Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.499
Filter
1.
Acta Cir Bras ; 39: e396124, 2024.
Article in English | MEDLINE | ID: mdl-39356932

ABSTRACT

PURPOSE: To examine whether isoflurane preconditioning (IsoP) has a protective effect against renal ischemia/reperfusion injury (I/RI) in diabetic conditions and to further clarify the underlying mechanisms. METHODS: Control and streptozotocin-induced diabetic rats were randomly assigned to five groups, as follows: normal sham, normal I/R, diabetic sham, diabetic I/R, and diabetic I/R + isoflurane. Renal I/RI was induced by clamping renal pedicle for 45 min followed by reperfusion for 24 h. IsoP was achieved by exposing the rats to 2% isoflurane for 30 min before vascular occlusion. Kidneys and blood were collected after reperfusion for further analysis. Renal histology, blood urea nitrogen, serum creatinine, oxidative stress, inflammatory cytokines, and renal cell apoptosis were assessed. Furthermore, the expression of brahma related gene 1 (Brg1), nuclear factor-erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), and nuclear factor-κB (NF-κB) were determined. RESULTS: Compared with control, diabetic rats undergoing I/R presented more severe renal injury, oxidative stress, inflammatory reaction, and apoptosis with the impairment of Brg1/Nrf2/HO-1 signaling. All these alterations were significantly attenuated by pretreatment with isoflurane. CONCLUSIONS: These findings suggest that isoflurane could alleviate renal I/RI in diabetes, possibly through improving Brg1/Nrf2/HO-1 signaling.


Subject(s)
Apoptosis , Diabetes Mellitus, Experimental , Ischemic Preconditioning , Isoflurane , Reperfusion Injury , Signal Transduction , Transcription Factors , Animals , Male , Rats , Anesthetics, Inhalation/pharmacology , Apoptosis/drug effects , Diabetes Mellitus, Experimental/complications , DNA Helicases/metabolism , Heme Oxygenase-1/metabolism , Ischemic Preconditioning/methods , Isoflurane/pharmacology , Kidney/drug effects , Kidney/blood supply , Kidney/pathology , NF-E2-Related Factor 2/metabolism , NF-kappa B/metabolism , Nuclear Proteins/metabolism , Oxidative Stress/drug effects , Random Allocation , Rats, Sprague-Dawley , Reperfusion Injury/prevention & control , Signal Transduction/drug effects
2.
J Bras Nefrol ; 46(4): e20230148, 2024.
Article in English, Portuguese | MEDLINE | ID: mdl-39412511

ABSTRACT

INTRODUCTION: The objective of this study was to investigate the role of fenofibrate, a peroxisome proliferator-activated receptor-α agonist, in obesity-induced kidney damage (lipotoxicity) in mice with uninephrectomy. METHODS: C57BL/6 mice underwent uninephrectomy and sham surgeries and were fed normocaloric or high-fat diets. After 10 weeks, obese mice were administered 0.02% fenofibrate for 10 weeks. Kidney function and morphology were evaluated, as well as levels of inflammatory and fibrotic mediators and lipid metabolism markers. RESULTS: High-fat diet-fed mice developed characteristic obesity and hyperlipidemia, with subsequent renal lipid accumulation and damage, including mesangial expansion, interstitial fibrosis, inflammation, and proteinuria. These changes were greater in obese uninephrectomy mice than in obese sham mice. Fenofibrate treatment prevented hyperlipidemia and glomerular lesions, lowered lipid accumulation, ameliorated renal dysfunction, and attenuated inflammation and renal fibrosis. Furthermore, fenofibrate treatment downregulated renal tissue expression of plasminogen activator inhibitor-1, monocyte chemoattractant protein-1, and local expression of fibroblast growth factor-21. CONCLUSION: Peroxisome proliferator-activated receptor-α activation by fenofibrate, with subsequent lipolysis, attenuated glomerular and tubulointerstitial lesions induced by renal lipotoxicity, thus protecting the kidneys of uninephrectomy mice from obesity-induced lesions. The study findings suggest a pathway in the pharmacological action of fenofibrate, providing insight into the mechanisms involved in kidney damage caused by obesity in kidney donors.


