ABSTRACT
The literature reveals gaps in the availability of green analytical methods for assessing products containing gatifloxacin (GFX), a fluoroquinolone. Presently, method development is supported by tools such as the National Environmental Methods Index (NEMI) and Eco-Scale Assessment (ESA), which offer objective insights into the environmental friendliness of analytical procedures. The objective of this work was to develop and validate a green method by the NEMI and ESA to quantify GFX in eye drops using HPLC. The method utilized a C8 column (4.6 × 150 mm, 5 µm), with a mobile phase of purified water containing 2% acetic acid and ethanol (70:30, v/v). The injection volume was 10 µL and the flow rate was 0.7 mL/min in isocratic mode at 25°C, with detection performed at 292 nm. The method demonstrated linearity in the range of 2-20 µg/mL, and precision at intra-day (relative standard deviation [RSD] 1.44%), inter-day (RSD 3.45%), and inter-analyst (RSD 2.04%) levels. It was selective regarding the adjuvants of the final product (eye drops) and under forced degradation conditions. The method was accurate (recovery 101.07%) and robust. The retention time for GFX was approximately 3.5 min. The greenness of the method, as evaluated by the NEMI, showed four green quadrants, and by ESA, it achieved a score of 88.
Subject(s)
Gatifloxacin , Green Chemistry Technology , Limit of Detection , Ophthalmic Solutions , Gatifloxacin/analysis , Gatifloxacin/chemistry , Chromatography, High Pressure Liquid/methods , Reproducibility of Results , Green Chemistry Technology/methods , Linear Models , Ophthalmic Solutions/chemistry , Ophthalmic Solutions/analysis , Fluoroquinolones/analysis , Fluoroquinolones/chemistryABSTRACT
Antimicrobial resistance is a global health problem. In 2021, it was estimated almost half a million of multidrug-resistant tuberculosis (MDR-TB) cases. Besides, non-tuberculous mycobacteria (NTM) are highly resistant to several drugs and the emergence of fluoroquinolone (FQ) resistant M. tuberculosis (Mtb) is also a global concern making treatments difficult and with variable outcome. The aim of this study was to evaluate the activity of the FQ, DC-159a, against Mtb and NTM and to explore the cross-resistance with the currently used FQs.A total of 12 pre-extensively drug-resistant (XDR) Mtb, 2 XDR, 36 fully drug susceptible strains and 41 NTM isolates were included to estimate the in vitro activity of DC-159a, moxifloxacin (MOX) and levofloxacin (LX), using minimal inhibitory and bactericidal concentration (MIC and MBC). The activity inside the human macrophages and pulmonary epithelial cells were also determined.DC-159a was active in vitro and ex vivo against mycobacteria. Besides, it was more active than MOX/LX. Moreover, no cross-resistance was evidenced between DC-159a and LX/MOX as DC-159a could inhibit Mtb and MAC strains that were already resistant to LX/MOX.DC-159a could be a possible candidate in new therapeutic regimens for MDR/ XDR-TB and mycobacterioses cases.
Subject(s)
Aminopyridines , Fluoroquinolones , Microbial Sensitivity Tests , Moxifloxacin , Mycobacterium tuberculosis , Fluoroquinolones/pharmacology , Humans , Mycobacterium tuberculosis/drug effects , Moxifloxacin/pharmacology , Antitubercular Agents/pharmacology , Nontuberculous Mycobacteria/drug effects , Levofloxacin/pharmacology , Macrophages/drug effects , Anti-Bacterial Agents/pharmacology , Drug Resistance, Multiple, Bacterial/drug effectsABSTRACT
Introduction. Salmonella 1,4, [5],12:i:- strains with different antimicrobial resistance profiles have been associated with foodborne disease outbreaks in several countries. In Brazil, S. 1,4, [5],12:i:- was identified as one of the most prevalent serovars in São Paulo State during 2004-2020.Gap Statement. However, few studies have characterized this serovar in Brazil.Aim. This study aimed to determine the antimicrobial resistance profiles of S. 1,4, [5],12:i:- strains isolated from different sources in Southeast Brazil and compare their genetic diversity.Methodology. We analysed 113 S. 1,4, [5],12:i:- strains isolated from humans (n=99), animals (n=7), food (n=5) and the environment (n=2) between 1983 and 2020. Susceptibility testing against 13 antimicrobials was performed using the disc diffusion method for all the strains. Plasmid resistance genes and mutations in the quinolone resistance-determining regions were identified in phenotypically fluoroquinolone-resistant strains. Molecular typing was performed using enterobacterial repetitive intergenic consensus PCR (ERIC-PCR) for all strains and multilocus sequence typing (MLST) for 40 selected strains.Results. Of the 113 strains, 54.87â% were resistant to at least one antimicrobial. The highest resistance rates were observed against ampicillin (51.33â%), nalidixic acid (39.82â%) and tetracycline (38.05â%). Additionally, 39 (34.51â%) strains were classified as multidrug-resistant (MDR). Nine fluoroquinolone-resistant strains exhibited the gyrA mutation (Ser96âTyr96) and contained the qnrB gene. The 113 strains were grouped into two clusters using ERIC-PCR, and most of strains were present in one cluster, with a genetic similarity of ≥80â%. Finally, 40 strains were typed as ST19 using MLST.Conclusion. The prevalence of MDR strains is alarming because antimicrobial treatment against these strains may lead to therapeutic failure. Furthermore, the ERIC-PCR and MLST results suggested that most strains belonged to one main cluster. Thus, a prevalent subtype of Salmonella 1,4, [5],12:i:- strains has probably been circulating among different sources in São Paulo, Brazil, over decades.
