Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 371
Filter
1.
Elife ; 122024 Sep 19.
Article in English | MEDLINE | ID: mdl-39298260

ABSTRACT

Arpin was discovered as an inhibitor of the Arp2/3 complex localized at the lamellipodial tip of fibroblasts, where it regulated migration steering. Recently, we showed that arpin stabilizes the epithelial barrier in an Arp2/3-dependent manner. However, the expression and functions of arpin in endothelial cells (EC) have not yet been described. Arpin mRNA and protein are expressed in EC and downregulated by pro-inflammatory cytokines. Arpin depletion in Human Umbilical Vein Endothelial Cells causes the formation of actomyosin stress fibers leading to increased permeability in an Arp2/3-independent manner. Instead, inhibitors of ROCK1 and ZIPK, kinases involved in the generation of stress fibers, normalize the loss-of-arpin effects on actin filaments and permeability. Arpin-deficient mice are viable but show a characteristic vascular phenotype in the lung including edema, microhemorrhage, and vascular congestion, increased F-actin levels, and vascular permeability. Our data show that, apart from being an Arp2/3 inhibitor, arpin is also a regulator of actomyosin contractility and endothelial barrier integrity.


Subject(s)
Actomyosin , Capillary Permeability , Human Umbilical Vein Endothelial Cells , Animals , Humans , Actomyosin/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Mice , Serpins/metabolism , Serpins/genetics , Mice, Knockout , rho-Associated Kinases/metabolism , rho-Associated Kinases/genetics , Actin-Related Protein 2-3 Complex/metabolism , Actin-Related Protein 2-3 Complex/genetics , Stress Fibers/metabolism , Endothelial Cells/metabolism , Carrier Proteins
2.
Eur J Pharmacol ; 978: 176788, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38977175

ABSTRACT

Drugs that act on α-adrenoceptors may contain morpholine and pyrimidinone heterocycles. The aim of this study was to synthesize a series of pyrimidinones (S6a-e and S8) and characterize their α-adrenoceptor activity. Cytotoxicity assays (MTT and LDH) were performed in A7r5 and HUVECs. Concentration-effect curves to phenylephrine (Phe) were performed in rat aortic rings in the presence of compounds S6a-e and S8 or vehicle. Nitric oxide (NO) production and NO stable metabolic products, nitrite and nitrate, expressed as total nitrogen oxides (NOx) were assessed in HUVECs by confocal microscopy with the DAF-2DA probe and by the Griess reaction, respectively. Molecular docking simulations were performed using the 6a compound and α2A-adrenoceptor. In the evaluated conditions, the percentage of viable cells and the release of LDH were similar between control cells and cells exposed to the tested pyrimidinones. S6d, S6e, S8, and the positive control prazosin (but not S6a, S6b, and S6c) decreased Phe-induced contractions in endothelium-denuded aortic rings. S6a, S6b, and S6c decreased Phe-induced contractions in endothelium-intact aortic rings. The effect of S6a was abolished by L-NAME. NO production and NOx levels were inhibited in the presence of the α2 receptor antagonist yohimbine and the NOS inhibitor L-NAME. The 6a docking simulation estimated that the mean binding free energy of the compound was lower than the estimated value for yohimbine. These data suggest that S6d, S6e, and S8 may be α1-adrenoceptor antagonists while S6a acts as an agonist of α2-adrenoceptors.


Subject(s)
Human Umbilical Vein Endothelial Cells , Molecular Docking Simulation , Morpholines , Pyrimidinones , Animals , Humans , Rats , Human Umbilical Vein Endothelial Cells/drug effects , Pyrimidinones/pharmacology , Pyrimidinones/chemistry , Morpholines/pharmacology , Morpholines/chemistry , Nitric Oxide/metabolism , Male , Receptors, Adrenergic, alpha-2/metabolism , Cell Line , Aorta/drug effects , Aorta/cytology , Aorta/metabolism , Rats, Wistar
3.
Int J Mol Sci ; 25(14)2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39062847

ABSTRACT

Mesenchymal stem/stromal cells (MSCs) and their extracellular vesicles (MSC-EVs) have been described to have important roles in tissue regeneration, including tissue repair, control of inflammation, enhancing angiogenesis, and regulating extracellular matrix remodeling. MSC-EVs have many advantages for use in regeneration therapies such as facility for dosage, histocompatibility, and low immunogenicity, thus possessing a lower possibility of rejection. In this work, we address the potential activity of MSC-EVs isolated from adipose-derived MSCs (ADMSC-EVs) cultured on cross-linked dextran microcarriers, applied to test the scalability and reproducibility of EV production. Isolated ADMSC-EVs were added into cultured human dermal fibroblasts (NHDF-1), keratinocytes (HaCat), endothelial cells (HUVEC), and THP-1 cell-derived macrophages to evaluate cellular responses (i.e., cell proliferation, cell migration, angiogenesis induction, and macrophage phenotype-switching). ADMSC viability and phenotype were assessed during cell culture and isolated ADMSC-EVs were monitored by nanotracking particle analysis, electron microscopy, and immunophenotyping. We observed an enhancement of HaCat proliferation; NHDF-1 and HaCat migration; endothelial tube formation on HUVEC; and the expression of inflammatory cytokines in THP-1-derived macrophages. The increased expression of TGF-ß and IL-1ß was observed in M1 macrophages treated with higher doses of ADMSC-EVs. Hence, EVs from microcarrier-cultivated ADMSCs are shown to modulate cell behavior, being able to induce skin tissue related cells to migrate and proliferate as well as stimulate angiogenesis and cause balance between pro- and anti-inflammatory responses in macrophages. Based on these findings, we suggest that the isolation of EVs from ADMSC suspension cultures makes it possible to induce in vitro cellular responses of interest and obtain sufficient particle numbers for the development of in vivo concept tests for tissue regeneration studies.


