-1ß (2th day), IL-6 (2th day), MDA (44% - 2th day), and increased fusiform cells, granulation tissue, collagen deposition, GSH (25 - 50%, 2-5th day), expression of the transforming growth factor beta (TGF-ß) (7-10th day) and smooth muscle alpha actin (α-SMA) (7-14th day). In conclusion, GM-DR accelerates the mice healing process acting both in the inflammatory and proliferative phases.
Subject(s)
Cytokines , Fabaceae , Animals , Anti-Inflammatory Agents/metabolism , Anti-Inflammatory Agents/pharmacology , Cytokines/metabolism , Fabaceae/metabolism , Female , Galactose/analogs & derivatives , Mannans , Mice , Oxidative Stress , Rats , Rats, Wistar , Seeds/metabolism , Skin , Wound HealingABSTRACT
Cancer treatment frequently carries side effects, therefore, the search for new selective and effective molecules is indispensable. Hymenaea courbaril L. has been used in traditional medicine in South America to treat several diseases, including prostate cancer. Leaves' extracts from different polarities were evaluated using the 3-(4,5-methyl-thiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) cell viability assay to determine the cytotoxicity in prostate p53-null cells, followed by bio-guided fractionations to obtain the most cytotoxic fraction considering the selectivity index. The most cytotoxic fraction was analyzed by GC/MS to identify the active compounds. The majority compound, caryophyllene oxide, induced early and late apoptosis, depolarized the mitochondrial membrane, leading to several morphological changes and shifts in apoptotic proteins, and caspases were evidenced. Depolarization of the mitochondrial membrane releases the pro-apoptotic protein Bax from Bcl-xL. The apoptosis process is caspase-7 activation-dependent. Caryophyllene oxide is a safe anti-proliferative agent against PC-3 cells, inducing apoptosis with low toxicity towards normal cells.
Subject(s)
Polycyclic Sesquiterpenes/pharmacology , Prostatic Neoplasms/drug therapy , Androgens/pharmacology , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Fabaceae/metabolism , Gas Chromatography-Mass Spectrometry/methods , Humans , Hymenaea/enzymology , Hymenaea/metabolism , Male , PC-3 Cells , Plant Extracts/pharmacology , Plant Leaves/metabolism , Polycyclic Sesquiterpenes/metabolism , Prostate/drug effects , Prostatic Neoplasms/metabolismABSTRACT
Vuralia turcica (Fabaceae; Papilionoideae) is a critically endangered endemic plant species in Turkey. This plant grows naturally in saline environments, although the photosynthesis and physiological functions of many plants are affected by salt stress. Molecular control mechanisms and identification of genes involved in these mechanisms constitute the critical field of study in plant science. Trehalose-6-phosphate synthase (TPS) is one of the essential enzyme genes involved in trehalose biosynthesis, which is protective against salt stress. Also, the vacuolar Na+/H+ antiporter gene (NHX) is known to be useful in salt tolerance. In this study, the TPS and NHX-like genes in V. turcica were partially sequenced using degenerate primers for the first time and submitted to the NCBI database (accession numbers MK120983 and MH757417, respectively). Also, the expression levels of the genes encoding TPS and NHX were investigated. The results indicate that the increase in both the level of applied salt and cadmium is coupled with the increase in the expression level of NHX and TPS genes. However, salt exposure significantly affected the expression level of the NHX gene. The findings suggest that the NHX gene might play a crucial role in the salt tolerance ability of V. turcica.