Subject(s)
Anti-Infective Agents , Salmonella , Humans , Animals , Multilocus Sequence Typing , Brazil/epidemiology , Salmonella/genetics , Anti-Bacterial Agents/pharmacology , Fluoroquinolones , Microbial Sensitivity Tests , Drug Resistance, Multiple, Bacterial/geneticsABSTRACT
Antibiotics from sulfonamide, fluoroquinolone, and diaminopyrimidine classes are widely used in human and veterinary medicine, and their combined occurrence in the aquatic environment is increasing around the world. In parallel, the understanding of how mixtures of these compounds affect non-target species from tropical freshwaters is scarce. Thus, this work aimed to study the long-term reproductive, recovery, and swimming effects of mixtures of 12 antibiotics from three different classes (up to 10 µg L-1 ) added to freshwater (FWM) and synthetic wastewater (SWM) matrices on freshwater worm Allonais inaequalis. Results revealed that at the reproduction level, the exposure to antibiotics in the SWM matrix does not cause a significant toxic effect on species after 10 days. On the other hand, exposures to initial dose mixtures (10 µg L-1 each) in FWM caused a significant reduction of offspring by 19.2%. In addition, recovery bioassays (10 days in an antibiotic-free environment) suggested that A. inaequalis has reduced offspring production due to previous exposure to antibiotic mixtures in both matrices. Furthermore, despite slight variation in swimming speed over treatments, no significant differences were pointed out. Regarding antibiotics in the water matrices after 10-day exposures, the highest concentrations were up to 2.7, 7.8, and 4.2 µg L-1 for antibiotics from sulfonamide, fluoroquinolone, and diaminopyrimidine classes, respectively. These findings suggest that a species positioned between primary producers and secondary consumers may experience late reproductive damage even in an antibiotic-free zone, after previous 10-day exposure to antibiotic mixtures. PRACTITIONER POINTS: A mixture of sulfonamide, fluoroquinolone, and diaminopyrimidine antibiotics in freshwater affects the offspring production of A. inaequalis after 10 days. After the 10-day antibiotic exposure, the reproduction of A. inaequalis remains affected in an antibiotic-free environment over the recovery period. The swimming speed of the worms does not change after 10 days of exposure to the antibiotic mixture. The concentration of dissolved solids can limit the natural degradation of sulfonamide, fluoroquinolone, and diaminopyrimidine antibiotics in the aquatic environment.
Subject(s)
Anti-Bacterial Agents , Water Pollutants, Chemical , Humans , Wastewater , Swimming , Fluoroquinolones/analysis , Fluoroquinolones/toxicity , Sulfanilamide , Sulfonamides , Fresh Water , Reproduction , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysisABSTRACT
The emergence and re-emergence of tick-borne bacteria (TBB) as a public health problem raises the uncertainty of antibiotic resistance in these pathogens, which could be dispersed to other pathogens. The impact of global warming has led to the emergence of pathogenic TBB in areas where they were not previously present and is another risk that must be taken into account under the One Health guides. This review aimed to analyze the existing information regarding antibiotic-resistant TBB and antibiotic-resistance genes (ARG) present in the tick microbiome, considering the potential to be transmitted to pathogenic microorganisms. Several Ehrlichia species have been reported to exhibit natural resistance to fluoroquinolones and typhus group Rickettsiae are naturally susceptible to erythromycin. TBB have a lower risk of acquiring ARG due to their natural habitat, but there is still a probability of acquiring them; furthermore, studies of these pathogens are limited. Pathogenic and commensal bacteria coexist within the tick microbiome along with ARGs for antibiotic deactivation, cellular protection, and efflux pumps; these ARGs confer resistance to antibiotics such as aminoglycosides, beta-lactamase, diaminopyrimidines, fluoroquinolones, glycopeptides, sulfonamides, and tetracyclines. Although with low probability, TBB can be a reservoir of ARGs.
