ABSTRACT
This study aimed to compare the effects of two extraction techniques (conventional n-hexane and supercritical CO2) on the oil extraction yields, fatty acids profile, anti-hyaluronidase activity, oxidative stability, and in vitro bioactivities of oils from Sacha Inchi (Plukenetia volubilis). Higher oil extraction yield (99 %) was achieved using the SC-CO2, although similar fatty acids profiles were depicted between both treatments (p < 0.05). The SC-CO2 oil presented higher anti-hyaluronidase (31 %) activity, but lower oxidative stability (5.05 h) compared to the solvent extraction (10 %, and 5.3 h, respectively). In vitro assays further revealed that the best human normal colon cells (FHC) cell viability (100 %), anti-inflammatory (50 % lower NO production), and antioxidant (20 % ROS reduction) activities were consistently observed in both extraction treatments at concentrations of 50 µg/mL and higher. These findings highlight the potential of supercritical CO2 extraction in yielding Sacha Inchi oil with enhanced bioactive properties without the disadvantages of the use of organic solvents extraction.
Subject(s)
Chromatography, Supercritical Fluid , Plant Oils , Chromatography, Supercritical Fluid/methods , Humans , Plant Oils/chemistry , Plant Oils/pharmacology , Plant Oils/isolation & purification , Antioxidants/chemistry , Antioxidants/pharmacology , Antioxidants/isolation & purification , Fatty Acids/chemistry , Cell Survival/drug effects , Cell Line , Oxidation-ReductionABSTRACT
Blue maize is used in the production of various traditional foods, and its phytochemical composition has been claimed to possess health benefits. In this study, two blue maize hybrids with pigmented germ grown in five environments were studied under the hypothesis that the germ could have a different anthocyanin profile from that of anthocyanins synthesized in the aleurone layer, and that those in the germ could increase the total anthocyanin content in the whole grain. The percentage of pigmented germ, total anthocyanin content (TA) and total soluble phenols in the germ, whole grain and tortilla were evaluated to determine how tortilla color is modified. For the first time, the anthocyanin and fatty acid profiles of pigmented germ were determined. In the anthocyanin profile, anthocyanins derived from peonidin stood out, making 50.7 %. The most abundant fatty acid was linoleic acid (40.6 %). Whole kernel TA content increased when the maize had a higher percentage of pigmented germ, with minimal changes when grain was transformed to tortilla, resulting in darker tortillas. The large variation in TA among environments highlights the importance of identifying the environments that most favor anthocyanin synthesis.
Subject(s)
Anthocyanins , Phytochemicals , Seeds , Zea mays , Zea mays/chemistry , Zea mays/growth & development , Anthocyanins/analysis , Anthocyanins/chemistry , Seeds/chemistry , Phytochemicals/chemistry , Phytochemicals/analysis , Color , Phenols/analysis , Phenols/chemistry , Fatty Acids/chemistry , Fatty Acids/analysisABSTRACT
A novel bacterial isolate A520T (A520T = CBAS 737T = CAIM 1944T) was obtained from the skin of bandtail puffer fish Sphoeroides spengleri (Tetraodontidae Family), collected in Arraial do Cabo (Rio de Janeiro, Brazil). A520T is Gram-stain-negative, flagellated and aerobic bacteria. Optimum growth occurs at 25-30 °C in the presence of 3% NaCl. The genome sequence of the novel isolate consisted of 4.5 Mb (4082 coding genes and G+C content of 41.1%). The closest phylogenetic neighbor was Pseudoalteromonas shioyasakiensis JCM 18891T (97.9% 16S rRNA sequence similarity, 94.8% Average Amino Acid Identity, 93% Average Nucleotide Identity and 51.8% similarity in Genome-to-Genome-Distance). Several in silico phenotypic features are useful to differentiate A520T from its closest phylogenetic neighbors, including trehalose, D-mannose, cellobiose, pyrrolidonyl-beta-naphthylamide, starch hydrolysis, D-xylose, lactose, tartrate utilization, sucrose, citrate, glycerol, mucate and acetate utilization, malonate, glucose oxidizer, gas from glucose, nitrite to gas, L-rhamnose, ornithine decarboxylase, lysine decarboxylase and yellow pigment. The genome of the novel species contains 3 gene clusters (~ 66.81 Kbp in total) coding for different types of bioactive compounds that could indicate ecological roles pertaining to the bandtail puffer fish host. Based on genome-based taxonomic approach, strain A520T (A520T = CBAS 737T = CAIM 1944T) is proposed as a new species, Pseudoalteromonas simplex sp. nov.