Subject(s)
Cadmium , Fabaceae , Cadmium/toxicity , Fabaceae/metabolism , Gene Expression Regulation, Plant , Glucosyltransferases , Phylogeny , Plant Proteins/genetics , Plants, Genetically Modified/metabolism , Sodium-Hydrogen Exchangers/genetics , Sodium-Hydrogen Exchangers/metabolism , TurkeyABSTRACT
N-fixing leguminous species can reach atmospheric dinitrogen gas (N2), having an advantage under N-limited degraded environments. These N-fixers are constantly used as facilitative species. Chlorophyll a fluorescence (ChF) acknowledges how different species take up and use light energy during photosynthesis. These techniques assess stress and performance responses to photosynthesis and are used for the selection of species with potential for reforestation. Six Fabaceae species were selected for this study: three nonfixing species (Cenostigma tocantinum, Senna reticulata and Dipteryx odorata) and three N-fixing species (Clitoria fairchildiana, Inga edulis and Acacia spp.). Variations in chlorophyll fluorescence under high vs. low water and nutrient conditions were studied. Multivariate analysis was performed to detect the effects of seasonality and fertilization on dark-adapted ChF two years after the experiment was established. The correlation among ChF variables and growth, photosynthesis and foliar nutrient concentrations was evaluated. Under high water- and nutrient-availability conditions, plants exhibited an enhanced performance index on absorption basis values correlated with electron transport fluxes. Under drought and nutrient-poor conditions, most species exhibit increased energy dissipation as photoprotection. High interspecific variation was found; therefore, species-specific responses should be considered in future ChF studies. Corroborating the ability to colonize high-light environments, N-fixers showed an increased performance index correlated with electron transport and Zn and N foliar concentrations. Negative correlations were found between photosynthesis and trapped fluxes. Diameter growth was positively correlated with electron transport fluxes. Given the different responses among species, ChF is an effective technique to screen for seasonality, fertilization and species effects and should be considered for use during forest restoration. Finally, the addition of fertilization treatments may facilitate tropical forest restoration due to the importance of nutrients in physiological processes. N-fixers showed high photochemical performance and tolerance to abiotic stress in degraded areas and therefore should be included to support ecosystem biomass restoration.
Subject(s)
Fabaceae/physiology , Fertilizers , Forests , Nitrogen Fixation , Photosynthesis , Seasons , Chlorophyll/metabolism , Conservation of Natural Resources , Fabaceae/metabolism , Trees/physiology , Zinc/metabolismABSTRACT
Legume trees form an abundant and functionally important component of tropical forests worldwide with N2-fixing symbioses linked to enhanced growth and recruitment in early secondary succession. However, it remains unclear how N2-fixers meet the high demands for inorganic nutrients imposed by rapid biomass accumulation on nutrient-poor tropical soils. Here, we show that N2-fixing trees in secondary Neotropical forests triggered twofold higher in situ weathering of fresh primary silicates compared to non-N2-fixing trees and induced locally enhanced nutrient cycling by the soil microbiome community. Shotgun metagenomic data from weathered minerals support the role of enhanced nitrogen and carbon cycling in increasing acidity and weathering. Metagenomic and marker gene analyses further revealed increased microbial potential beneath N2-fixers for anaerobic iron reduction, a process regulating the pool of phosphorus bound to iron-bearing soil minerals. We find that the Fe(III)-reducing gene pool in soil is dominated by acidophilic Acidobacteria, including a highly abundant genus of previously undescribed bacteria, Candidatus Acidoferrum, genus novus. The resulting dependence of the Fe-cycling gene pool to pH determines the high iron-reducing potential encoded in the metagenome of the more acidic soils of N2-fixers and their nonfixing neighbors. We infer that by promoting the activities of a specialized local microbiome through changes in soil pH and C:N ratios, N2-fixing trees can influence the wider biogeochemical functioning of tropical forest ecosystems in a manner that enhances their ability to assimilate and store atmospheric carbon.
Subject(s)
Fabaceae/microbiology , Forests , Microbiota/physiology , Minerals/metabolism , Nutrients/metabolism , Tropical Climate , Acidobacteria/classification , Acidobacteria/genetics , Acidobacteria/metabolism , Biomass , Carbon/analysis , Fabaceae/growth & development , Fabaceae/metabolism , Ferric Compounds/metabolism , Hydrogen-Ion Concentration , Microbiota/genetics , Minerals/analysis , Nitrogen/analysis , Nitrogen/metabolism , Nitrogen Fixation , Nutrients/analysis , Panama , Phosphorus/metabolism , Silicates/analysis , Silicates/metabolism , Soil/chemistry , Soil Microbiology , Symbiosis , Trees/growth & development , Trees/metabolism , Trees/microbiologyABSTRACT
The aerial parts of L. cultratus were submitted to a phytopharmacological investigation in order to isolate and identify the major secondary metabolites and evaluate its crude extract, fractions and isolated compounds for antiproliferative activity. Seven compounds were isolated and identified as the chalcones 2',4'-dihydroxy-5'-prenylchalcone (1) and isocordoin (2), the flavanone 8-prenylpinocembrin (3), the alkaloid 4-hydroxy-N-methylproline (4), the triterpenes lupeol and lupenone. These compounds were identified by nuclear magnetic resonance of 1H and 13C data in comparison with literature. Hexanic fraction and chalcone 2',4'-dihydroxy-5'-prenylchalcone showed potent results against human cancer cell lines tested.