Subject(s)
One Health , Humans , Bacteria , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Drug Resistance, Microbial/genetics , Genes, Bacterial , FluoroquinolonesABSTRACT
Here, we investigate the transcriptome profiles of two S. Enteritidis and one S. Schwarzengrund isolates that present different persister levels when exposed to ciprofloxacin or ceftazidime. It was possible to note a distinct transcript profile among isolates, time of exposure, and treatment. We could not find a commonly expressed transcript profile that plays a role in persister formation after S. enterica exposure to beta-lactam or fluoroquinolone, as only three DEGs presented the same behavior under the conditions and isolates tested. It appears that the formation of persisters in S. enterica after exposure to ciprofloxacin is linked to the overexpression of genes involved in the SOS response (recA), cell division inhibitor (sulA), iron-sulfur metabolism (hscA and iscS), and type I TA system (tisB). On the other hand, most genes differentially expressed in S. enterica after exposure to ceftazidime appeared to be downregulated and were part of the flagellar assembly apparatus, citrate cycle (TCA cycle), glycolysis/gluconeogenesis, carbon metabolism, bacterial secretion system, quorum sensing, pyruvate metabolism pathway, and biosynthesis of secondary metabolites. The different transcriptome profiles found in S. enterica persisters induced by ciprofloxacin and ceftazidime suggest that these cells modulate their response differently according to each stress.
Subject(s)
Anti-Infective Agents , Salmonella enterica , Fluoroquinolones/pharmacology , Anti-Bacterial Agents/pharmacology , Salmonella enterica/genetics , Ceftazidime/pharmacology , Transcriptome , Ciprofloxacin/pharmacology , Anti-Infective Agents/pharmacology , Microbial Sensitivity TestsABSTRACT
Antibiotic resistance is a global threat to public health, and the search for new antibacterial therapies is a current research priority. The aim of this in silico study was to test nine new fluoroquinolones previously designed with potential leishmanicidal activity against Campylobacter jejuni, Escherichia coli, Neisseria gonorrhoeae, Pseudomonas aeruginosa, and Salmonella typhi, all of which are considered by the World Health Organization to resistant pathogens of global concern, through molecular docking and molecular dynamics (MD) simulations using wild-type (WT) and mutant-type (MT) DNA gyrases as biological targets. Our results showed that compound 9FQ had the best binding energy with the active site of E. coli in both molecular docking and molecular dynamics simulations. Compound 9FQ interacted with residues of quinolone resistance-determining region (QRDR) in GyrA and GyrB chains, which are important to enzyme activity and through which it could block DNA replication. In addition to compound 9FQ, compound 1FQ also showed a good affinity for DNA gyrase. Thus, these newly designed molecules could have antibacterial activity against Gram-negative microorganisms. These findings represent a promising starting point for further investigation through in vitro assays, which can validate the hypothesis and potentially facilitate the development of novel antibiotic drugs.
Subject(s)
Fluoroquinolones , Quinolones , Fluoroquinolones/pharmacology , Fluoroquinolones/chemistry , Escherichia coli/metabolism , Molecular Docking Simulation , Anti-Bacterial Agents/chemistry , Quinolones/chemistry , DNA Gyrase/chemistry , Drug Resistance, Bacterial , Microbial Sensitivity TestsABSTRACT
Infectious keratitis is a sight-threatening condition that is usually an ocular emergency. The visual outcome depends on prompt and accurate clinical management as well as geographic and epidemiological awareness. We conducted a retrospective observational study to define the epidemiological and laboratory profile, as well as the clinical course of bacterial keratitis in a tertiary hospital in São Paulo over 21 years. Information about age, sex, predisposing factors, topical and surgical treatment, visual acuity, ulcers' classification, bacterioscopy, culture, and antibiotic sensitivity tests were collected. This study included 160 patients. The mean age was 65.1 ± 18.4 years and risk factors were identified in 83.1 % of the patients. Empirical topical fortified cephalosporin with an aminoglycoside or fourth-generation fluoroquinolone was curative for 66.2 % of the cases. The mean treatment duration was 22.5 ± 9 days. The mean variation of visual acuity was -0.25 logMAR, p < 0.001. Culture revealed 64 % of Gram-positive bacteria. All Gram-positive bacteria were sensitive to cephalothin, vancomycin, and quinolones. All Gram-negative bacteria were sensitive to gentamicin, tobramycin, amikacin, and ciprofloxacin. These findings reinforce the importance of prompt empirical treatment of severe corneal ulcers with a fortified cephalosporin and aminoglycoside or a fourth-generation fluoroquinolone as there are equally effective. Collected data was insufficient to evaluate resistance of ocular infections over time in this population.
