Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 218
Filter
1.
Exp Neurol ; 377: 114785, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38670250

ABSTRACT

Spinal cord injury (SCI) results from various mechanisms that damage the nervous tissue and the blood-brain barrier, leading to sensory and motor function loss below the injury site. Unfortunately, current therapeutic approaches for SCI have limited efficacy in improving patients outcomes. Galectin-3, a protein whose expression increases after SCI, influences the neuroinflammatory response by favoring pro-inflammatory M1 macrophages and microglia, while inhibiting pro-regenerative M2 macrophages and microglia, which are crucial for inflammation resolution and tissue regeneration. Previous studies with Galectin-3 knock-out mice demonstrated enhanced motor recovery after SCI. The M1/M2 balance is strongly influenced by the predominant lymphocytic profiles (Th1, Th2, T Reg, Th17) and cytokines and chemokines released at the lesion site. The present study aimed to investigate how the absence of galectin-3 impacts the adaptive immune system cell population dynamics in various lymphoid spaces following a low thoracic spinal cord compression injury (T9-T10) using a 30 g vascular clip for one minute. It also aimed to assess its influence on the functional outcome in wild-type (WT)and Galectin-3 knock-out (GALNEG) mice. Histological analysis with hematoxylin-eosin and Luxol Fast Blue staining revealed that WT and GALNEG animals exhibit similar spinal cord morphology. The absence of galectin-3 does not affect the common neuroanatomy shared between the groups prompting us to analyze outcomes between both groups. Following our crush model, both groups lost motor and sensory functions below the lesion level. During a 42-day period, GALNEG mice demonstrated superior locomotor recovery in the Basso Mouse Scale (BMS) gait analysis and enhanced motor coordination performance in the ladder rung walk test (LRW) compared to WT mice. GALNEG mice also exhibited better sensory recovery, and their electrophysiological parameters suggested a higher number of functional axons with faster nerve conduction. Seven days after injury, flow cytometry of thymus, spleen, and blood revealed an increased number of T Reg and Th2 cells, accompanied by a decrease in Th1 and Th17 cells in GALNEG mice. Immunohistochemistry conducted on the same day exhibited an increased number of Th2 and T Reg cells around the GALNEG's spinal cord lesion site. At 42-day dpi immunohistochemistry analyses displayed reduced astrogliosis and greater axon preservation in GALNEG's spinal cord seem as a reduction of GFAP immunostaining and an increase in NFH immunostaining, respectively. In conclusion, GALNEG mice exhibited better functional recovery attributed to the milder pro-inflammatory influence, compensated by a higher quantity of T Reg and Th2 cells. These findings suggest that galectin-3 plays a crucial role in the immune response after spinal cord injury and could be a potential target for clinical therapeutic interventions.


Subject(s)
Galectin 3 , Mice, Inbred C57BL , Mice, Knockout , Recovery of Function , Spinal Cord Injuries , Animals , Spinal Cord Injuries/pathology , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/physiopathology , Recovery of Function/physiology , Galectin 3/metabolism , Galectin 3/genetics , Mice , Lymphocytes/metabolism , Female , Male
2.
Mol Biol Rep ; 50(11): 9019-9027, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37716919

ABSTRACT

BACKGROUND: Biochemical markers and imaging tests have been used with the aim of stratifying the risk and detecting atrial fibrosis. Speckle-tracking echocardiography (STE) is used for the detection of atrial fibrosis and Gal-3 provides an important prognostic value. The objective of the study was to assess the association between atrial fibrosis markers and serum levels, genetic polymorphisms and genic expression of galectin-3. METHODS: 206 patients with permanent AF and 70 patients with paroxysmal AF were included in the study. Real time PCR (TaqMan) system was used to study SNPs rs4652 and 4644 of the gene LGALS3. Serum levels of Gal-3 were determined by ELISA and STE was performed to assess fibrosis. RESULTS: Mean age of individuals with permanent AF was 66.56 ± 12 years. As for the echocardiography results, those patients showed an decrease in the following parameters peak atrial longitudinal strain (PALS) (p = 0.002) when compared to the same parameters from the paroxysmal AF group of patients. There was a correlation between serum levels of Gal-3 and PALS in the group of patients with permanent AF; the lower the levels of gal-3, the lower the LA strain (r = 0.24; p = 0.01). CONCLUSIONS: Echocardiographic findings showed association with the groups, and with serum levels of Gal-3 in patients with permanent AF. The distribution of allelic and genotypic frequencies, and of the haplotypes of polymorphism LGALS3 rs4652 and rs4644 did not present statistical variation, which suggests that those SNPs are not associated with the AF clinical forms (permanent and paroxysmal).