Subject(s)
Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Fabaceae/chemistry , Catechols/chemistry , Catechols/pharmacology , Cell Proliferation/drug effects , Chalcones/chemistry , Chalcones/isolation & purification , Chalcones/pharmacology , Drug Screening Assays, Antitumor , Fabaceae/metabolism , Humans , K562 Cells , Magnetic Resonance Spectroscopy , Molecular Structure , Pentacyclic Triterpenes/chemistry , Pentacyclic Triterpenes/pharmacology , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plants, Medicinal/chemistry , Plants, Medicinal/metabolism , Secondary Metabolism , Triterpenes/chemistry , Triterpenes/pharmacologyABSTRACT
Stryphnodendron adstringens is a typical tree from Brazilian Savanah used in medicine as an anti-inflammatory and antiseptic agent. It is secondary metabolites has biological activities, so the development of efficient extraction methods is essential. Microwave irradiation through assisted extraction is innovative and highly efficient for bioactive compounds. The aim of this study was to optimize an extractive method for phenolics compounds, as tannins, from the stem bark of "barbatimão" by microwave irradiation using a statistical planning and to evaluate its consistency with conventional extraction. Microwave irradiation extraction, 16.36-22.12% of phenols and 15.91-18.69% of tannins, has a better yield when compared to conventional extraction, 14.99% of phenols and 16.70% of tannins. The method by microwave irradiation is consistent with the conventional one. However, extraction by microwave irradiation had a reduction in reaction time, reagent volume, samples amount and energy consumption when compared to conventional extraction.
Subject(s)
Chemical Fractionation/methods , Fabaceae/chemistry , Plant Extracts/chemistry , Brazil , Chemistry Techniques, Analytical/statistics & numerical data , Fabaceae/metabolism , Microwaves , Phenols/analysis , Phenols/isolation & purification , Plant Bark/chemistry , Tannins/analysis , Tannins/isolation & purificationABSTRACT
The plant receptor-like-kinase subfamily CrRLK1L has been widely studied, and CrRLK1Ls have been described as crucial regulators in many processes in Arabidopsis thaliana (L.), Heynh. Little is known, however, about the functions of these proteins in other plant species, including potential roles in symbiotic nodulation. We performed a phylogenetic analysis of CrRLK1L subfamily receptors of 57 different plant species and identified 1050 CrRLK1L proteins, clustered into 11 clades. This analysis revealed that the CrRLK1L subfamily probably arose in plants during the transition from chlorophytes to embryophytes and has undergone several duplication events during its evolution. Among the CrRLK1Ls of legumes and A. thaliana, protein structure, gene structure, and expression patterns were highly conserved. Some legume CrRLK1L genes were active in nodules. A detailed analysis of eight nodule-expressed genes in Phaseolus vulgaris L. showed that these genes were differentially expressed in roots at different stages of the symbiotic process. These data suggest that CrRLK1Ls are both conserved and underwent diversification in a wide group of plants, and shed light on the roles of these genes in legume-rhizobia symbiosis.