Subject(s)
Eye Infections, Bacterial , Keratitis , Humans , Middle Aged , Aged , Aged, 80 and over , Ulcer/drug therapy , Tertiary Care Centers , Brazil/epidemiology , Keratitis/drug therapy , Keratitis/epidemiology , Keratitis/microbiology , Eye Infections, Bacterial/drug therapy , Eye Infections, Bacterial/epidemiology , Eye Infections, Bacterial/microbiology , Anti-Bacterial Agents/therapeutic use , Fluoroquinolones/therapeutic use , Gram-Positive Bacteria , Cephalosporins , Aminoglycosides/therapeutic use , Retrospective Studies , Risk Factors , Microbial Sensitivity TestsABSTRACT
BACKGROUND: Marbofloxacin (MAR) is a veterinary antimicrobial, marketed in injectable solution, oral suspension, and tablets. MAR has no monograph for tablet evaluation in official compendiums. High Performance Liquid Chromatography (HPLC) methods present in the literature for evaluating MAR in tablets do not follow the principles of green and sustainable analytical chemistry. OBJECTIVE: A green, clean, and sustainable method by HPLC was developed and validated to evaluate the content and stability of MAR in tablets, in addition to comparing it with other methods available in the literature. METHOD: A C8, 5 µm, 4.6 × 150 mm (ACE®) column, purified water with 0.2% formic acid-ethanol (70:30, v/v) as the mobile phase, and a flow rate of 0.7 mL/min at 296 nm were used. RESULTS: The method was linear over a concentration range of 1-10 µg/mL, selective for tablet matrix and forced degradation, precise with relative standard deviations (RDS) less than 5%, accurate with recovery of 99.99%, and robust to changes in the mobile phase, flow rate, wavelength, equipment, and column brand. The retention time for MAR was approximately 3.1 min. CONCLUSIONS: The method can be used in routine analysis of MAR in tablets in chemical-pharmaceutical laboratories. Furthermore, it can be used to verify the stability of MAR-based products and proved to be interchangeable with spectrophotometric method in the UV region and turbidimetric microbiological method. HIGHLIGHTS: A green method for evaluation of marbofloxacin tablets by HPLC was developed and validated. Additionally, it has been shown to be interchangeable with UV and turbidimetric methods.
Subject(s)
Fluoroquinolones , Chromatography, High Pressure Liquid/methods , Indicators and Reagents , Tablets , Reproducibility of ResultsABSTRACT
Antimicrobial resistance is a major global public health problem, with fluoroquinolone-resistant strains of Escherichia coli posing a significant threat. This study examines the genetic characterization of ESBL-producing E. coli isolates in Mexican hospitals, which are resistant to both cephalosporins and fluoroquinolones. A total of 23 ESBL-producing E. coli isolates were found to be positive for the qepA gene, which confers resistance to fluoroquinolones. These isolates exhibited drug resistance phenotypes and belonged to specific sequence types and phylogenetic groups. The genetic context of the qepA gene was identified in a novel genetic context flanked by IS26 sequences. Mating experiments showed the co-transfer of qepA1 and chrA determinants alongside blaCTX-M-15 genes, emphasizing the potential for these genetic structures to spread among Enterobacterales. The emergence of multidrug-resistant Gram-negative bacteria carrying these resistance genes is a significant clinical concern for public healthcare systems.