Subject(s)
Atrial Fibrillation , Humans , Middle Aged , Aged , Atrial Fibrillation/diagnostic imaging , Atrial Fibrillation/genetics , Galectin 3/genetics , Heart Atria/diagnostic imaging , Heart Atria/pathology , Echocardiography/methods , Fibrosis
3.
Rev Assoc Med Bras (1992) ; 69(8): e20220940, 2023.
Article in English | MEDLINE | ID: mdl-37610926

ABSTRACT

OBJECTIVE: Sepsis and septic shock are clinical conditions with high mortality and an ever-increasing prevalence, and early diagnosis is of great importance in treating these diseases. Increase in serum Galectin-3 protein in septic patients is associated with increased inflammation, which in turn is associated with mortality. This study aimed to investigate the diagnostic importance of serum Galectin-3 levels and its relationship with in-hospital mortality in sepsis and septic shock patients. METHODS: This prospective cohort study included 44 sepsis and 44 septic shock patients. Sequential Organ Failure Assessment score and Acute Physiology and Chronic Health Evaluation 2 score were calculated. In addition, routine clinical and laboratory parameters along with serum Galectin-3 were evaluated. RESULTS: Serum Galectin-3 levels were significantly higher in the septic shock group [4.1 (0.1-10.2) vs. 6.0 (0.1-11.3) ng/mL, respectively; p=0.01]. Moreover, patients with a Galectin-3 level <6.94 ng/mL were associated with longer survival [31.4 vs. 23.1 days; hazards ratio, 1.85; 1.03-3.34, p=0.03]. More importantly, the need for mechanical ventilation, the duration of mechanical ventilation, and serum Galectin-3 levels were independent prognostic factors and predicted poor in-hospital survival in both sepsis and septic shock patients. CONCLUSION: These findings suggest that Galectin-3 levels are higher in septic shock patients and predict mortality. In addition, high serum Galectin-3 levels, together with mechanical ventilation requirement and mechanical ventilation duration, are closely associated with poor in-hospital survival. Therefore, Galectin-3 may be a valuable diagnostic and prognostic biomarker in these patients.


Subject(s)
Sepsis , Shock, Septic , Humans , Galectin 3 , Prospective Studies , Sepsis/diagnosis , Prognosis
4.
Microsc Res Tech ; 86(10): 1353-1362, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37070727

ABSTRACT

Melanoma is originated from the malignant transformation of the melanocytes and is characterized by a high rate of invasion, the more serious stage compromising deeper layers of the skin and eventually leading to the metastasis. A high mortality due to melanoma lesion persists because most of melanoma lesions are detected in advanced stages, which decreases the chances of survival. The identification of the principal mechanics implicated in the development and progression of melanoma is essential to devise new early diagnosis strategies. Cell mechanics is related with a lot of cellular functions and processes, for instance motility, differentiation, migration and invasion. In particular, the elastic modulus (Young's modulus) is a very explored parameter to describe the cell mechanical properties; most cancer cells reported in the literature smaller elasticity modulus. In this work, we show that the elastic modulus of melanoma cells lacking galectin-3 is significantly lower than those of melanoma cells expressing galectin-3. More interestingly, the gradient of elastic modulus in cells from the nuclear region towards the cell periphery is more pronounced in shGal3 cells. RESEARCH HIGHLIGHTS: AFM imaging and force spectroscopy were used to investigate the morphology and elasticity properties of healthy HaCaT cells and melanoma cells WM1366, with (shSCR) and without (shGal3) expression of galectin-3. It is shown the effect of galectin-3 protein on the elastic properties of cells: the cells without expression of galectin-3 presents lower elastic modulus. By the results, we suggest here that galectin-3 could be used as an effective biomarker of malignancy in both melanoma diagnostic and prognosis.


Subject(s)
Galectin 3 , Melanoma , Humans , Elasticity , Elastic Modulus/physiology , Cell Differentiation , Microscopy, Atomic Force/methods
5.
Front Endocrinol (Lausanne) ; 14: 1124111, 2023.
Article in English | MEDLINE | ID: mdl-36936148

ABSTRACT

Prostate cancer remains the most prevalent cancer among men worldwide. This cancer is hormone-dependent; therefore, androgen, estrogen, and their receptors play an important role in development and progression of this disease, and in emergence of the castration-resistant prostate cancer (CRPC). Galectins are a family of ß-galactoside-binding proteins which are frequently altered (upregulated or downregulated) in a wide range of tumors, participating in different stages of tumor development and progression, but the molecular mechanisms which regulate its expression are still poorly understood. This review provides an overview of the current and emerging knowledge on Galectin-3 in cancer biology with focus on prostate cancer and the interplay with estrogen receptor (ER) signaling pathways, present in androgen-independent prostate cancer cells. We suggest a molecular mechanism where ER, Galectin-3 and ß-catenin can modulate nuclear transcriptional events, such as, proliferation, migration, invasion, and anchorage-independent growth of androgen-independent prostate cancer cells. Despite a number of achievements in targeted therapy for prostate cancer, CRPC may eventually develop, therefore new effective drug targets need urgently to be found. Further understanding of the role of Galectin-3 and ER in prostate cancer will enhance our understanding of the molecular mechanisms of prostate cancer development and the future treatment of this disease.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Male , Humans , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/metabolism , Prostatic Neoplasms, Castration-Resistant/pathology , Receptors, Estrogen , Galectin 3/genetics , Androgens/therapeutic use , Receptors, Androgen/metabolism , Galectins
6.
Oncol Rep ; 49(5)2023 May.
Article in English | MEDLINE | ID: mdl-36960864