Subject(s)
Base Composition , DNA, Bacterial , Phylogeny , Pseudoalteromonas , RNA, Ribosomal, 16S , Skin , Tetraodontiformes , Animals , Pseudoalteromonas/genetics , Pseudoalteromonas/classification , Pseudoalteromonas/isolation & purification , RNA, Ribosomal, 16S/genetics , Tetraodontiformes/microbiology , DNA, Bacterial/genetics , Skin/microbiology , Genome, Bacterial , Brazil , Bacterial Typing Techniques , Fatty Acids/chemistry , Fatty Acids/analysis , Sequence Analysis, DNAABSTRACT
Two Gram-stain-positive bacterial strains, EXRC-4A-4T and RC-2-3T, were isolated from soil samples collected at Union Glacier, Antarctica. Based on 16S rRNA gene sequence similarity, strain EXRC-4A-4T was identified as belonging to the genus Rhodococcus, and strain RC-2-3T to the genus Pseudarthrobacter. Further genomic analyses, including average nucleotide identity and digital DNA-DNA hybridization, suggested that these strains represent new species. Strain EXRC-4A-4T exhibited growth at temperatures ranging from 4 to 28 °C (optimum between 20 and 28 °C), at pH 5.0-9.0 (optimum, pH 6.0), and in the presence of 0-5.0% NaCl (optimum between 0 and 1% NaCl). Strain RC-2-3T grew at 4-28 °C (optimum growth at 28 °C), pH 6.0-10 (optimum, pH 7.0) and in the presence of 0-5.0% NaCl (optimum, 1% NaCl). The fatty acid profile of EXRC-4A-4T was dominated by C17:1 ω-7, while that of RC-2-3T was dominated by anteiso-C15â:â0. The draft genome sequences revealed a DNA G+C content of 64.6 mol% for EXRC-4A-4T and 65.8 mol% for RC-2-3T. Based on this polyphasic study, EXRC-4A-4T and RC-2-3T represent two novel species within the genera Rhodococcus and Pseudarthrobacter, respectively. We propose the names Rhodococcus navarretei sp. nov. and Pseudarthrobacter quantipunctorum sp. nov. The type strains are Rhodococcus navarretei EXRC-4A-4T and Pseudarthrobacter quantipunctorum RC-2-3T. These strains have been deposited deposited in the CChRGM and BCCM/LMG culture collections with entry numbers RGM 3539/LMG 33621 and RGM 3538/LMG 33620, respectively.
Subject(s)
Bacterial Typing Techniques , Base Composition , DNA, Bacterial , Fatty Acids , Nucleic Acid Hybridization , Phylogeny , RNA, Ribosomal, 16S , Rhodococcus , Sequence Analysis, DNA , Soil Microbiology , Rhodococcus/genetics , Rhodococcus/classification , Rhodococcus/isolation & purification , Rhodococcus/metabolism , RNA, Ribosomal, 16S/genetics , Antarctic Regions , DNA, Bacterial/genetics , Ice Cover/microbiology , Actinomycetales/genetics , Actinomycetales/isolation & purification , Actinomycetales/classification , Actinomycetales/metabolismABSTRACT
Dietary supplementation of fat can be an important source of energy to compensate for the reduction in dry matter intake in dairy cows during heat stress periods. Studies have reported that supplementing dairy cow diets with linseed oil (LO) can increase milk yield and enhance the levels of beneficial fatty acids, such as omega-3 fatty acids, in the milk. The objective of this research was to evaluate the effect of LO supplementation on milk fatty acids profile, milk yield and composition, and physiological parameters of grazing cows. The study was conducted in two seasons, one in spring and one in summer. A 2 × 2 Latin square design was used in each experiment. Twelve Holstein and crossbred Holstein x Jersey cows were involved in each season. Cows were divided into two groups: control (TC) with no supplementation and treatment (TL) supplemented with 400 g/day of LO. The results showed that LO supplementation altered the milk fatty acid profile: decreased concentrations of short and medium-chain fatty acids (C10:0 - C17:1) except for C13:0 and increased concentrations of long-chain fatty acids (C18, C18:1 (both trans and cis isomers), C18:2 (specific conjugated linoleic acid - CLA isomers), and C18:3 n3 (omega-3)). Additionally, milk yield increased by 1.5 l per day during summer in LO-supplemented cows, while milk fat, protein, and casein content decreased. Milk stability increased by 2.2% in the LO-supplemented group. LO-supplemented cows reduced internal body temperature and heart frequency in the afternoon and increased daily rumination time by 20 min. In conclusion, LO supplementation can be an effective strategy to improve the nutritional profile of milk by altering fatty acid composition towards potentially healthier fats, mitigate the negative effects of heat stress on grazing cows during summer, as evidenced by reduced body temperature and heart frequency and increase milk yield.