Subject(s)
Cell Proliferation , Extracellular Vesicles , Macrophages , Mesenchymal Stem Cells , Humans , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Extracellular Vesicles/metabolism , Macrophages/metabolism , Macrophages/cytology , Cell Movement , THP-1 Cells , Fibroblasts/metabolism , Fibroblasts/cytology , Human Umbilical Vein Endothelial Cells/metabolism , Cell Culture Techniques/methods , Cells, Cultured , Keratinocytes/metabolism , Keratinocytes/cytology , Cytokines/metabolism
4.
Viruses ; 16(7)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-39066212

ABSTRACT

SARS-CoV-2 can induce vascular dysfunction and thrombotic events in patients with severe COVID-19; however, the cellular and molecular mechanisms behind these effects remain largely unknown. In this study, we used a combination of experimental and in silico approaches to investigate the role of PC in vascular and thrombotic events in COVID-19. Single-cell RNA-sequencing data from patients with COVID-19 and healthy subjects were obtained from the publicly available Gene Expression Omnibus (GEO) repository. In addition, HUVECs were treated with inactive protein C before exposure to SARS-CoV-2 infection or a severe COVID-19 serum. An RT-qPCR array containing 84 related genes was used, and the candidate genes obtained were evaluated. Activated protein C levels were measured using an ELISA kit. We identified at the single-cell level the expression of several pro-inflammatory and pro-coagulation genes in endothelial cells from the patients with COVID-19. Furthermore, we demonstrated that exposure to SARS-CoV-2 promoted transcriptional changes in HUVECs that were partly reversed by the activated protein C pretreatment. We also observed that the serum of severe COVID-19 had a significant amount of activated protein C that could protect endothelial cells from serum-induced activation. In conclusion, activated protein C protects endothelial cells from pro-inflammatory and pro-coagulant effects during exposure to the SARS-CoV-2 virus.


Subject(s)
COVID-19 , Endothelial Cells , Protein C , SARS-CoV-2 , Humans , COVID-19/virology , Endothelial Cells/metabolism , Endothelial Cells/virology , Human Umbilical Vein Endothelial Cells , Protein C/metabolism , Protein C/genetics , SARS-CoV-2/physiology , Thrombosis
5.
Clinics (Sao Paulo) ; 79: 100403, 2024.
Article in English | MEDLINE | ID: mdl-38878321

ABSTRACT

OBJECTIVES: This study aims to elucidate the role of circUSP9X (Circular RNA Ubiquitin Specific Peptidase 9 X-Linked) in the development of venous thrombosis in the lower extremities. METHODS: An animal model of Deep Vein Thrombosis (DVT) and a hypoxic model of Human Umbilical Vein Endothelial Cells (HUVECs) treated with Cobalt (II) Chloride (CoCl2) were developed. The expression levels of circUSP9X, microRNA-148b-3p (miR-148b-3p), and SRC Kinase Signaling Inhibitor 1 (SRCIN1) were quantified using quantitative reverse transcription Polymerase Chain Reaction and Western blot analysis. Cell cytotoxicity, viability, apoptosis, and inflammation in HUVECs were assessed via Lactate Dehydrogenase (LDH) assay, MTT assay, flow cytometry, Enzyme-Linked Immunosorbent Assay, and Western blot, respectively. Hematoxylin and Eosin staining were employed for histopathological examination of the venous tissues in the animal model. The interaction between circUSP9X, miR-148b-3p, and SRCIN1 was further explored through dual-luciferase reporter assays and RNA Immunoprecipitation experiments. RESULTS: The present findings reveal a significant upregulation of circUSP9X and SRCIN1 and a concurrent downregulation of miR-148b-3p in DVT cases. Knockdown of circUSP9X or overexpression of miR-148b-3p ameliorated CoCl2-induced apoptosis in HUVECs, reduced LDH release, enhanced cellular viability, and mitigated inflammation. Conversely, overexpression of circUSP9X intensified CoCl2's cytotoxic effects. The effects of manipulating circUSP9X expression were counteracted by the corresponding modulation of miR-148b-3p and SRCIN1 levels. Additionally, circUSP9X knockdown effectively inhibited the formation of DVT in the mouse model. A competitive binding mechanism of circUSP9X for miR-148b-3p, modulating SRCIN1 expression, was identified. CONCLUSION: circUSP9X promotes the formation of DVT through the regulation of the miR-148b-3p/SRCIN1 axis.