ABSTRACT

The aim of the present study was to investigate the role of estrogen receptor (ER)α and ERß, and galectin­3 (GAL­3) in migration and invasion of androgen­independent DU­145 prostate cancer cells, and to examine the regulation of the expression of GAL­3 by the activation of these receptors. Wound healing and cell invasion assays were performed using the control (basal level of cellular function) and treated DU­145 cells. At 24 h of treatment, 17ß­estradiol (E2), the ERα­selective agonist, 4,4',4"­(4­propyl­(1H)­pyrazole­1,3,5­triyl)trisphenol (PPT), or the ERß­selective agonist, 2,3­bis(4­hydroxyphenyl)­propionitrile (diarylprepionitrile; DPN), increased the migration and invasion of the DU­145 cells. Pre­treatment with the ERα­ and ERß­selective antagonists blocked these effects, indicating that ERα and ERß are upstream receptors regulating these processes. Western blot analysis and immunofluorescence staining for the detection of the GAL­3 were performed using the control and treated DU­145 cells. Treatment of the DU­145 cells with E2, PPT or DPN for 24 h increased the expression of the GAL­3 compared to the control. Furthermore, a specific inhibitor of GAL­3 (VA03) inhibited the migration and invasion of DU­145 cells, indicating the involvement of the complex ERα/GAL­3 and ERß/GAL­3 in the regulation of these processes. On the whole, the present study demonstrates that the activation of both ERs increases the expression and signaling of GAL­3, and promotes the migration and invasion of DU­145 cells. The findings of the present study provide novel insight into the signatures and molecular mechanisms of ERα and ERß in DU­145 cells.


Subject(s)
Prostatic Neoplasms , Receptors, Estrogen , Male , Humans , Estrogen Receptor alpha/metabolism , Galectin 3 , Androgens , Estrogen Receptor beta/genetics , Estrogen Receptor beta/metabolism , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/metabolism , Estradiol/pharmacology
7.
Life Sci ; 318: 121505, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36804309

ABSTRACT

AIMS: Evaluate the role of galectin-3 in the liver using an acute model of cisplatin-induced toxicity. MATERIAL AND METHODS: Modified citrus pectin (MCP) treatment was used to inhibit galectin-3. Rats were distributed into four groups: SHAM, CIS, MCP and MCP + CIS. On days 1-7, animals were treated by oral gavage with 100 mg/kg/day of MCP (MCP and MCP + CIS groups). On days 8, 9 and 10, animals received intraperitoneal injection of 10 mg/kg/day of cisplatin (CIS and MCP + CIS groups) or saline (SHAM and MCP groups). KEY FINDINGS: Cisplatin administration caused a marked increase in hepatic leukocyte influx and liver degeneration, and promoted reactive oxygen species production and STAT3 activation in hepatocytes. Plasma levels of cytokines (IL-6, IL-10), and hepatic toxicity biomarkers (hepatic arginase 1, α-glutathione S-transferase, sorbitol dehydrogenase) were also elevated. Decreased galectin-3 levels in the livers of animals in the MCP + CIS group were also associated with increased hepatic levels of malondialdehyde and mitochondrial respiratory complex I. Animals in the MCP + CIS group also exhibited increased plasma levels of IL-1ß, TNF-α, and aspartate transaminase 1. Furthermore, MCP therapy efficiently antagonized hepatic galectin-9 in liver, but not galectin-1, the latter of which was increased. SIGNIFICANCE: Reduction of the endogenous levels of galectin-3 in hepatocytes favors the process of cell death and increases oxidative stress in the acute model of cisplatin-induced toxicity.


Subject(s)
Cisplatin , Galectin 3 , Animals , Rats , Antioxidants/pharmacology , Cisplatin/pharmacology , Galectin 3/metabolism , Liver/metabolism , Oxidative Stress
8.
Photochem Photobiol Sci ; 22(1): 21-32, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36036336

ABSTRACT

Several inflammatory molecules have been suggested as biomarkers of age-related macular degeneration (AMD). Galectin-3 (Gal-3), which has been shown to have a protective role in corneal injury by promoting epithelial cells adhesion and migration to the extracellular matrix, is also highly expressed in the retinal pigment epithelium (RPE) of patients with AMD. This study evaluated the role of Gal-3 in an in vitro model of UVA-induced RPE damage, as a proof-of-concept. ARPE-19 cells (human RPE cell line), were incubated with Gal-3 at 0.5-2.5 µg/mL concentrations prior to UVA irradiation for 15, 30, and 45 min, which resulted in accumulated doses of 2.5, 5, and 7.5 J/cm2, respectively. After 24 h incubation, MTT and LDH assays, immunofluorescence, and ELISA were performed. UVA irradiation for 15, 30, and 45 min proved to reduce viability in 83%, 46%, and 11%, respectively. Based on the latter results, we chose the intermediate dose (5-J/cm2) for further analysis. Pretreatment with Gal-3 at concentrations > 1.5 µg/mL showed to increase the viability of UVA-irradiated cells (~ 75%) compared to untreated cells (64%). Increased levels of cleaved caspase 3, a marker of cell death, were detected in the ARPE cells after UVA irradiation with or without addition of exogenous Gal-3. The inhibitory effect of Gal-3 on UVA-induced cell damage was characterized by decreased ROS levels and increased p38 activation, as detected by fluorescence analysis. In conclusion, our study suggests a photoprotective effect of Gal-3 on RPE by reducing oxidative stress and increasing p38 activation.