Subject(s)
Animal Feed , Diet , Dietary Supplements , Fatty Acids , Lactation , Linseed Oil , Milk , Animals , Cattle/physiology , Milk/chemistry , Milk/metabolism , Female , Dietary Supplements/analysis , Linseed Oil/administration & dosage , Lactation/drug effects , Fatty Acids/analysis , Fatty Acids/metabolism , Animal Feed/analysis , Diet/veterinary , SeasonsABSTRACT
This study was carried out to analyze the fatty acid and amino acid compositions of three economically important freshwater fish species, Mali (Wallago attu), Raho (Labeo rohita), and Mahseer (Tor putitora), indigenous to Indus River, Pakistan.. Amino acid profiling was done by high-performance liquid chromatography (HPLC) while gas chromatography (GC) was used for fatty acid analysis. Glutamic acid, aspartic acid, arginine, alanine, leucine, lysine and isoleucine were the most predominant amino acid while palmitic acid (C16:0), oleic acid (C18:1c), palmitoliec acid (C16:1c), linolenic acids (C18:2c) and docosahexaenoic acids (DHA C22:6) were the notable fatty acids present in these species. Our results indicated that all species have comparable nutritional composition and are good source of healthy human diet. Our findings will help the people to make informed choice while selecting fish for consumption and will pave the way for future researchers in planning new strategies to enhance the growth and production of commercial fish species. It will also be helpful for theFrom the current finding it was concluded that all fish species under discussion are rich in amino acids and fatty acids. These species contain essential amino acids and important fatty acid such as omega3 and omega 6, thus raising the nutritional quality of these species.
Subject(s)
Amino Acids , Fatty Acids , Rivers , Animals , Amino Acids/analysis , Fatty Acids/analysis , Pakistan , Rivers/chemistry , Chromatography, Gas , Chromatography, High Pressure Liquid , Fishes/classification , Cyprinidae/classificationABSTRACT
This study examined the effects of wheat and corn gluten added to lamb diets as a unilateral protein source on some microbial and chemical properties of Musculus Longismus dorsi (LD), determination of intramuscular and tail fat profile. It was found that TBARS levels in LD muscle on the days of storage were highest in the wheat gluten-treated groups (p<0.01). It was found that the changes in pH values in LD muscle were different on days (p<0.05). It was found that the change of L*, a ve b values on days differed between groups during the storage period (p<0.05). It was found that the numbers of TMAB, Enterobacteriaceae, Lactobacillus spp., Pseudomonas spp. and TPAB changed significantly (p<0.05) during the storage process. While a significant difference was found between the MUFA levels of dorsal muscle intramuscular adipose tissue of the groups (p<0.05). As a result, it was determined that the metabolic differences of the one-way protein sources fed to the lambs in the digestive system and other organs had an effect on the meat quality, intramuscular fat and fatty acid profile of the tail.
Subject(s)
Animal Feed , Fatty Acids , Glutens , Muscle, Skeletal , Triticum , Zea mays , Animals , Zea mays/chemistry , Triticum/chemistry , Fatty Acids/analysis , Muscle, Skeletal/chemistry , Sheep , Glutens/analysis , Animal Feed/analysis , Tail , Meat/analysis , Hydrogen-Ion ConcentrationABSTRACT
Characterizing the effects of saturated fat intake on metabolic health and its changes remains a major challenge. Lipid diets, from different sources, vary widely in their physiological effects on health; therefore, it is important to consider the specific lipid source consumed. The objective of the study was to evaluate the effect of the imposition of isocaloric diets with different lipid sources in zebrafish (fish oil/pork lard). Depicting how metabolic, morphological and behavioral parameters might express themselves in these fishes. Forty adult female fishes were used for the experiment. The animals were divided into a control group (C), fed with unsaturated fatty acid diet, and a saturated fatty acid group (Sat). They received food three times a day, during the 11-week period. The results showed that animals in the Sat group had increased body weight, with a difference relative to the C group, from the third week of diet until the end of the experiment. At the end of the last week, the Sat group had a body weight 32% higher (P=0.0182) than the body weight of the control group. The consumption of a diet rich in saturated fatty acids did not generate signs related to stress and anxiety in zebrafish. There was an increase in glycemia at T60 and T120, with a statistically significant difference between the two moments. Animals in the Sat group showed an increase (P=0.0086) in hepatic steatosis compared to animals in the control group. The results obtained on the relationship between diet and metabolic changes are fundamental to ensure the understanding and appropriate treatment of these problems.