Subject(s)
Fabaceae/genetics , Rhizobium/genetics , Root Nodules, Plant/genetics , Symbiosis/genetics , Arabidopsis/genetics , Arabidopsis/metabolism , Fabaceae/metabolism , Gene Expression Regulation, Plant/genetics , Phaseolus/genetics , Phylogeny , Plant Proteins/genetics , Plant Roots/genetics , Plant Roots/microbiology , Rhizobium/metabolism , Root Nodules, Plant/microbiologyABSTRACT
Spodoptera frugiperda is one of the main pests of maize and cotton in Brazil and has increased its occurrence on soybean. Field-evolved resistance of this species to Cry1 Bacillus thuringiensis (Bt) proteins expressed in maize has been characterized in Brazil, Argentina, Puerto Rico and southeastern U.S. Here, we conducted studies to evaluate the survival and development of S. frugiperda strains that are susceptible, selected for resistance to Bt-maize single (Cry1F) or pyramided (Cry1F/Cry1A.105/Cry2Ab2) events and F1 hybrids of the selected and susceptible strains (heterozygotes) on DAS-444Ø6-6 × DAS-81419-2 soybean with tolerance to 2,4-D, glyphosate and ammonium glufosinate herbicides (event DAS-444Ø6-6) and insect-resistant due to expression of Cry1Ac and Cry1F Bt proteins (event DAS-81419-2). Susceptible insects of S. frugiperda did not survive on Cry1Ac/Cry1F-soybean. However, homozygous-resistant and heterozygous insects were able to survive and emerge as fertile adults when fed on Cry1Ac/Cry1F-soybean, suggesting that the resistance is partially recessive. Life history studies revealed that homozygous-resistant insects had similar development, reproductive performance, net reproductive rate, intrinsic and finite rates of population increase on Cry1Ac/Cry1F-soybean and non-Bt soybean. In contrast, heterozygotes had their fertility life table parameters significantly reduced on Cry1Ac/Cry1F-soybean. Therefore, the selection of S. frugiperda for resistance to single and pyramided Bt maize can result in cross-crop resistance to DAS-444Ø6-6 × DAS-81419-2 soybean. The importance of these results to integrated pest management (IPM) and insect resistance management (IRM) programs is discussed.
Subject(s)
Bacillus thuringiensis Toxins/genetics , Endotoxins/genetics , Hemolysin Proteins/genetics , Spodoptera/metabolism , Zea mays/genetics , Animals , Bacillus thuringiensis/genetics , Bacillus thuringiensis Toxins/metabolism , Bacterial Proteins/metabolism , Biochemical Phenomena , Brazil , Disease Resistance/genetics , Endotoxins/metabolism , Fabaceae/metabolism , Food Hypersensitivity , Hemolysin Proteins/metabolism , Insecticide Resistance/genetics , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Glycine max/genetics , Glycine max/metabolism , Spodoptera/immunology , Spodoptera/pathogenicityABSTRACT
The intriguing questions concerning gall development refer to the processes of the remodelling of the host plant organ. Such processes involve the restructuring of cell walls and can be influenced by phenolics, indole-3-acetic acid (IAA) and reactive oxygen species (ROS). Alterations in cell walls demand the interference in the coupling of cellulose fibrils and hemicelluloses (xyloglucans) at specific stages of gall development. In addition to cell wall remodelling, hemicelluloses, such as the, xyloglucans and heteromannans can act as reserve carbohydrates, while xylans provide rigidity to the secondary cell walls. Developmental traits of the lenticular, fusiform and globoid galls on Inga ingoides (Fabaceae) were analysed using anatomical, cytometric, histochemical and immunocytochemical tools. Phenolics, IAA and ROS accumulated in similar gall tissue compartments, and may have influenced the restructuring of hemicelluloses and pectins. Contrary to expectations, cell wall flexibility regarding the dynamics of xyloglucans and cellulose fibrils does not relate to a temporal scale. The detection of xyloglucans in nutritive cell walls relate to carbohydrate nutritional resources to the galling insect, while xylans were associated to the lignified cell walls. Heteromanans were not detected, either in non-galled or galled tissues. The patterns of cell expansion during gall development relied on the relationship among phenolics, ROS and IAA with the hemicelluloses (xyloglucans and xylans) and cellulose fibrils. Although cell wall dynamics is specific to each gall morphotype in I. ingoides, the xyloglucans function as carbohydrate reserve to the gall inducers, which constitutes a functional trait common to the three morphotypes.