Subject(s)
Galectin 3 , Oxidative Stress , Humans , Galectin 3/metabolism , Galectin 3/pharmacology , Cell Death , Retinal Pigment Epithelium/metabolism , Epithelial Cells/metabolism , Retinal Pigments/metabolism , Retinal Pigments/pharmacology , Reactive Oxygen Species/metabolism
9.
Cell Physiol Biochem ; 56(4): 353-366, 2022 Aug 12.
Article in English | MEDLINE | ID: mdl-35959709

ABSTRACT

BACKGROUND/AIMS: Aging is accompanied by progressive and adverse cardiac remodeling characterized by myocardial hypertrophy, fibrosis, and dysfunction. We previously reported that galectin-3 (Gal-3) is a critical regulator of inflammation and fibrosis associated with hypertensive heart disease and myocardial infarction. Nevertheless, the role and mechanism of Gal-3 in age-related cardiac remodeling have not been previously investigated. We hypothesized that Gal-3 plays a critical role in cardiac aging and that its deficiency exacerbates the underlying mechanisms of myocardial hypertrophy and fibrosis. METHODS: Male C57BL/6 (control) (n=24) and Gal-3 knockout (KO) (n=29) mice were studied at 24 months of age to evaluate the role of Gal-3 in cardiac aging. We assessed 1) survival rate; 2) systolic blood pressure (SBP) by plethysmography; 3) myocardial hypertrophy, apoptosis, and fibrosis by quantification of histological and immunohistochemical analysis; 4) cardiac expression of angiotensin (Ang) II, Ang (1-7) by Radioimmunoassay; 5) transforming growth factor-ß (TGF-ß), sirtuin (SIRT) 1, SIRT 7 and metalloproteinase 9 (MMP-9) by RT-qPCR and 6) ventricular remodeling and function by echocardiography. RESULTS: We found that aged Gal-3 KO mice had a lower survival rate and exhibited exacerbated myocardial hypertrophy and fibrosis without changes in SBP. Similarly, myocardial apoptosis and MMP-9 mRNA expression was significantly increased in the hearts of Gal-3 KO mice compared to controls. Additionally, cardiac Ang II and TGF-ß expression were higher in aged Gal-3 KO mice while SIRT1 and SIRT7 expression were reduced. CONCLUSION: Our findings strongly suggest that Gal-3 is involved in age-related cardiac remodeling by regulating critical mechanisms associated with the development of pathological hypertrophy. The gene deletion of Gal-3 reduced the lifespan and markedly increased age-dependent mechanisms of myocardial hypertrophy, apoptosis, and fibrosis, including Ang-II, TGF-ß, and MMP-9. At the same time, there was diminished cardiac-specific expression of SIRT1 and SIRT7, which are extensively implicated in delaying age-dependent cardiomyopathies.


Subject(s)
Galectin 3 , Ventricular Remodeling , Angiotensin II/metabolism , Animals , Cardiomegaly/pathology , Disease Models, Animal , Fibrosis , Galectin 3/genetics , Galectin 3/metabolism , Gene Deletion , Male , Matrix Metalloproteinase 9/genetics , Matrix Metalloproteinase 9/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Myocardium/metabolism , Sirtuin 1/genetics , Sirtuin 1/metabolism , Transforming Growth Factor beta/metabolism
10.
Biomolecules ; 12(8)2022 07 31.
Article in English | MEDLINE | ID: mdl-36008956

ABSTRACT

Galectins are a family of proteins with an affinity for ß-galactosides that have roles in neuroprotection and neuroinflammation. Several studies indicate that patients with neurodegenerative diseases have alterations in the concentration of galectins in their blood and brain. However, the results of the studies are contradictory; hence, a meta-analysis is performed to clarify whether patients with neurodegenerative diseases have elevated galectin levels compared to healthy individuals. Related publications are obtained from the databases: PubMed, Central-Conchrane, Web of Science database, OVID-EMBASE, Scope, and EBSCO host until February 2022. A pooled standard mean difference (SMD) with a 95% confidence interval (CI) is calculated by fixed-effect or random-effect model analysis. In total, 17 articles are included in the meta-analysis with a total of 905 patients. Patients with neurodegenerative diseases present a higher level of galectin expression compared to healthy individuals (MDS = 0.70, 95% CI 0.28-1.13, p = 0.001). In the subgroup analysis by galectin type, a higher galectin-3 expression is observed in patients with neurodegenerative diseases. Patients with Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALD), and Parkinson's disease (PD) expressed higher levels of galectin-3. Patients with multiple sclerosis (MS) have higher levels of galectin-9. In conclusion, our meta-analysis shows that patients with neurovegetative diseases have higher galectin levels compared to healthy individuals. Galectin levels are associated with the type of disease, sample, detection technique, and region of origin of the patients.