Subject(s)
Zebrafish , Animals , Zebrafish/physiology , Female , Dietary Fats/administration & dosage , Fatty Acids/analysis , Blood GlucoseABSTRACT
A differential diet with royal jelly (RJ) during early larval development in honeybees shapes the phenotype, which is probably mediated by epigenetic regulation of gene expression. Evidence indicates that small molecules in RJ can modulate gene expression in mammalian cells, such as the fatty acid 10-hydroxy-2-decenoic acid (10-HDA), previously associated with the inhibition of histone deacetylase enzymes (HDACs). Therefore, we combined computational (molecular docking simulations) and experimental approaches for the screening of potential HDAC inhibitors (HDACi) among 32 RJ-derived fatty acids. Biochemical assays and gene expression analyses (Reverse Transcriptase - quantitative Polymerase Chain Reaction) were performed to evaluate the functional effects of the major RJ fatty acids, 10-HDA and 10-HDAA (10-hydroxy-decanoic acid), in two human cancer cell lines (HCT116 and MDA-MB-231). The molecular docking simulations indicate that these fatty acids might interact with class I HDACs, specifically with the catalytic domain of human HDAC2, likewise well-known HDAC inhibitors (HDACi) such as SAHA (suberoylanilide hydroxamic acid) and TSA (Trichostatin A). In addition, the combined treatment with 10-HDA and 10-HDAA inhibits the activity of human nuclear HDACs and leads to a slight increase in the expression of HDAC-coding genes in cancer cells. Our findings indicate that royal jelly fatty acids collectively contribute to HDAC inhibition and that 10-HDA and 10-HDAA are weak HDACi that facilitate the acetylation of lysine residues of chromatin, triggering an increase in gene expression levels in cancer cells.
Subject(s)
Fatty Acids , Histone Deacetylase Inhibitors , Molecular Docking Simulation , Humans , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/chemistry , Fatty Acids/metabolism , Bees , Cell Line, Tumor , Animals , Fatty Acids, Monounsaturated/pharmacology , Fatty Acids, Monounsaturated/chemistry , Histone Deacetylase 2/metabolism , Histone Deacetylase 2/genetics , Histone Deacetylase 2/antagonists & inhibitors , HCT116 CellsABSTRACT
The objective of the present study was to characterize the nutritional composition, fatty acid profile, and IgG concentration of the milk produced by Chilean Corralero horse (CCH) mares from breeding farms located in southern Chile. Forty-five milk samples were collected from three of the biggest breeding farms (coded as A, B and C) specialized in breeding and selection of CCH in Chile (15 mares sampled per farm). Farms differed in days in milk (DIM). A negative association between DIM and ash, milk protein, milk solids, saturated fatty acids (SFA), and gross energy (GE) was found, whereas DIM had a positive association with monounsaturated fatty acids (MUFA). Milk components like fat, lactose, and energy content varied independently of DIM, indicating other influencing factors such as farm-specific management practices. Offspring sex moderately affected GE content, with milk from mares bearing female offspring having higher GE. Macronutrient profiles of the CCH mares' milk were within the reported range for other horse breeds but tended to have lower fat and total solids. Compared to cow and human milk, horse milk is richer in lactose and lower in fat and protein. Immunoglobulin G concentration was only affected by the farm (B > A) which could be linked to dietary factors and pasture composition rather than maternal parity or other known factors. Overall, CCH mare milk has notable nutritional characteristics, with implications for both foal health and potential human consumption, posing less cardiac risk compared to cow's milk as indicated by lower atherogenic and thrombogenic indices.