Subject(s)
Disease Models, Animal , Human Umbilical Vein Endothelial Cells , MicroRNAs , Up-Regulation , Venous Thrombosis , Animals , Humans , Male , Mice , Adaptor Proteins, Vesicular Transport/metabolism , Apoptosis/drug effects , Human Umbilical Vein Endothelial Cells/drug effects , MicroRNAs/metabolism , RNA, Circular/genetics , Up-Regulation/drug effects
6.
Chem Biol Interact ; 398: 111096, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38844257

ABSTRACT

Breast cancer is currently one of the most prevalent cancers worldwide. The mechanisms by which pesticides can increase breast cancer risk are multiple and complex. We have previously observed that two aryl hydrocarbon receptor (AhR) agonists ‒pesticides hexachlorobenzene (HCB) and chlorpyrifos (CPF)‒ act on tumor progression, stimulating cell migration and invasion in vitro and tumor growth in animal models. Elevated levels of hypoxia inducible factor-1α (HIF-1α) are found in malignant breast tumors, and HIF-1α is known to induce proangiogenic factors such as vascular endothelial growth factor (VEGF), nitric oxide synthase-2 (NOS-2) and cyclooxygenase-2 (COX-2), which are fundamental in breast cancer progression. In this work, we studied HCB (0.005, 0.05, 0.5 and 5 µM) and CPF (0.05, 0.5, 5 and 50 µM) action on the expression of these proangiogenic factors in triple negative breast cancer cells MDA-MB-231, as well as the effect of their conditioned medium (CM) on endothelial cells. Exposure to pesticides increased HIF-1α and VEGF protein expression in an AhR-dependent manner. In addition, HCB and CPF boosted NOS-2 and COX-2 content and VEGF secretion in MDA-MB-231 cells. The treatment of endothelial cells with CM from tumor cells exposed to pesticides increased cell proliferation, migration, and tubule formation, enhancing both tubule length and branching points. Of note, these effects were VEGF-dependent, as they were blocked in the presence of a VEGF receptor-2 (VEGFR-2) inhibitor. In sum, our results highlight the harmful impact of HCB and CPF in modulating the interaction between breast cancer and endothelial cells and promoting angiogenesis.


Subject(s)
Chlorpyrifos , Cyclooxygenase 2 , Hexachlorobenzene , Hypoxia-Inducible Factor 1, alpha Subunit , Receptors, Aryl Hydrocarbon , Triple Negative Breast Neoplasms , Vascular Endothelial Growth Factor A , Chlorpyrifos/toxicity , Receptors, Aryl Hydrocarbon/metabolism , Humans , Hexachlorobenzene/metabolism , Hexachlorobenzene/toxicity , Vascular Endothelial Growth Factor A/metabolism , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Cell Line, Tumor , Cyclooxygenase 2/metabolism , Ligands , Nitric Oxide Synthase Type II/metabolism , Female , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Cell Movement/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/drug effects , Cell Proliferation/drug effects
7.
FASEB J ; 38(11): e23716, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38847490

ABSTRACT

Tumor hypoxia has been associated with cancer progression, angiogenesis, and metastasis via modifications in the release and cargo composition of extracellular vesicles secreted by tumor cells. Indeed, hypoxic extracellular vesicles are known to trigger a variety of angiogenic responses via different mechanisms. We recently showed that hypoxia promotes endosomal signaling in tumor cells via HIF-1α-dependent induction of the guanine exchange factor ALS2, which activates Rab5, leading to downstream events involved in cell migration and invasion. Since Rab5-dependent signaling is required for endothelial cell migration and angiogenesis, we explored the possibility that hypoxia promotes the release of small extracellular vesicles containing ALS2, which in turn activate Rab5 in recipient endothelial cells leading to pro-angiogenic properties. In doing so, we found that hypoxia promoted ALS2 expression and incorporation as cargo within small extracellular vesicles, leading to subsequent transfer to recipient endothelial cells and promoting cell migration, tube formation, and downstream Rab5 activation. Consequently, ALS2-containing small extracellular vesicles increased early endosome size and number in recipient endothelial cells, which was followed by subsequent sequestration of components of the ß-catenin destruction complex within endosomal compartments, leading to stabilization and nuclear localization of ß-catenin. These events converged in the expression of ß-catenin target genes involved in angiogenesis. Knockdown of ALS2 in donor tumor cells precluded its incorporation into small extracellular vesicles, preventing Rab5-downstream events and endothelial cell responses, which depended on Rab5 activity and guanine exchange factor activity of ALS2. These findings indicate that vesicular ALS2, secreted in hypoxia, promotes endothelial cell events leading to angiogenesis. Finally, these events might explain how tumor angiogenesis proceeds in hypoxic conditions.