Subject(s)
Alzheimer Disease , Amyotrophic Lateral Sclerosis , Neurodegenerative Diseases , Galectin 3 , Galectins/metabolism , Humans
11.
Int J Mol Sci ; 23(14)2022 Jul 11.
Article in English | MEDLINE | ID: mdl-35886983

ABSTRACT

Melanoma is a highly metastatic and rapidly progressing cancer, a leading cause of mortality among skin cancers. The melanoma microenvironment, formed from the activity of malignant cells on the extracellular matrix and the recruitment of immune cells, plays an active role in the development of drug resistance and tumor recurrence, which are clinical challenges in cancer treatment. These tumoral metabolic processes are affected by proteins, including Galectin-3 (Gal-3), which is extensively involved in cancer development. Previously, we characterized a partially methylated mannogalactan (MG-Pe) with antimelanoma activities. In vivo models of melanoma were used to observe MG-Pe effects in survival, spontaneous, and experimental metastases and in tissue oxidative stress. Analytical assays for the molecular interaction of MG-Pe and Gal-3 were performed using a quartz crystal microbalance, atomic force microscopy, and contact angle tensiometer. MG-Pe exhibits an additive effect when administered together with the chemotherapeutic agent dacarbazine, leading to increased survival of treated mice, metastases reduction, and the modulation of oxidative stress. MG-Pe binds to galectin-3. Furthermore, MG-Pe antitumor effects were substantially reduced in Gal-3/KO mice. Our results showed that the novel Gal-3 ligand, MG-Pe, has both antitumor and antimetastatic effects, alone or in combination with chemotherapy.


Subject(s)
Antineoplastic Agents , Galectin 3 , Melanoma , Skin Neoplasms , Animals , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Dacarbazine/metabolism , Dacarbazine/pharmacology , Dacarbazine/therapeutic use , Galectin 3/metabolism , Galectin 3/pharmacology , Galectin 3/therapeutic use , Ligands , Melanoma/drug therapy , Melanoma/metabolism , Mice , Neoplasm Recurrence, Local , Skin Neoplasms/drug therapy , Skin Neoplasms/metabolism , Tumor Microenvironment/drug effects , Tumor Microenvironment/physiology
12.
Article in English | MEDLINE | ID: mdl-35749417

ABSTRACT

Chronic Chagas Cardiomyopathy (CCC) is the most prevalent type of myocarditis and the main clinical form of the Chagas disease, which has peculiarities such as focal inflammation, structural derangement, hypertrophy, dilation, and intense reparative fibrosis. Many cellular compounds contribute to CCC development. Galectin-3 is a partaker in inflammation and contributes to myocardial fibrosis formation. Some studies showed the connection between Galectin-3 and fibrosis in Chagas disease but are still inconclusive on the guidance for the early implementation of pharmacological therapy. This systematic review evaluated Galectin-3 as a biomarker for fibrosis intensity in CCC. Two independent reviewers have searched five databases (PubMed, EMBASE, Cochrane Library, Scopus, and Lilacs), using the following search terms: galectin-3, biomarkers, fibrosis, Chagas cardiomyopathy, and Chagas disease. Overall, seven studies met the inclusion criteria and made up this review. There were four trials conducted through animal model experiments and three trials with humans. Experimental data in mice indicate an association between Galectin-3 expression and fibrosis in CCC (75% of studies). Data from human studies showed no direct connection between myocardial fibrosis and Galectin-3 expression (80% of studies). Thus, human findings do not provide significant evidence indicating that Galectin-3 is related to fibrosis formation in Chagas disease. Based on the analyzed studies, it is suggested that Galectin-3 might not be a good fibrosis marker in CCC.


Subject(s)
Cardiomyopathies , Chagas Cardiomyopathy , Chagas Disease , Animals , Biomarkers , Chagas Cardiomyopathy/metabolism , Chagas Disease/drug therapy , Fibrosis , Galectin 3/therapeutic use , Inflammation , Mice , Persistent Infection
13.
Liver Int ; 42(10): 2260-2273, 2022 10.
Article in English | MEDLINE | ID: mdl-35635536

ABSTRACT

BACKGROUND & AIMS: Patients with advanced cirrhosis often have immune dysfunction and are more susceptible to infections. Galectin-3 is a ß-galactoside-binding lectin implicated in inflammation, immune regulation and liver fibrosis. We aim to investigate galectin-3 expression in advanced cirrhosis and its ability to predict post-transplant infectious complications. METHODS: We collected sera and liver samples from 129 cirrhotic patients at the time of liver transplantation and from an external cohort of 37 patients with alcoholic liver disease including alcoholic hepatitis (AH) at the time of diagnosis. Galectin-3 was assessed by ELISA, real-time PCR, immunohistochemistry and RNA-seq. Receiver operating characteristic curves and Cox proportional-hazards regression analysis were performed to assess the predictive power of galectin-3 for disease severity and post-transplant infections. RESULTS: Increased galectin-3 levels were found in advanced cirrhosis. Galectin-3 significantly correlated with disease severity parameters and inflammatory markers. Galectin-3 had significant discriminating power for compensated and advanced cirrhosis (AUC = 0.78/0.84, circulating/liver galectin-3; p < .01), and was even higher to discriminate severe AH (AUC = 0.95, p < .0001). Cox Proportional-hazard model showed that galectin-3, MELD-Na and the presence of SIRS predict the development of post-transplant infectious complications. Patients with circulating galectin-3 (>16.58 ng/ml) were at 2.19-fold 95% CI (1.12-4.29) increased risk, but when combined with MELD-Na > 20.0 and SIRS, the risk to develop post-transplant infectious complications, increased to 4.60, 95% CI (2.38-8.90). CONCLUSION: Galectin-3 is a novel biological marker of active inflammation and disease severity that could be clinically useful alone or in combination with other scores to discriminate advanced cirrhosis and predict post-transplant infectious complications.