Subject(s)
Escherichia coli Infections , Fluoroquinolones , Humans , Fluoroquinolones/pharmacology , Escherichia coli , Anti-Bacterial Agents/pharmacology , Phylogeny , Mexico , Escherichia coli Infections/microbiology , Plasmids/genetics , beta-Lactamases/geneticsABSTRACT
Structure-activity relationship (SAR) studies allow the evaluation of the relationship between structural chemical changes and biological activity. Fluoroquinolones have chemical characteristics that allow their structure to be modified and new analogs with different therapeutic properties to be generated. The objective of this research is to identify and select the C-7 heterocycle fluoroquinolone analog (FQH 1-5) with antibacterial activity similar to the reference fluoroquinolone through in vitro, in silico, and in vivo evaluations. First, SAR analysis was conducted on the FQH 1-5, using an in vitro antimicrobial sensibility model in order to select the best compound. Then, an in silico model mechanism of action analysis was carried out by molecular docking. The non-bacterial cell cytotoxicity was evaluated, and finally, the antimicrobial potential was determined by an in vivo model of topical infection in mice. The results showed antimicrobial differences between the FQH 1-5 and Gram-positive and Gram-negative bacteria, identifying the 7-benzimidazol-1-yl-fluoroquinolone (FQH-2) as the most active against S. aureus. Suggesting the same mechanism of action as the other fluoroquinolones; no cytotoxic effects on non-bacterial cells were found. FQH-2 was demonstrated to decrease the amount of bacteria in infected wound tissue.
Subject(s)
Anti-Bacterial Agents , Anti-Infective Agents , Animals , Mice , Anti-Bacterial Agents/pharmacology , Fluoroquinolones/pharmacology , Molecular Docking Simulation , Staphylococcus aureus , Gram-Negative Bacteria , Gram-Positive Bacteria , Structure-Activity RelationshipABSTRACT
BACKGROUND: Antimicrobial resistance is a global threat, heavily impacting low- and middle-income countries. This study estimated antimicrobial-resistant gram-negative bacteria (GNB) fecal colonization prevalence in hospitalized and community-dwelling adults in Chile before the coronavirus disease 2019 pandemic. METHODS: From December 2018 to May 2019, we enrolled hospitalized adults in 4 public hospitals and community dwellers from central Chile, who provided fecal specimens and epidemiological information. Samples were plated onto MacConkey agar with ciprofloxacin or ceftazidime added. All recovered morphotypes were identified and characterized according to the following phenotypes: fluoroquinolone-resistant (FQR), extended-spectrum cephalosporin-resistant (ESCR), carbapenem-resistant (CR), or multidrug-resistant (MDR; as per Centers for Disease Control and Prevention criteria) GNB. Categories were not mutually exclusive. RESULTS: A total of 775 hospitalized adults and 357 community dwellers were enrolled. Among hospitalized subjects, the prevalence of colonization with FQR, ESCR, CR, or MDR-GNB was 46.4% (95% confidence interval [CI], 42.9-50.0), 41.2% (95% CI, 37.7-44.6), 14.5% (95% CI, 12.0-16.9), and 26.3% (95% CI, 23.2-29.4). In the community, the prevalence of FQR, ESCR, CR, and MDR-GNB colonization was 39.5% (95% CI, 34.4-44.6), 28.9% (95% CI, 24.2-33.6), 5.6% (95% CI, 3.2-8.0), and 4.8% (95% CI, 2.6-7.0), respectively. CONCLUSIONS: A high burden of antimicrobial-resistant GNB colonization was observed in this sample of hospitalized and community-dwelling adults, suggesting that the community is a relevant source of antibiotic resistance. Efforts are needed to understand the relatedness between resistant strains circulating in the community and hospitals.