Subject(s)
Cell Movement , Extracellular Vesicles , Guanine Nucleotide Exchange Factors , Signal Transduction , beta Catenin , rab5 GTP-Binding Proteins , Humans , beta Catenin/metabolism , Cell Line, Tumor , Endothelial Cells/metabolism , Endothelial Cells/pathology , Extracellular Vesicles/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Guanine Nucleotide Exchange Factors/genetics , Human Umbilical Vein Endothelial Cells/metabolism , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/pathology , rab5 GTP-Binding Proteins/metabolism , rab5 GTP-Binding Proteins/genetics
8.
Am J Physiol Endocrinol Metab ; 327(1): E1-E12, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38690939

ABSTRACT

High levels of testosterone (Testo) are associated with cardiovascular risk by increasing reactive oxygen species (ROS) formation. NADPH oxidases (NOX) are the major source of ROS in the vasculature of cardiovascular diseases. NOX4 is a unique isotype, which produces hydrogen peroxide (H2O2), and its participation in cardiovascular biology is controversial. So far, it is unclear whether NOX4 protects from Testo-induced endothelial injury. Thus, we hypothesized that supraphysiological levels of Testo induce endothelial NOX4 expression to attenuate endothelial injury. Human mesenteric vascular endothelial cells (HMECs) and human umbilical vein endothelial cells (HUVEC) were treated with Testo (10-7 M) with or without a NOX4 inhibitor [GLX351322 (10-4 M)] or NOX4 siRNA. In vivo, 10-wk-old C57Bl/6J male mice were treated with Testo (10 mg/kg) for 30 days to study endothelial function. Testo increased mRNA and protein levels of NOX4 in HMECs and HUVECs. Testo increased superoxide anion (O2-) and H2O2 production, which were abolished by NOX1 and NOX4 inhibition, respectively. Testo also attenuated bradykinin-induced NO production, which was further impaired by NOX4 inhibition. In vivo, Testo decreased H2O2 production in aortic segments and triggered endothelial dysfunction [decreased relaxation to acetylcholine (ACh)], which was further impaired by GLX351322 and by a superoxide dismutase and catalase mimetic (EUK134). Finally, Testo led to a dysregulated endothelial cell migration, which was exacerbated by GLX351322. These data indicate that supraphysiological levels of Testo increase the endothelial expression and activity of NOX4 to counterbalance the deleterious effects caused by Testo in endothelial function.NEW & NOTEWORTHY By inducing ROS formation, high levels of testosterone play a major role in the pathogenesis of cardiovascular disease. NOXs are the major sources of ROS in the vasculature of cardiovascular diseases. Herein, we describe a novel compensatory mechanism by showing that NOX4 is a protective oxidant enzyme and counterbalances the deleterious effects of testosterone in endothelial cells by modulating hydrogen peroxide formation.


Subject(s)
Cell Movement , Endothelium, Vascular , Human Umbilical Vein Endothelial Cells , Hydrogen Peroxide , Mice, Inbred C57BL , NADPH Oxidase 4 , Testosterone , Animals , Humans , Male , Mice , Cell Movement/drug effects , Cells, Cultured , Endothelial Cells/metabolism , Endothelial Cells/drug effects , Endothelium, Vascular/metabolism , Endothelium, Vascular/drug effects , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Hydrogen Peroxide/metabolism , Hydrogen Peroxide/pharmacology , NADPH Oxidase 4/metabolism , NADPH Oxidase 4/genetics , Reactive Oxygen Species/metabolism , Testosterone/pharmacology , Testosterone/metabolism
9.
Pregnancy Hypertens ; 36: 101130, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38805888

ABSTRACT

OBJECTIVES: Maternal endothelial dysfunction in pregnancy hypertension is related to impairment of nitric oxide (NO) formation. However, NO levels and hemodynamic repercussions on the female offspring remain unclear. Therefore, this study hypothesized that maternal pregnancy hypertension reduces circulating NO metabolites and increases arterial blood pressure in first-generation offspring female rats. STUDY DESIGN: Descendant female rats were distributed in four groups as follows: virgin offspring of normotensive (VN) and hypertensive (VH) mothers and pregnant offspring of normotensive (PN) and hypertensive (PH) mothers. Hemodynamic and biochemical analyses were performed. MAIN OUTCOME MEASURES: The systolic (SBP) and diastolic (DBP) blood pressure, heart rate (HR), and body weight were measured. NO metabolites in plasma, NO formation in human umbilical vein endothelial cells (HUVECs) incubated with plasma, and endothelial NO synthase (eNOS) expression in aortas were determined. RESULTS: Increased SBP, DBP, and reduced HR were found on the 60 days of life in the VH group, whereas the PH group showed increased SBP and HR on pregnancy day 7. All groups showed no differences in body weight gain and eNOS expression. Plasma levels of NO metabolites were increased in the PN compared to the other groups. Increases in the NO formation were greater in HUVECs incubated with plasma from VN and PN groups compared to the VH and PH groups. CONCLUSIONS: Female virgin and pregnant first-generation offspring rats from hypertensive pregnant mothers may have negative cardiovascular repercussions featured by increases in SBP, and possibly impaired NO formation is involved.


Subject(s)
Nitric Oxide , Animals , Female , Pregnancy , Nitric Oxide/metabolism , Nitric Oxide/blood , Rats , Humans , Human Umbilical Vein Endothelial Cells/metabolism , Nitric Oxide Synthase Type III/metabolism , Hypertension, Pregnancy-Induced/physiopathology , Hypertension, Pregnancy-Induced/metabolism , Hypertension, Pregnancy-Induced/blood , Prenatal Exposure Delayed Effects , Arterial Pressure , Disease Models, Animal , Blood Pressure/physiology , Rats, Wistar , Heart Rate
10.
Toxicon ; 243: 107746, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38704124

ABSTRACT

Our study presents the anticancer potential of crotamine from Crotalus durissus terrificus in human prostate cancer cell line DU-145. Crotamine isolation was conducted through RP-FPLC, its molecular mass analyzed by MALDI-TOF was 4881.4 kDa, and N-terminal sequencing confirmed crotamine identity. Crotamine demonstrated no toxicity and did not inhibit migration in HUVEC cells. Although no cell death occurred in DU-145 cells, crotamine inhibited their migration. Thus, crotamine presented potential to be a prototype of anticancer drug.