Subject(s)
Hepatitis, Alcoholic , Liver Diseases , Liver Transplantation , Biomarkers , Blood Proteins , Galectin 3 , Galectins , Hepatitis, Alcoholic/complications , Humans , Inflammation , Liver Cirrhosis/complications , Liver Diseases/complications , Liver Transplantation/adverse effects , Postoperative Complications , Prognosis , Retrospective Studies , Severity of Illness Index , Systemic Inflammatory Response Syndrome
14.
Biomolecules ; 12(2)2022 02 10.
Article in English | MEDLINE | ID: mdl-35204790

ABSTRACT

Galectin-3 is the only chimeric representative of the galectin family. Although galectin-3 has ubiquitous regulatory and physiological effects, there is a great number of pathological environments where galectin-3 cooperatively participates. Pectin is composed of different chemical structures, such as homogalacturonans, rhamnogalacturonans, and side chains. The study of pectin's major structural aspects is fundamental to predicting the impact of pectin on human health, especially regarding distinct molecular modulation. One of the explored pectin's biological activities is the possible galectin-3 protein regulation. The present review focuses on revealing the structure/function relationship of pectins, their fragments, and their biological effects. The discussion highlighted by this review shows different effects described within in vitro and in vivo experimental models, with interesting and sometimes contradictory results, especially regarding galectin-3 interaction. The review demonstrates that pectins are promissory food-derived molecules for different bioactive functions. However, galectin-3 inhibition by pectin had been stated in literature before, although it is not a fully understood, experimentally convincing, and commonly agreed issue. It is demonstrated that more studies focusing on structural analysis and its relation to the observed beneficial effects, as well as substantial propositions of cause and effect alongside robust data, are needed for different pectin molecules' interactions with galectin-3.


Subject(s)
Galectin 3 , Pectins , Galectin 3/metabolism , Galectins , Humans , Pectins/chemistry
15.
Clin Breast Cancer ; 22(5): 399-409, 2022 07.
Article in English | MEDLINE | ID: mdl-35058144

ABSTRACT

Galectins are a family of proteins with affinity for ß-galactosides and their expression correlates with overall survival (OS) in several cancers. However, in breast cancer their prognostic potential is unclear. In this study we performed a meta-analysis to clarify the prognostic value of galectin expression in breast cancer and to identify sources of heterogeneity. For this purpose, we performed a search of related publications in PubMed, Central-Conchrane, Web of Science database, OVID-EMBASE, Scope and EBSCOhost until November 2021.Thirteen articles were included with a total of 2700 patients. High galectin expression was found not to correlate with OS in breast cancer (HR = 1.11, 95% CI 0.93-1.31). In the case of galectin-3, correlation with OS was observed when performing subgroup analysis by cellular localization (HR = 0.59, 95% CI 0.36-0.94 for cytoplasmic and HR = 1.82, 95% CI 1.00-3.29 for cytoplasmic plus nuclear). Galectin-7 correlates with DFS/PFS/DSS (HR = 2.43; 95% CI 1.36-4.31). Finally, galectin-3 correlates with some clinicopathological features such as lymph node metastasis, estrogen receptor expression and age. In conclusion, galectin-3 correlates with OS in breast cancer when cellular localization is considered while galectin-7 correlates with DFS/PFS/DSS. The cellular localization of galectins should be as fundamental aspect to be determined in future studies.


Subject(s)
Breast Neoplasms , Breast Neoplasms/pathology , Female , Galectin 3/metabolism , Galectins/metabolism , Humans , Prognosis , Receptors, Estrogen
16.
Oncotarget ; 13: 214-223, 2022.
Article in English | MEDLINE | ID: mdl-35087624

ABSTRACT

BACKGROUND: Anthracycline (ANT) is often used for breast cancer treatment but its clinical use is limited by cardiotoxicity (CTX). CECCY trial demonstrated that the ß-blocker carvedilol (CVD) could attenuate myocardial injury secondary to ANT. Mieloperoxydase (MPO) is a biomarker of oxidative stress and galectin-3 (Gal-3) is a biomarker of fibrosis and cardiac remodeling. We evaluated the correlation between MPO and Gal-3 behavior with CTX. MATERIALS AND METHODS: A post hoc analysis was performed in the patients who were included in the CECCY trial. A total of 192 women had her blood samples stored during the study at -80°C until the time of assay in a single batch. Stored blood samples were obtained at baseline, 3 and 6 months after randomization. We excluded samples from 18 patients because of hemolysis. MPO and Gal-3 were measured using Luminex xMAP technology through MILLIPLEX MAP KIT (Merck Laboratories). RESULTS: 26 patients (14.9%) had a decrease of at least 10% in LVEF at 6 months after the initiation of chemotherapy. Among these, there was no significant difference in the MPO and Gal-3 when compared to the group without drop in LVEF (p = 0.85 for both MPO and Gal-3). Blood levels of MPO [baseline: 13.2 (7.9, 24.8), 3 months: 17.7 (11.1, 31.1), 6 months: 19.2 (11.1, 37.8) ng/mL] and Gal-3 [baseline: 6.3 (5.2, 9.6), 3 months: 12.3 (9.8, 16.0), 6 months: 10.3 (8.2, 13.1) ng/mL] increased after ANT chemotherapy, and the longitudinal changes were similar between the placebo and CVD groups (p for interaction: 0.28 and 0.32, respectively). In an exploratory analysis, as there is no normal cutoff value established for Gal-3 and MPO in the literature, the MPO and Gal-3 results were splited in two groups: above and below median. In the placebo group, women with high (above median) baseline MPO blood levels demonstrated a greater increase in TnI blood levels than those with low baseline MPO blood levels (p = 0.041). Compared with placebo, CVD significantly reduced TnI blood levels in women with high MPO blood levels (p < 0.001), but did not reduce the TnI levels in women with low baseline MPO blood levels (p = 0.97; p for interaction = 0.009). There was no significant interaction between CVD treatment and baseline Gal-3 blood levels (p for interaction = 0.99). CONCLUSIONS: In this subanalysis of the CECCY trial, MPO and Gal-3 biomarkers did not predict the development of CTX. However, MPO blood levels above median was associated with more severe myocardial injury and identified women who were most likely to benefit from carvedilol for primary prevention (NCT01724450).