Subject(s)
Fatty Acids , Immunoglobulin G , Milk , Animals , Horses , Female , Fatty Acids/analysis , Milk/chemistry , Immunoglobulin G/analysis , Chile , Nutritive Value , BreedingABSTRACT
Environmental factors in the early life stages can lead the descendant to adaptations in gene expression, permanently impacting several structures and organs. The amount and quality of fatty acids in the maternal diet in pregnancy and lactation were found to impact offspring metabolism. So, maternal diet and insulin resistance can affect the male and female descendants through distinct pathways and at different time points. We hypothesized that maternal high-fat diet (HFD) intake before conception and an adequate amount of different fatty acids intake during pregnancy and lactation could influence the energy homeostasis system of 21-day-old offspring. Female rats received control diet (C) or HFD (HF) for 8 weeks before pregnancy. During pregnancy and lactation C group remained with same diet (C-C), HF group were distributed into 4 groups and received C diet (HF-C), normolipidic diet based on saturated fatty acids (HF-S) or based on polyunsaturated fatty acids n-3 (HF-P) or remained in same diet (HF-HF). Maternal HFD in preconception, pregnancy, and lactation (HF-HF) led to lower glucagon-like peptide-1 levels in male (HF-HF21) compared to other groups (C-C21, HF-C21, and HF-P21) and compared to HF-HF21 females. Neuropeptide YY levels were higher in the HF-HF21, HF-C21, and HF-S21 male offspring compared to HF-P21. HF-P21 was similar to C-C21. Positive correlations were found among the energy homeostasis markers genes expressed in the offspring hypothalamus. Maternal diet changes to adequate quantities of fatty acids during pregnancy and lactation showed less impaired results but was not entirely avoided. A maternal diet based on PUFA n-3 during pregnancy and lactation seems to reverse the damage of an HFD in preconception. These results of homeostasis energy system disturbance in the offspring at weaning give us clues about changes that precede the onset of the disease in adult life - adding notes to the knowledge for future investigations of prevention and treatment of chronic diseases.
Subject(s)
Diet, High-Fat , Energy Metabolism , Fatty Acids , Glucose Intolerance , Homeostasis , Lactation , Maternal Nutritional Physiological Phenomena , Weaning , Female , Animals , Male , Pregnancy , Fatty Acids/metabolism , Fatty Acids/administration & dosage , Diet, High-Fat/adverse effects , Rats , Lactation/physiology , Rats, Wistar , Prenatal Exposure Delayed Effects , Insulin ResistanceABSTRACT
BACKGROUND: In 2016, Chile implemented a multiphase set of policies that mandated warning labels, restricted food marketing to children, and banned school sales of foods and beverages high in nutrients of concern ("high-in" foods). Chile's law, particularly the warning label component, set the precedent for a rapid global proliferation of similar policies. While our initial evaluation showed policy-linked decreases in purchases of high-in, a longer-term evaluation is needed, particularly as later phases of Chile's law included stricter nutrient thresholds and introduced a daytime ban on advertising of high-in foods for all audiences. The objective is to evaluate changes in purchases of energy, sugar, sodium, and saturated fat purchased after Phase 2 implementation of the Chilean policies. METHODS AND FINDINGS: This interrupted time series study used longitudinal data on monthly food and beverage purchases from 2,844 Chilean households (138,391 household-months) from July 1, 2013 until June 25, 2019. Nutrition facts panel data from food and beverage packages were linked at the product level and reviewed by nutritionists. Products were considered "high-in" if they contained added sugar, sodium, or saturated fat and exceeded nutrient or calorie thresholds. Using correlated random-effects models and an interrupted time series design, we estimated the nutrient content of food and beverage purchases associated with Phase 1 and Phase 2 compared to a counterfactual scenario based on trends during a 36-month pre-policy timeframe. Compared to the counterfactual, we observed significant decreases in high-in purchases of foods and beverages during Phase 2, including a relative 36.8% reduction in sugar (-30.4 calories/capita/day, 95% CI -34.5, -26.3), a 23.0% relative reduction in energy (-51.6 calories/capita/day, 95% CI -60.7, -42.6), a 21.9% relative reduction in sodium (-85.8 mg/capita/day, 95% CI -105.0, -66.7), and a 15.7% relative reduction in saturated fat (-6.4 calories/capita/day, 95% CI -8.4, -4.3), while purchases of not-high-in foods and drinks increased. Reductions in sugar and energy purchases were driven by beverage purchases, whereas reductions in sodium and saturated fat were driven by foods. Compared to the counterfactual, changes in both high-in purchases and not high-in purchases observed in Phase 2 tended to be larger than changes observed in Phase 1. The pattern of changes in purchases was similar for households of lower versus higher socioeconomic status. A limitation of this study is that some results were sensitive to the use of shorter pre-policy time frames. CONCLUSIONS: Compared to a counterfactual based on a 36-month pre-policy timeframe, Chilean policies on food labeling, marketing, and school food sales led to declines in nutrients of concern during Phase 2 of implementation, particularly from foods and drinks high in nutrients of concern. These declines were sustained or even increased over phases of policy implementation.