Subject(s)
Antineoplastic Agents , Cell Movement , Crotalid Venoms , Prostatic Neoplasms , Humans , Male , Prostatic Neoplasms/drug therapy , Cell Line, Tumor , Cell Movement/drug effects , Crotalid Venoms/toxicity , Antineoplastic Agents/pharmacology , Crotalus , Human Umbilical Vein Endothelial Cells/drug effects , Animals
11.
Toxicon ; 243: 107742, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38705486

ABSTRACT

Phospholipases A2 (PLA2s) from snake venom possess antitumor and antiangiogenic properties. In this study, we evaluated the antimetastatic and antiangiogenic effects of MjTX-II, a Lys49 PLA2 isolated from Bothrops moojeni venom, on lung cancer and endothelial cells. Using in vitro and ex vivo approaches, we demonstrated that MjTX-II reduced cell proliferation and inhibited fundamental processes for lung cancer cells (A549) growth and metastasis, such as adhesion, migration, invasion, and actin cytoskeleton decrease, without significantly interfering with non-tumorigenic lung cells (BEAS-2B). Furthermore, MjTX-II caused cell cycle alterations, increased reactive oxygen species production, modulated the expression of pro- and antiangiogenic genes, and decreased vascular endothelial growth factor (VEGF) expression in HUVECs. Finally, MjTX-II inhibited ex vivo angiogenesis processes in an aortic ring model. Therefore, we conclude that MjTX-II exhibits antimetastatic and antiangiogenic effects in vitro and ex vivo and represents a molecule that hold promise as a pharmacological model for antitumor therapy.


Subject(s)
Angiogenesis Inhibitors , Bothrops , Cell Proliferation , Crotalid Venoms , Lung Neoplasms , Animals , Humans , Angiogenesis Inhibitors/pharmacology , Lung Neoplasms/drug therapy , Cell Proliferation/drug effects , Phospholipases A2/pharmacology , Cell Movement/drug effects , Human Umbilical Vein Endothelial Cells/drug effects , Vascular Endothelial Growth Factor A/metabolism , A549 Cells , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Neovascularization, Pathologic/drug therapy , Reactive Oxygen Species/metabolism , Venomous Snakes
12.
Chem Biol Interact ; 394: 110986, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38583853

ABSTRACT

Snake venom metalloproteases (SVMPs) are hydrolytic enzymes dependent on metal binding, primarily zinc (Zn2+), at their catalytic site. They are classified into three classes (P-I to P-III). BjussuMP-II, a P-I SVMP isolated from Bothrops jararacussu snake venom, has a molecular mass of 24 kDa. It exhibits inhibitory activity on platelet aggregation and hydrolyzes fibrinogen. TNF-α upregulates the expression of adhesion molecules on endothelial cell surfaces, promoting leukocyte adhesion and migration during inflammation. Literature indicates that SVMPs may cleave the TNF-α precursor, possibly due to significant homology between metalloproteases from mammalian extracellular matrix and SVMPs. This study aimed to investigate BjussuMP-II's effects on human umbilical vein endothelial cells (HUVEC), focusing on viability, detachment, adhesion, release, and cleavage of TNF-α, IL-1ß, IL-6, IL-8, and IL-10. HUVEC were incubated with BjussuMP-II (1.5-50 µg/mL) for 3-24 h. Viability was determined using LDH release, MTT metabolization, and 7AAD for membrane integrity. Adhesion and detachment were assessed by incubating cells with BjussuMP-II and staining with Giemsa. Cytokines were quantified in HUVEC supernatants using EIA. TNF-α cleavage was evaluated using supernatants from PMA-stimulated cells or recombinant TNF-α. Results demonstrated BjussuMP-II's proteolytic activity on casein. It was not toxic to HUVEC at any concentration or duration studied but interfered with adhesion and promoted detachment. PMA induced TNF-α release by HUVEC, but this effect was not observed with BjussuMP-II, which cleaved TNF-α. Additionally, BjussuMP-II cleaved IL-1ß, IL-6, and IL-10. These findings suggest that the zinc metalloprotease BjussuMP-II could be a valuable biotechnological tool for treating inflammatory disorders involving cytokine deregulation.