Subject(s)
Anti-Infective Agents , COVID-19 , Gram-Negative Bacterial Infections , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Bacteria , Carbapenems , Cephalosporins , Chile/epidemiology , Drug Resistance, Microbial , Drug Resistance, Multiple, Bacterial , Fluoroquinolones , Gram-Negative Bacteria , Gram-Negative Bacterial Infections/drug therapy , Hospitals , Risk Factors , AdultABSTRACT
OBJECTIVES: The aim of this study was to perform a genomic investigation of a multiple fluoroquinolone-resistant Leclercia adecarboxylata strain isolated from a synanthropic pigeon in São Paulo, Brazil. METHODS: Whole-genome sequencing was performed using an Illumina platform, and in silico deep analyses of the resistome were performed. Comparative phylogenomics was conducted using a global collection of publicly available genomes of L. adecarboxylata strains isolated from human and animal hosts. RESULTS: L. adecarboxylata strain P62P1 displayed resistance to human (norfloxacin, ofloxacin, ciprofloxacin, and levofloxacin) and veterinary (enrofloxacin) fluoroquinolones. This multiple quinolone-resistant profile was associated with mutations in the gyrA (S83I) and parC (S80I) genes and the presence of the qnrS gene within an ISKpn19-orf-qnrS1-ΔIS3-blaLAP-2 module, previously identified in L. adecarboxylata strains isolated from pig feed and faeces in China. Genes associated with arsenic, silver, copper, and mercury resistance were also predicted. Phylogenomic analysis revealed clustering (378-496 single nucleotide polymorphism differences) with two L. adecarboxylata strains isolated from human and fish sources in China and Portugal, respectively. CONCLUSIONS: L. adecarboxylata is a Gram-negative bacterium of the Enterobacterales order and is considered an emergent opportunistic pathogen. Since L. adecarboxylata has adapted to human and animal hosts, genomic surveillance is highly recommended, in order to identify the emergence and spread of resistant lineages and high-risk clones. In this regard, this study provides genomic data that can help clarify the role of synanthropic animals in the dissemination of clinically relevant L. adecarboxylata within a One Health context.
Subject(s)
Columbidae , Fluoroquinolones , Humans , Animals , Swine , Fluoroquinolones/pharmacology , Brazil , DNA Gyrase/genetics , Microbial Sensitivity Tests , GenomicsABSTRACT
BACKGROUND: Bacterial resistance to extended-spectrum beta-lactamases (ESBL) is present worldwide. Empirical antibiotic therapy is often needed, and the use of fluoroquinolones, such as ciprofloxacin and norfloxacin, is common. This study aimed to analyze the urine cultures from 2,680 outpatients in January 2019, 2020, 2021, and 2022, with bacterial counts above 100,000 CFU/mL in which Escherichia coli was the etiological agent. METHODS: We monitored the resistance of ESBL-positive and ESBL-negative strains to ciprofloxacin and norfloxacin and evaluated resistance rates. RESULTS: Significantly higher fluoroquinolone resistance rates were observed among ESBL-positive strains in all years studied. Furthermore, a significant increase in the rate of fluoroquinolone resistance was observed between 2021 and 2022 in ESBL-positive and -negative strains, as well as from 2020 to 2021 among the ESBL-positive strains. CONCLUSIONS: The data obtained in the present study showed a tendency towards an increase in fluoroquinolone resistance among ESBL-positive and -negative E. coli strains isolated from urine cultures in Brazil. Since empirical antibiotic therapy with fluoroquinolones is commonly used to treat diverse types of infections, such as community-acquired urinary tract infections, this work highlights the need for continuous monitoring of fluoroquinolone resistance among E. coli strains circulating in the community, which can mitigate the frequency of therapeutic failures and development of widespread multidrug-resistant strains.
Subject(s)
Community-Acquired Infections , Escherichia coli Infections , Urinary Tract Infections , Humans , Fluoroquinolones/pharmacology , Escherichia coli , Escherichia coli Infections/drug therapy , Escherichia coli Infections/microbiology , Norfloxacin , beta-Lactamases , Urinary Tract Infections/drug therapy , Urinary Tract Infections/microbiology , Ciprofloxacin , Community-Acquired Infections/drug therapy , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Microbial Sensitivity TestsABSTRACT
BACKGROUND: Endophthalmitis is a serious infectious complication of cataract surgery, which may lead to vision loss. Aim: To evaluate the effectiveness of intracameral moxifloxacin in reducing endophthalmitis after cataract surgery in Chilean patients. MATERIAL AND METHODS: We reviewed all phacoemulsification surgeries performed between 2012 and 2020 at a public hospital. The use of intraoperative intracameral moxifloxacin and possible surgical complications were recorded. In patients with postoperative endophthalmitis, we reviewed their risk factors and clinical characteristics. RESULTS: In the study, 22,869 phacoemulsification surgeries were registered, with an annual average of 2,541. The use of prophylactic intracameral moxifloxacin started progressively in 2014. In 2018 it was used in 88% of the surgeries. Fifteen eyes evolved with postoperative endophthalmitis, but none of these surgeries used intracameral moxifloxacin. Five and seven cases occurred in 2012 and 2013, respectively. There was a trend favoring moxifloxacin use, as a preventive measure for endophthalmitis, but the difference between groups was not significant (p = 0.56). In the group with endophthalmitis, 33.3% of the eyes were from patients with type 2 diabetes mellitus, in 13.3% there was rupture of the posterior capsule and 60% of the eyes corresponded to female patients. Since 2018 there is no record of endophthalmitis after cataract surgery performed in this center. Conclusions: Intracameral moxifloxacin showed a tendency to reduce the frequency of endophthalmitis after phacoemulsification surgery, but a longer observation period is required to reach statistical significance, due to the low frequency of this complication.