Subject(s)
Consumer Behavior , Food Labeling , Interrupted Time Series Analysis , Sodium, Dietary , Food Labeling/legislation & jurisprudence , Humans , Chile , Sodium, Dietary/analysis , Energy Intake , Marketing/legislation & jurisprudence , Nutrition Policy/legislation & jurisprudence , Nutritive Value , Dietary Fats , Fatty Acids/analysis , Dietary Sugars , Beverages/economicsABSTRACT
Machine learning classification approaches were used to discriminate a fishy off-flavour identified in beef with health-enhanced fatty acid profiles. The random forest approach outperformed (P < 0.001; receiver operating characteristic curve: 99.8 %, sensitivity: 99.9 % and specificity: 93.7 %) the logistic regression, partial least-squares discrimination analysis and the support vector machine (linear and radial) approaches, correctly classifying 100 % and 82 % of the fishy and non-fishy meat samples, respectively. The random forest algorithm identified 20 volatile compounds responsible for the discrimination of fishy from non-fishy meat samples. Among those, seven volatile compounds (pentadecane, octadecane, γ-dodecalactone, dodecanal, (E,E)-2,4-heptadienal, 2-heptanone, and ethylbenzene) were selected as significant contributors to the fishy off-flavour fingerprint, all being related to lipid oxidation. This fishy off-flavour fingerprint could facilitate the rapid monitoring of beef with enhanced healthy fatty acids to avoid consumer dissatisfaction due to fishy off-flavour.
Subject(s)
Fatty Acids , Machine Learning , Red Meat , Volatile Organic Compounds , Animals , Cattle , Volatile Organic Compounds/analysis , Red Meat/analysis , Fatty Acids/analysis , TasteABSTRACT
Unsaturated fatty acids (UFA) play a crucial role in central cellular processes in animals, including membrane function, development, and disease. Disruptions in UFA homeostasis can contribute to the onset of metabolic, cardiovascular, and neurodegenerative disorders. Consequently, there is a high demand for analytical techniques to study lipid compositions in live cells and multicellular organisms. Conventional analysis of UFA compositions in cells, tissues, and organisms involves solvent extraction procedures coupled with analytical techniques such as gas chromatography, MS and/or NMR spectroscopy. As a nondestructive and nontargeted technique, NMR spectroscopy is uniquely capable of characterizing the chemical profiling of living cells and multicellular organisms. Here, we use NMR spectroscopy to analyze Caenorhabditis elegans, enabling the determination of their lipid compositions and fatty acid unsaturation levels both in cell-free lipid extracts and in vivo. The NMR spectra of lipid extracts from WT and fat-3 mutant C. elegans strains revealed notable differences due to the absence of Δ-6 fatty acid desaturase activity, including the lack of arachidonic and eicosapentaenoic acyl chains. Uniform 13C-isotope labeling and high-resolution 2D solution-state NMR of live worms confirmed these findings, indicating that the signals originated from fast-tumbling lipid molecules within lipid droplets. Overall, this strategy permits the analysis of lipid storage in intact worms and has enough resolution and sensitivity to identify differences between WT and mutant animals with impaired fatty acid desaturation. Our results establish methodological benchmarks for future investigations of fatty acid regulation in live C. elegans using NMR.