Subject(s)
Cell Adhesion , Cytokines , Human Umbilical Vein Endothelial Cells , Metalloproteases , Humans , Human Umbilical Vein Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/drug effects , Cytokines/metabolism , Metalloproteases/metabolism , Cell Adhesion/drug effects , Cell Survival/drug effects , Bothrops/metabolism , Tumor Necrosis Factor-alpha/metabolism , Animals , Crotalid Venoms/metabolism , Crotalid Venoms/toxicity , Proteolysis/drug effects
13.
Vascul Pharmacol ; 155: 107372, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38583694

ABSTRACT

Oxidative stress and mitochondrial dysfunction are important elements for the pathophysiology of preeclampsia (PE), a multisystemic hypertensive syndrome of pregnancy, characterized by endothelial dysfunction and responsible for a large part of maternal and fetal morbidity and mortality worldwide. Researchers have dedicated their efforts to unraveling the intricate ways in which certain molecules influence both energy metabolism and oxidative stress. Exploring established methodologies from existing literature, shows that these investigations predominantly focus on the placenta, identified as a pivotal source that drives the changes observed in the disease. In this review, we discuss the role of oxidative stress in pathophysiology of PE, as well as metabolic/endothelial dysfunction. We further discuss the use of seahorse analyzers to study real-time bioenergetics of endothelial cells. Although the benefits are clear, few studies have presented results using this method to assess mitochondrial metabolism in these cells. We performed a search on MEDLINE/PubMed using the terms "Seahorse assay and endothelial dysfunction in HUVEC" as well as "Seahorse assay and preeclampsia". From our research, we selected 16 original peer-review papers for discussion. Notably, the first search retrieved studies involving Human Umbilical Vein Endothelial Cells (HUVECs) but none investigating bioenergetics in PE while the second search retrieved studies exploring the technique in PE but none of the studies used HUVECs. Additional studies are required to investigate real-time mitochondrial bioenergetics in PE. Clearly, there is a need for more complete studies to examine the nuances of mitochondrial bioenergetics, focusing on the contributions of HUVECs in the context of PE.


Subject(s)
Energy Metabolism , Human Umbilical Vein Endothelial Cells , Mitochondria , Oxidative Stress , Pre-Eclampsia , Humans , Pre-Eclampsia/metabolism , Pre-Eclampsia/physiopathology , Pre-Eclampsia/pathology , Pregnancy , Female , Mitochondria/metabolism , Mitochondria/pathology , Human Umbilical Vein Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/pathology , Animals , Predictive Value of Tests
14.
Biochem Biophys Res Commun ; 706: 149748, 2024 04 30.
Article in English | MEDLINE | ID: mdl-38460450

ABSTRACT

Angiogenesis is a process that is controlled by a delicate combination of proangiogenic and antiangiogenic molecules and can be disrupted in various illnesses, including cancer. Non-cancerous diseases can also have an abnormal or insufficient vascular growth, inflammation and hypoxia, which exacerbate angiogenesis. These conditions include atherosclerosis, psoriasis, endometriosis, asthma, obesity and AIDS. Based on that, the present work assessed the in vitro and ex vivo antiangiogenic properties stemming from BthMP, a P-I metalloproteinase from Bothrops moojeni snake venom, via the VEGF pathway. BthMP at a concentration of 5 and 40 µg/mL showed no toxicity to endothelial cells (HUVEC) in the MTT assay and was not able to induce necrosis and colony proliferation. Interestingly, BthMP inhibited adhesion, migration and invasion of HUVECs in Matrigel and arrested in vitro angiogenesis by reducing the average number of nodules in toxin-treated cells by 9.6 and 17.32 at 5 and 40 µg/mL, respectively, and the number of tubules by 15.9 at 5 µg/mL and 21.6 at 40 µg/mL in a VEGF-dependent way, an essential proangiogenic property. Furthermore, BthMP inhibited the occurrence of the angiogenic process in an ex vivo aortic ring test by decreasing new vessel formation by 52% at 5 µg/mL and by 66% at 40 µg/mL and by increasing the expression of an antiangiogenic gene, SFLT-1, and decreasing the expression of the proangiogenic genes VEGFA and ANGPT-1. Finally, this toxin reduces the production of nitric oxide, a marker that promotes angiogenesis and VEGF modulation, and decreases the protein expression of VEGFA in the supernatant of the HUVEC culture by about 30 %. These results suggest that BthMP has a promising antiangiogenic property and proves to be a biotechnological mechanism for understanding the antiangiogenic responses induced by snake venom metalloproteinases, which could be applied to a variety of diseases that exhibit an imbalance of angiogenesis mechanisms.


Subject(s)
Bothrops , Endothelial Cells , Venomous Snakes , Animals , Female , Humans , Endothelial Cells/metabolism , Vascular Endothelial Growth Factor A/metabolism , Bothrops/metabolism , Metalloproteases/metabolism , Snake Venoms , Human Umbilical Vein Endothelial Cells/metabolism , Angiogenesis Inhibitors/pharmacology
15.
Cell Biol Int ; 48(5): 665-681, 2024 May.
Article in English | MEDLINE | ID: mdl-38420868

ABSTRACT

Epigenetic changes, particularly histone compaction modifications, have emerged as critical regulators in the epigenetic pathway driving endothelial cell phenotype under constant exposure to laminar forces induced by blood flow. However, the underlying epigenetic mechanisms governing endothelial cell behavior in this context remain poorly understood. To address this knowledge gap, we conducted in vitro experiments using human umbilical vein endothelial cells subjected to various tensional forces simulating pathophysiological blood flow shear stress conditions, ranging from normotensive to hypertensive forces. Our study uncovers a noteworthy observation wherein endothelial cells exposed to high shear stress demonstrate a decrease in the epigenetic marks H3K4ac and H3K27ac, accompanied by significant alterations in the levels of HDAC (histone deacetylase) proteins. Moreover, we demonstrate a negative regulatory effect of increased shear stress on HOXA13 gene expression and a concomitant increase in the expression of the long noncoding RNA, HOTTIP, suggesting a direct association with the suppression of HOXA13. Collectively, these findings represent the first evidence of the role of histone-related epigenetic modifications in modulating chromatin compaction during mechanosignaling of endothelial cells in response to elevated shear stress forces. Additionally, our results highlight the importance of understanding the physiological role of HOXA13 in vascular biology and hypertensive patients, emphasizing the potential for developing small molecules to modulate its activity. These findings warrant further preclinical investigations and open new avenues for therapeutic interventions targeting epigenetic mechanisms in hypertensive conditions.