Subject(s)
Humans , Cataract/drug therapy , Endophthalmitis/etiology , Endophthalmitis/prevention & control , Endophthalmitis/drug therapy , Postoperative Complications/prevention & control , Antibiotic Prophylaxis , Fluoroquinolones/therapeutic use , Moxifloxacin , Anti-Bacterial Agents/therapeutic useABSTRACT
INTRODUCTION: Non-typhoidal Salmonella (NTS), are frequently found in sewage and are one of the main causes of diarrhea in developed and developing countries due to poor sanitation conditions. In addition, NTS can potentially act as reservoirs and vehicles for the transmission of antimicrobial resistance (AMR), which can be facilitated by the discharge of sewage effluents into environmental matrices. This study aimed to analyze a NTS Brazilian collection, focusing on their antimicrobial susceptibility profile and the presence of clinically relevant AMR-encoding genes. METHODOLOGY: Forty-five non-clonal NTS strains from serotypes Salmonella enteritidis (n = 6), Salmonella enterica serovar 1,4,[5],12:i:- (S. 1,4,[5],12:i:-) (n = 25), Salmonella cerro (n = 7), Salmonella typhimurium (n = 3) and Salmonella braenderup (n = 4) were studied. Antimicrobial susceptibility testing was done using the Clinical and Laboratory Standards Institute guidelines (2017) and genes encoding resistance to beta-lactams, fluoroquinolones and aminoglycosides were identified by polymerase chain reaction and sequencing. RESULTS: Resistance to ß-lactams, fluoroquinolones, tetracyclines and aminoglycosides was frequent. The highest rates were observed for nalidixic acid (89.0%), followed by tetracycline (67.0%), ampicillin (67.0%), amoxicillin + clavulanic acid (64.0%); ciprofloxacin (47.0%) and streptomycin (42.0%). The AMR-encoding genes detected were qnrB, oqxAB, blaCTX-M and rmtA. CONCLUSIONS: Raw sewage has been considered a valuable tool to evaluate epidemiological population patterns and this study supports the view that NTS with pathogenic potential and resistance to antimicrobials are circulating in the studied region. This is worrisome due to the dissemination of these microorganisms throughout the environment.
Subject(s)
Anti-Infective Agents , Typhoid Fever , Humans , Brazil/epidemiology , Sewage , Anti-Infective Agents/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Typhoid Fever/drug therapy , Salmonella typhimurium/genetics , Fluoroquinolones , Aminoglycosides , beta-Lactams , Microbial Sensitivity Tests , Drug Resistance, BacterialABSTRACT
Salmonella serovars Heidelberg and Minnesota encoding antimicrobial resistance to third-generation cephalosporins and fluoroquinolones are often detected in poultry/poultry meat. We analysed the genomes of 10 Salmonella Heidelberg (SH) and 4 Salmonella Minnesota (SM) from faecal isolates of Brazilian poultry. These featured virulent and multidrug-resistant characteristics, with AmpC beta-lactamase (blaCMY-2 ) predominance (9/14), for all SM (4/4) and some SH (3/10) located on IncC plasmid replicons. IncC carrying blaCTX-M-2 was only detected among SH (3/10). Mutation in the gyrA/parC genes was present in all SH, whereas SM harboured parC mutation plus qnrB19 on ColRNAI plasmids (3/4). In silico resistance overall corroborated with phenotypic results. Core genome phylogenies showed close clustering and high similarities between the Brazilian and poultry meat/food isolates from Europe, and to human isolates from European countries with documented import of Brazilian poultry meat. Conjugation assays with SM successfully transferred blaCMY-2 , and qnrB19 to an Escherichia coli recipient. The findings reinforce the ongoing antimicrobial resistance acquisition of SH and Minnesota and the risks for disseminating resistant strains and/or mobile elements which may increasingly affect importing countries and the need for controlling AMR in major poultry-exporting countries like Brazil.