Subject(s)
Anthracyclines , Galectin 3 , Anthracyclines/adverse effects , Antibiotics, Antineoplastic/adverse effects , Biomarkers , Cardiotoxicity/etiology , Carvedilol/therapeutic use , Female , Humans , Oxidative Stress
17.
Inflammation ; 45(3): 1133-1145, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35031944

ABSTRACT

The pathogenesis of atopic dermatitis (AD) and psoriasis (Ps) overlaps, particularly the activation of the immune response and tissue damage. Here, we evaluated galectin (Gal)-1 and Gal-3 levels, which are beta-galactoside-binding proteins with immunomodulatory functions and examined their effects on human keratinocytes stimulated with either interleukin (IL)-4 or IL-17A. Skin biopsies from AD, Ps, and control patients were evaluated using histological and immunohistochemical analyses. Six studies containing publicly available transcriptome data were individually analyzed using the GEO2R tool to detect Gal-1 and Gal-3 mRNA levels. In vitro, IL-4- or IL-17A-stimulated keratinocytes were treated with or without Gal-1 or Gal-3 to evaluate cytokine release and migration. Our findings showed different patterns of expression for Gal-1 and Gal-3 in AD and Ps skins. Densitometric analysis in skin samples showed a marked increase in the protein Gal-1 levels in Ps epidermis and in both AD and Ps dermis compared to controls. Protein and mRNA Gal-3 levels were downregulated in AD and Ps lesional skin compared with the control samples. In vitro, both galectins addition abrogated the release of IL-8 and RANTES in IL-17-stimulated keratinocytes after 24 h, whereas IL-6 release was downregulated by Gal-3 and Gal-1 in IL-4- and IL-17-stimulated cells, respectively. Administration of both galectins also increased the rate of keratinocyte migration under IL-4 or IL-17 stimulation conditions compared with untreated cells. Altogether, the immunoregulatory and migration effects of Gal-1 and Gal-3 on keratinocytes under inflammatory microenvironment make them interesting targets for future therapies in cutaneous diseases.


Subject(s)
Dermatitis, Atopic , Psoriasis , Blood Proteins , Cells, Cultured , Galectin 1/metabolism , Galectin 1/pharmacology , Galectin 3/metabolism , Galectin 3/pharmacology , Galectins , Humans , Immunity , Interleukin-17/metabolism , Interleukin-4/metabolism , Interleukin-4/pharmacology , Keratinocytes/metabolism , Psoriasis/metabolism , RNA, Messenger/metabolism
18.
Cells ; 11(2)2022 01 12.
Article in English | MEDLINE | ID: mdl-35053363

ABSTRACT

Increased collagen-derived advanced glycation end-products (AGEs) are consistently related to painful diseases, including osteoarthritis, diabetic neuropathy, and neurodegenerative disorders. We have recently developed a model combining a two-dimensional glycated extracellular matrix (ECM-GC) and primary dorsal root ganglion (DRG) that mimicked a pro-nociceptive microenvironment. However, culturing primary cells is still a challenge for large-scale screening studies. Here, we characterized a new model using ECM-GC as a stimulus for human sensory-like neurons differentiated from SH-SY5Y cell lines to screen for analgesic compounds. First, we confirmed that the differentiation process induces the expression of neuron markers (MAP2, RBFOX3 (NeuN), and TUBB3 (ß-III tubulin), as well as sensory neuron markers critical for pain sensation (TRPV1, SCN9A (Nav1.7), SCN10A (Nav1.8), and SCN11A (Nav1.9). Next, we showed that ECM-GC increased c-Fos expression in human sensory-like neurons, which is suggestive of neuronal activation. In addition, ECM-GC upregulated the expression of critical genes involved in pain, including SCN9A and TACR1. Of interest, ECM-GC induced substance P release, a neuropeptide widely involved in neuroinflammation and pain. Finally, morphine, the prototype opiate, decreased ECM-GC-induced substance P release. Together, our results suggest that we established a functional model that can be useful as a platform for screening candidates for the management of painful conditions.