Subject(s)
Epigenesis, Genetic , Histones , Humans , Histones/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Hemodynamics , Stress, Mechanical , Cells, Cultured
16.
Biofabrication ; 16(2)2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38408383

ABSTRACT

'On-a-chip' technology advances the development of physiologically relevant organ-mimicking architecture by integrating human cells into three-dimensional microfluidic devices. This method also establishes discrete functional units, faciliting focused research on specific organ components. In this study, we detail the development and assessment of a convoluted renal proximal tubule-on-a-chip (PT-on-a-chip). This platform involves co-culturing Renal Proximal Tubule Epithelial Cells (RPTEC) and Human Umbilical Vein Endothelial Cells (HUVEC) within a polydimethylsiloxane microfluidic device, crafted through a combination of 3D printing and molding techniques. Our PT-on-a-chip significantly reduced high glucose level, exhibited albumin uptake, and simulated tubulopathy induced by amphotericin B. Remarkably, the RPTEC:HUVEC co-culture exhibited efficient cell adhesion within 30 min on microchannels functionalized with plasma, 3-aminopropyltriethoxysilane, and type-I collagen. This approach significantly reduced the required incubation time for medium perfusion. In comparison, alternative methods such as plasma and plasma plus polyvinyl alcohol were only effective in promoting cell attachment to flat surfaces. The PT-on-a-chip holds great promise as a valuable tool for assessing the nephrotoxic potential of new drug candidates, enhancing our understanding of drug interactions with co-cultured renal cells, and reducing the need for animal experimentation, promoting the safe and ethical development of new pharmaceuticals.


Subject(s)
Epithelial Cells , Kidney Tubules, Proximal , Animals , Humans , Human Umbilical Vein Endothelial Cells , Coculture Techniques , Kidney Tubules, Proximal/metabolism , Lab-On-A-Chip Devices
17.
Chem Biol Interact ; 387: 110796, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37951333

ABSTRACT

Angiogenesis is considered one of the hallmarks of cancer, assisting tumor progression and metastasis. The mesoionic compound, MI-D, can induce cell death and provoke cytoskeletal and metabolic changes in cancer cells. Using in vitro and in vivo models, this study aimed to evaluate the effects of MI-D on the viability of human endothelial cells (EC) and its ability to inhibit tumor-induced angiogenesis induced by tumoral cells. For in vitro analysis, colon carcinoma (HT29) and endothelial (EA.hy926) cells were used as the tumoral and angiogenesis models, respectively. To evaluate cytotoxicity, methylene blue viability stain and annexin-V/7AAD tests were performed with both cell types. For the angiogenesis experiments, scratch wound healing and capillary tube-like formation assays were performed with the EC. The in vivo tests were performed with the chorioallantoic membrane (HET-CAM) methodology, wherein gelatin sponge implants containing MI-D (5, 25, and 50 µM), HT29 cells, or both were grafted in the CAM. Our data showed that MI-D induced apoptosis in both endothelial and colon carcinoma cells, with a strong cytotoxic effect on the tumoral lineage. The drug inhibited the EC's migration and capillary-like structure formation in vitro. In the HET-CAM assays, MI-D reduced the number of blood vessels in the membrane when grafted alone and accompanied by tumor cells. In this study, MI-D interfered in important steps of angiogenesis, such as maintenance of endothelial cell viability, migration, formation of capillary-like structures, as well tumor-induced neovascularization, reinforcing the hypothesis that MI-D might act as an inhibitor of angiogenesis, and a potential antitumor agent.


Subject(s)
Antineoplastic Agents , Carcinoma , Humans , Endothelial Cells , Angiogenesis , Angiogenesis Inhibitors/pharmacology , Angiogenesis Inhibitors/therapeutic use , Cell Movement , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/metabolism , Antineoplastic Agents/therapeutic use , Carcinoma/metabolism , Human Umbilical Vein Endothelial Cells , Cell Proliferation
18.
J Appl Oral Sci ; 31: e20230158, 2023.
Article in English | MEDLINE | ID: mdl-37646717