Subject(s)
Anti-Bacterial Agents , Fluoroquinolones , Animals , Humans , Fluoroquinolones/pharmacology , Anti-Bacterial Agents/pharmacology , Chickens/genetics , Brazil , Drug Resistance, Multiple, Bacterial/genetics , beta-Lactamases/genetics , Poultry/genetics , Salmonella/genetics , Escherichia coli/genetics , Plasmids/genetics , Cephalosporins/pharmacology , GenomicsABSTRACT
We assessed the performance of MTBDRsl for detection of resistance to fluoroquinolones, aminoglycosides/cyclic peptides, and ethambutol compared to BACTEC MGIT 960 by subjecting simultaneously to both tests 385 phenotypically multidrug-resistant-Mycobacterium tuberculosis isolates from Sao Paulo, Brazil. Discordances were resolved by Sanger sequencing. MTBDRsl correctly detected 99.7% of the multidrug-resistant isolates, 87.8% of the pre-XDR, and 73.9% of the XDR. The assay showed sensitivity of 86.4%, 100%, 85.2% and 76.4% for fluoroquinolones, amikacin/kanamycin, capreomycin and ethambutol, respectively. Specificity was 100% for fluoroquinolones and aminoglycosides/cyclic peptides, and 93.6% for ethambutol. Most fluoroquinolone-discordances were due to mutations in genome regions not targeted by the MTBDRsl v. 1.0: gyrA_H70R and gyrB_R446C, D461N, D449V, and N488D. Capreomycin-resistant isolates with wild-type rrs results on MTBDRsl presented tlyA mutations. MTBDRsl presented good performance for detecting resistance to second-line drugs and ethambutol in clinical isolates. In our setting, multidrug-resistant. isolates presented mutations not targeted by the molecular assay.
Subject(s)
Aminoglycosides , Antitubercular Agents , Drug Resistance, Multiple, Bacterial , Ethambutol , Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Humans , Aminoglycosides/pharmacology , Antitubercular Agents/pharmacology , Brazil , Capreomycin/pharmacology , Ethambutol/pharmacology , Fluoroquinolones/pharmacology , Genotype , Microbial Sensitivity Tests , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/isolation & purification , Tuberculosis, Multidrug-Resistant/microbiology , Drug Resistance, Multiple, Bacterial/genetics , Genotyping TechniquesABSTRACT
Diabetes mellitus (DM) is a non-communicable disease throughout the world in which there is persistently high blood glucose level from the normal range. The diabetes and insulin resistance are mainly responsible for the morbidities and mortalities of humans in the world. This disease is mainly regulated by various enzymes and hormones among which Glycogen synthase kinase-3 (GSK-3) is a principle enzyme and insulin is the key hormone regulating it. The GSK-3, that is the key enzyme is normally showing its actions by various mechanisms that include its phosphorylation, formation of protein complexes, and other cellular distribution and thus it control and directly affects cellular morphology, its growth, mobility and apoptosis of the cell. Disturbances in the action of GSK-3 enzyme may leads to various disease conditions that include insulin resistance leading to diabetes, neurological disease like Alzheimers disease and cancer. Fluoroquinolones are the most common class of drugs that shows dysglycemic effects via interacting with GSK-3 enzyme. Therefore, it is the need of the day to properly understand functions and mechanisms of GSK-3, especially its role in glucose homeostasis via effects on glycogen synthase.(AU)
O diabetes mellitus (DM) é uma doença não transmissível em todo o mundo, na qual existe nível glicêmico persistentemente alto em relação à normalidade. O diabetes e a resistência à insulina são os principais responsáveis pelas morbidades e mortalidades de humanos no mundo. Essa doença é regulada principalmente por várias enzimas e hormônios, entre os quais a glicogênio sintase quinase-3 (GSK-3) é uma enzima principal e a insulina é o principal hormônio que a regula. A GSK-3, que é a enzima-chave, normalmente mostra suas ações por vários mecanismos que incluem sua fosforilação, formação de complexos de proteínas e outras distribuições celulares e, portanto, controla e afeta diretamente a morfologia celular, seu crescimento, mobilidade e apoptose do célula. Perturbações na ação da enzima GSK-3 podem levar a várias condições de doença que incluem resistência à insulina que leva ao diabetes, doenças neurológicas como a doença de Alzheimer e câncer. As fluoroquinolonas são a classe mais comum de drogas que apresentam efeitos disglicêmicos por meio da interação com a enzima GSK-3. Portanto, é necessário hoje em dia compreender adequadamente as funções e mecanismos da GSK-3, principalmente seu papel na homeostase da glicose via efeitos na glicogênio sintase.(AU)