Subject(s)
Caenorhabditis elegans , Fatty Acids, Unsaturated , Animals , Caenorhabditis elegans/metabolism , Fatty Acids, Unsaturated/metabolism , Fatty Acids, Unsaturated/analysis , Carbon-13 Magnetic Resonance Spectroscopy , Fatty Acids/metabolism , Fatty Acids/analysis , Lipids/analysis , Lipids/chemistryABSTRACT
Maximal oxygen uptake (VO2max) is a determining indicator for cardiorespiratory capacity in endurance athletes, and epigenetics is crucial in its levels and variability. This initial study examined a broad plasma miRNA profile of twenty-three trained elite endurance athletes with similar training volumes but different VO2max in response to an acute maximal graded endurance test. Six were clustered as higher/lower levels based on their VO2max (75.4 ± 0.9 and 60.1 ± 5.0 mL.kg-1.min-1). Plasma was obtained from athletes before and after the test and 15 ng of total RNA was extracted and detected using an SYBR-based 1113 miRNA RT-qPCR panel. A total of 51 miRNAs were differentially expressed among group comparisons. Relative amounts of miRNA showed a clustering behavior among groups regarding distinct performance/time points. Significantly expressed miRNAs were used to perform functional bioinformatic analysis (DIANA tools). Fatty acid metabolism pathways were strongly targeted for the significantly different miRNAs in all performance groups and time points (p < 0.001). Although this pathway does not solely determine endurance performance, their significant contribution is certainly achieved through the involvement of miRNAs. A highly genetically dependent gold standard variable for performance evaluation in a homogeneous group of elite athletes allowed genetic/epigenetic aspects related to fatty acid pathways to emerge.
Subject(s)
Athletes , Circulating MicroRNA , Fatty Acids , Physical Endurance , Running , Humans , Male , Physical Endurance/genetics , Adult , Fatty Acids/blood , Fatty Acids/metabolism , Circulating MicroRNA/genetics , Circulating MicroRNA/blood , Oxygen Consumption/genetics , MicroRNAs/genetics , MicroRNAs/blood , Signal Transduction/genetics , FemaleABSTRACT
Scientific evidence shows that dietary patterns are a key environmental determinant of mental health. Dietary constituents can modify epigenetic patterns and thus the gene expression of relevant genetic variants in various mental health conditions. In the present work, we describe some nutrigenomic effects of dietary fiber, phenolic compounds (plant secondary metabolites), and fatty acids on mental health outcomes, with emphasis on their possible interactions with genetic and epigenetic aspects. Prebiotics, through their effects on the gut microbiota, have been associated with modulation in the neuroendocrine response to stress and the facilitation of the processing of positive emotions. Some of the genetic and epigenetic mechanisms include the serotonin neurotransmitter system (TPH1 gene) and the brain-derived neurotrophic factor (inhibition of histone deacetylases). The consumption of phenolic compounds exerts a positive role in neurocognitive domains. The evidence showing the involvement of genetic and epigenetic factors comes mainly from animal models, highlighting the role of epigenetic mechanisms through miRNAs and methyltransferases as well as the effect on the expression of apoptotic-related genes. Long-chain n-3 fatty acids (EPA and DHA) have been mainly related to psychotic and mood disorders, but the genetic and epigenetic evidence is scarce. Studies on the genetic and epigenetic basis of these interactions need to be promoted to move towards a precision and personalized approach to medicine.
Subject(s)
Dietary Fiber , Epigenesis, Genetic , Fatty Acids , Mental Health , Humans , Dietary Fiber/pharmacology , Animals , Gastrointestinal Microbiome/drug effects , Phenols/pharmacology , Nutrigenomics , Mental Disorders/geneticsABSTRACT
This work evaluated structured lipids (SLs) through chemical and enzymatic interesterification (CSLs and ESLs). Blends of soybean oil and peanut oil 1:1 wt% were used, with gradual addition of fully hydrogenated crambe to obtain a final behenic acid concentration of 6, 12, 18, and 24 %. Chemical catalysis used sodium methoxide (0.4 wt%) at 100 °C for 30 min, while enzymatic catalysis used Lipozyme TL IM (5 wt%) at 60 °C for 6 h. Major fatty acids identified were C16:0, C18:0, and C22:0. It was observed that with gradual increase of hard fat, the CSLs showed high concentrations of reaction intermediates, indicating further a steric hindrance, unlike ESLs. Increased hard fat also altered crystallization profile and triacylglycerols composition and ESLs showed lower solid fat, unlike CSLs. Both methods effectively produced SLs as an alternative to trans and palm fats, view to potential future applications in food products.