Subject(s)
Analgesics/analysis , Analgesics/pharmacology , Collagen/pharmacology , Drug Evaluation, Preclinical , Models, Biological , Sensory Receptor Cells/cytology , Animals , Antigens, Neoplasm/metabolism , Biomarkers/metabolism , Cell Differentiation/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Extracellular Matrix/metabolism , Galectin 3/metabolism , Gene Expression Regulation/drug effects , Glycosylation/drug effects , Humans , Mitogen-Activated Protein Kinases/metabolism , NAV1.7 Voltage-Gated Sodium Channel/genetics , NAV1.7 Voltage-Gated Sodium Channel/metabolism , Neurites/drug effects , Neurites/metabolism , Neurons/cytology , Neurons/drug effects , Proto-Oncogene Proteins c-fos/metabolism , Rats , Receptors, Neurokinin-1/genetics , Receptors, Neurokinin-1/metabolism , Sensory Receptor Cells/drug effects , Sensory Receptor Cells/metabolism , Substance P/metabolism , beta-Endorphin/metabolism
19.
Clin Transl Oncol ; 24(3): 517-531, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34811696

ABSTRACT

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is one of the most fatal malignant tumors of the digestive system. Many patients are diagnosed at an advanced stage and lose eligibility for surgery. Moreover, there are few effective methods for treating pancreatic ductal cell carcinoma. Increasing attention has been given to microRNAs (miRNAs) and their regulatory roles in tumor progression. In this study, we investigated the effects of exosomes extracted from human umbilical cord mesenchymal stem cells (HUCMSCs) carrying hsa-miRNA-128-3p on pancreatic cancer cells. METHODS: Based on existing experimental and database information, we selected Galectin-3, which is associated with pancreatic cancer, and the corresponding upstream hsa-miRNA-128-3p. We extracted HUCMSCs from a fresh umbilical cord, hsa-miRNA-128-3p was transfected into HUCMSCs, and exosomes containing hsa-miRNA-128-3p were extracted and collected. The effect of exosomes rich in hsa-miRNA-128-3p on pancreatic cancer cells was analyzed. RESULTS: The expression of Galectin-3 in normal pancreatic duct epithelial cells was significantly lower than that in PDAC cell lines. We successfully extracted HUCMSCs from the umbilical cord and transfected hsa-miRNA-128-3p into HUCMSCs. Then we demonstrated that HUCMSC-derived exosomes with hsa-miRNA-128-3p could suppress the proliferation, invasion, and migration of PANC-1 cells in vitro by targeting Galectin-3. CONCLUSION: Hsa-miRNA-128-3p could be considered as a potential therapy for pancreatic cancer. We provided a new idea for targeted therapy of PDAC.


Subject(s)
Carcinoma, Pancreatic Ductal/pathology , Exosomes/physiology , Galectin 3/physiology , Mesenchymal Stem Cells/ultrastructure , Pancreatic Neoplasms/pathology , Umbilical Cord/cytology , Humans , Tumor Cells, Cultured
20.
J Pediatr ; 241: 68-76.e3, 2022 02.
Article in English | MEDLINE | ID: mdl-34687693

ABSTRACT

OBJECTIVE: To evaluate the performance of pulmonary hypertension (PH) biomarkers in children with Down syndrome, an independent risk factor for PH, in whom biomarker performance may differ compared with other populations. STUDY DESIGN: Serum endostatin, interleukin (IL)-1 receptor 1 (ST2), galectin-3, N-terminal pro hormone B-natriuretic peptide (NT-proBNP), IL-6, and hepatoma-derived growth factor (HDGF) were measured in subjects with Down syndrome and PH (n = 29), subjects with Down syndrome and resolved PH (n = 13), subjects with Down syndrome without PH (n = 49), and subjects without Down syndrome with World Symposium on Pulmonary Hypertension group I pulmonary arterial hypertension (no Down syndrome PH group; n = 173). Each biomarker was assessed to discriminate PH in Down syndrome. A classification tree was created to distinguish PH from resolved PH and no PH in children with Down syndrome. RESULTS: Endostatin, galectin-3, HDGF, and ST2 were elevated in subjects with Down syndrome regardless of PH status. Not all markers differed between subjects with Down syndrome and PH and subjects with Down syndrome and resolved PH. NT-proBNP and IL-6 levels were similar in the Down syndrome with PH group and the no Down syndrome PH group. A classification tree identified NT-proBNP and galectin-3 as the best markers for sequentially distinguishing PH, resolved PH, and no PH in subjects with Down syndrome. CONCLUSIONS: Proteomic markers are used to improve the diagnosis and prognosis of PH but, as demonstrated here, can be altered in genetically unique populations such as individuals with Down syndrome. This further suggests that clinical biomarkers should be evaluated in unique groups with the development of population-specific nomograms.


Subject(s)
Down Syndrome/complications , Hypertension, Pulmonary/blood , Adolescent , Biomarkers/blood , Case-Control Studies , Child , Child, Preschool , Endostatins/blood , Female , Galectin 3/blood , Humans , Hypertension, Pulmonary/complications , Intercellular Signaling Peptides and Proteins/blood , Interleukin-6/blood , Male , Natriuretic Peptide, Brain , Peptide Fragments , Receptors, Interleukin-1/blood
SELECTION OF CITATIONS
SEARCH DETAIL