ABSTRACT

OBJECTIVE: This study aimed to develop a pro-angiogenic hydrogel with in situ gelation ability for alveolar bone defects repair. METHODOLOGY: Silk fibroin was chemically modified by Glycidyl Methacrylate (GMA), which was evaluated by proton nuclear magnetic resonance (1H-NMR). Then, the photo-crosslinking ability of the modified silk fibroin was assessed. Scratch and transwell-based migration assays were conducted to investigate the effect of the photo-crosslinked silk fibroin hydrogel on the migration of human umbilical vein endothelial cells (HUVECs). In vitro angiogenesis was conducted to examine whether the photo-crosslinked silk fibroin hydrogel would affect the tube formation ability of HUVECs. Finally, subcutaneous implantation experiments were conducted to further examine the pro-angiogenic ability of the photo-crosslinked silk fibroin hydrogel, in which the CD31 and α-smooth muscle actin (α-SMA) were stained to assess neovascularization. The tumor necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß) were also stained to evaluate inflammatory responses after implantation. RESULTS: GMA successfully modified the silk fibroin, which we verified by our 1H-NMR and in vitro photo-crosslinking experiment. Scratch and transwell-based migration assays proved that the photo-crosslinked silk fibroin hydrogel promoted HUVEC migration. The hydrogel also enhanced the tube formation of HUVECs in similar rates to Matrigel®. After subcutaneous implantation in rats for one week, the hydrogel enhanced neovascularization without triggering inflammatory responses. CONCLUSION: This study found that photo-crosslinked silk fibroin hydrogel showed pro-angiogenic and inflammation inhibitory abilities. Its photo-crosslinking ability makes it suitable for matching irregular alveolar bone defects. Thus, the photo-crosslinkable silk fibroin-derived hydrogel is a potential candidate for constructing scaffolds for alveolar bone regeneration.


Subject(s)
Fibroins , Hydrogels , Humans , Animals , Rats , Bone Regeneration , Human Umbilical Vein Endothelial Cells
19.
Adv Exp Med Biol ; 1428: 71-82, 2023.
Article in English | MEDLINE | ID: mdl-37466769

ABSTRACT

BKCa channels (large-conductance Ca2+-activated K+ channels) play a critical role in regulating vascular tone and blood pressure. These channels are present in the smooth muscle cells of blood vessels and are activated by voltage and increased intracellular Ca2+ concentration. More recently, the expression and activity of BKCa have been proposed to be relevant in endothelial cells, too, specifically in human umbilical vein endothelial cells (HUVECs), the more studied cell type in the fetoplacental circulation. The role of BKCa in endothelial cells is not well understood, but in HUVECs or placental endothelium, these channels could be crucial for vascular tone regulation during pregnancy as part of endothelium-derived hyperpolarization (EDH), a key mechanism for an organ that lacks nervous system innervation like the placenta.In this review, we will discuss the evidence about the role of BKCa (and other Ca2+-activated K+ channels) in HUVECs and the placenta to propose a physiological mechanism for fetoplacental vascular regulation and a pathophysiological role of BKCa, mainly associated with pregnancy pathologies that present maternal hypertension and/or placental hypoxia, like preeclampsia.


Subject(s)
Large-Conductance Calcium-Activated Potassium Channels , Potassium Channels, Calcium-Activated , Female , Humans , Pregnancy , Human Umbilical Vein Endothelial Cells , Placenta/metabolism , Myocytes, Smooth Muscle/metabolism , Potassium Channels, Calcium-Activated/metabolism
20.
Am J Reprod Immunol ; 90(2): e13753, 2023 08.
Article in English | MEDLINE | ID: mdl-37491919

ABSTRACT

PROBLEM: Antiphospholipid syndrome (APS) is characterized by the clinical manifestation of vascular thrombosis (VT) or pregnancy morbidity (PM) and antiphospholipid antibodies (aPL) that can modify the nitric oxide production. Low-dose aspirin is used in the prevention and treatment of diverse alterations of pregnancy. One of the mechanisms of action of aspirin is to induce the production of aspirin-triggered-lipoxins (ATL). The aim of this study was to evaluate the modulatory effect of ATL over the activation of endothelial nitric oxide synthase (eNOS) and nitrosative stress biomarkers induced by aPL. METHODS: We used polyclonal IgG and sera from women with aPL and PM/VT or VT only, and from women with PM only and positive for non-criteria aPL (SN-OAPS). In these sera, biomarkers of nitrosative stress (nitrites and nitrotyrosine) were measured. The protein expression of nitrotyrosine and the phosphorylation of eNOS (at Ser1177) were estimated in human umbilical vein endothelial cells (HUVECs) stimulated with polyclonal IgG with or without ATL. RESULTS: Women with SN-OAPS showed increased circulating levels of nitrites and nitrotyrosine. Likewise, polyclonal IgG from either SN-OAPS or VT patients stimulated nitrotyrosine expression in HUVECs. ATL decreased the nitrotyrosine expression induced by polyclonal IgG from the SN-OAPS group. ATL also recovered the reduced eNOS phosphorylation at Ser1177 in HUVECs stimulated with polyclonal IgG from women with PM/VT or SN-OAPS. CONCLUSIONS: Increased nitrosative stress present in serum of women with SN-OAPS is associated with IgG-mediated impaired endothelial NO synthesis in endothelial cells. ATL prevent these cellular changes.


Subject(s)
Antiphospholipid Syndrome , Lipoxins , Pregnancy , Humans , Female , Aspirin/pharmacology , Aspirin/therapeutic use , Lipoxins/pharmacology , Nitric Oxide Synthase Type III , Nitrosative Stress , Nitrites , Human Umbilical Vein Endothelial Cells , Immunoglobulin G
SELECTION OF CITATIONS
SEARCH DETAIL