Subject(s)
Palm Oil , Soybean Oil , Palm Oil/chemistry , Soybean Oil/chemistry , Esterification , Peanut Oil/chemistry , Trans Fatty Acids/chemistry , Trans Fatty Acids/analysis , Fatty Acids/chemistry , Lipids/chemistry , Triglycerides/chemistry , Food Handling/methods , Lipase/chemistry , Lipase/metabolism , HydrogenationABSTRACT
There is a limited number of studies analyzing the molecular and biochemical processes regulating the metabolism of the maturation of Cocos nucifera L. zygotic embryos. Our research focused on the regulation of carbohydrate and lipid metabolic pathways occurring at three developmental stages of embryos from the Mexican Pacific tall (MPT) and the Yucatan green dwarf (YGD) cultivars. We used the TMT-synchronous precursor selection (SPS)-MS3 strategy to analyze the dynamics of proteomes from both embryos; 1044 and 540 proteins were determined for the MPT and YGD, respectively. A comparison of the differentially accumulated proteins (DAPs) revealed that the biological processes (BP) enriched in the MPT embryo included the glyoxylate and dicarboxylate metabolism along with fatty acid degradation, while in YGD, the nitrogen metabolism and pentose phosphate pathway were the most enriched BPs. Findings suggest that the MPT embryos use fatty acids to sustain a higher glycolytic/gluconeogenic metabolism than the YGD embryos. Moreover, the YGD proteome was enriched with proteins associated with biotic or abiotic stresses, e.g., peroxidase and catalase. The goal of this study was to highlight the differences in the regulation of carbohydrate and lipid metabolic pathways during the maturation of coconut YGD and MPT zygotic embryos.
Subject(s)
Carbohydrate Metabolism , Cocos , Fatty Acids , Plant Proteins , Seeds , Fatty Acids/metabolism , Plant Proteins/metabolism , Seeds/metabolism , Seeds/growth & development , Cocos/metabolism , Proteomics/methods , Proteome/metabolism , Lipid Metabolism , Gene Expression Regulation, PlantABSTRACT
The increasing need for sustainable alternatives to synthetic insecticides has driven the analysis of extracts from Solanum habrochaites, a wild tomato, through fractionated column chromatography. Potential bioactive compounds for pest management, a clean and promising biotechnological solution, have been reported from this plant. The objective is to provide detailed gas chromatography data, including peaks, structural formulas, and retention indices for the extracts of S. habrochaites aerial parts. Column chromatographic analysis was conducted with five fractions (F1, F2, F5, F3, and F4) of S. habrochaites extracts. Long-chain hydrocarbons such as hexadecanoic acid and docosano were identified in the F1 fraction; fatty acid esters, including hexadecanoate and octadecenoate ethyls in the F2 and methyl ketones, with tridecan-2-one as the major component in the F5, while no identifiable compounds were disclosed in the F3 and F4 fractions. The column chromatography provided valuable insights into compounds in the F1, F2, and F5 fractions of S. habrochaites extracts, highlighting fatty acid esters, long-chain hydrocarbons, and methyl ketones. The bioactive compounds, from extracts of this plant, including the first record of the docosanoate, hexadecanoate and octadecanoate ethyls in S. habrochaites and Solanaceae, reinforces their promising biological application in different areas of science.
Subject(s)
Plant Extracts , Solanum , Plant Extracts/chemistry , Solanum/chemistry , Chromatography, Gas , Fatty Acids/analysisABSTRACT
Several strains were isolated from subsurface soil of the Atacama Desert and were previously assigned to the Micromonospora genus. A polyphasic study was designed to determine the taxonomic affiliation of isolates 4G51T, 4G53, and 4G57. All the strains showed chemotaxonomic properties in line with their classification in the genus Micromonospora, including meso-diaminopimelic acid in the cell wall peptidoglycan, MK-9(H4) as major respiratory quinone, iso-C15:0 and iso-C16:0 as major fatty acids and diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylinositol as major polar lipids. The 16S rRNA gene sequences of strains 4G51T, 4G53, and 4G57 showed the highest similarity (97.9 %) with the type strain of Micromonospora costi CS1-12T, forming an independent branch in the phylogenetic gene tree. Their independent position was confirmed with genome phylogenies, being most closely related to the type strain of Micromonospora kangleipakensis. Digital DNA-DNA hybridization and average nucleotide identity analyses between the isolates and their closest phylogenomic neighbours confirmed that they should be assigned to a new species within the genus Micromonospora for which the name Micromonospora sicca sp. nov. (4G51T=PCM 3031T=LMG 30756T) is proposed.