Subject(s)
Diet, High-Fat , Fenofibrate , Hypolipidemic Agents , Mice, Inbred C57BL , Nephrectomy , Obesity , Animals , Fenofibrate/pharmacology , Fenofibrate/therapeutic use , Diet, High-Fat/adverse effects , Mice , Obesity/complications , Obesity/metabolism , Male , Hypolipidemic Agents/therapeutic use , Hypolipidemic Agents/pharmacology , Kidney/drug effects , Kidney/pathology , Kidney/metabolism , Kidney Diseases/etiology , Kidney Diseases/prevention & control , Kidney Diseases/metabolism , Lipid Metabolism/drug effects
3.
Braz J Med Biol Res ; 57: e13116, 2024.
Article in English | MEDLINE | ID: mdl-39383377

ABSTRACT

Nephrotoxicity is a common complication that limits the clinical utility of cisplatin. Ferroptosis is an iron-dependent necrotic cell death program that is mediated by phospholipid peroxidation. The molecular mechanisms that disrupt iron homeostasis and lead to ferroptosis are yet to be elucidated. In this study, we aimed to investigate the involvement of nuclear receptor coactivator 4 (NCOA4), a selective cargo receptor that mediates ferroptosis and autophagic degradation of ferritin in nephrotoxicity. Adult male Sprague-Dawley rats were randomly-assigned to four groups: control group, cisplatin (Cis)-treated group, deferiprone (DEF)-treated group, and Cis+DEF co-treated group. Serum, urine, and kidneys were isolated to perform biochemical, morphometric, and immunohistochemical analysis. Iron accumulation was found to predispose to ferroptotic damage of the renal tubular cells. Treatment with deferiprone highlights the role of ferroptosis in nephrotoxicity. Upregulation of NCOA4 in parallel with low ferritin level in renal tissue seems to participate in iron-induced ferroptosis. This study indicated that ferroptosis may participate in cisplatin-induced tubular cell death and nephrotoxicity through iron-mediated lipid peroxidation. Iron dyshomeostasis could be attributed to NCOA4-mediated ferritin degradation.


Subject(s)
Cisplatin , Ferroptosis , Nuclear Receptor Coactivators , Rats, Sprague-Dawley , Signal Transduction , Animals , Ferroptosis/drug effects , Male , Cisplatin/toxicity , Nuclear Receptor Coactivators/metabolism , Signal Transduction/drug effects , Rats , Deferiprone/pharmacology , Amino Acid Transport System y+/metabolism , Antineoplastic Agents , Lipid Peroxidation/drug effects , Iron/metabolism , Kidney/drug effects , Kidney/metabolism , Kidney/pathology , Ferritins/metabolism , Kidney Diseases/chemically induced , Kidney Diseases/metabolism , Immunohistochemistry
4.
Life Sci ; 357: 123098, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-39362585

ABSTRACT

AIMS: Acute kidney injury (AKI) is a life-threatening condition marked by sudden kidney function loss and azotemia. While its management is limited to supportive care, the effects of hyperbaric oxygen therapy (HBO) on AKI remain a subject of conflicting animal research. This study aimed to systematically review and meta-analyze HBO's effects on renal function biomarkers serum creatinine (SCr) and blood urea nitrogen (BUN) in murine AKI models, also exploring tissue-level nephroprotection. MAIN METHODS: The PUBMED, SciELO, and LILACS databases were searched until September 5, 2024. Effect sizes of HBO on SCr and BUN levels were expressed as standardized mean difference (SMD) alongside 95 % confidence interval (CI), calculated by random-effects model. Extracted data also included murine specie/strain, HBO parameters, AKI induction method (toxic, ischemic, others), and histological findings. Study quality and publication bias were respectively assessed using the CAMARADES checklist and Egger's test. This review adhered to PRISMA guidelines and was registered in PROSPERO (CRD42022369804). KEY FINDINGS: Data synthesis from 21 studies demonstrates that HBO effectively reduces azotemia in AKI-affected animals (SCr's SMD = -1.69, 95 % CI = -2.38 to -0.99, P < 0.001; BUN's SMD = -1.51, 95 % CI = -2.32 to -0.71, P < 0.001) while mitigating histological damage. Subgroup analyses indicate that HBO particularly benefits ischemic and other AKI types (P < 0.05). In contrast, data from toxic AKI models were inconclusive due to insufficient statistical power (P > 0.05, 1-ß < 30 %). SIGNIFICANCE: This meta-analysis provides compelling evidence supporting the adjunctive use of HBO in AKI management.


Subject(s)
Acute Kidney Injury , Hyperbaric Oxygenation , Animals , Mice , Acute Kidney Injury/blood , Acute Kidney Injury/therapy , Blood Urea Nitrogen , Creatinine/blood , Disease Models, Animal , Hyperbaric Oxygenation/methods , Kidney/pathology
5.
Cell Biochem Funct ; 42(7): e4119, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39244707

ABSTRACT

In the present study, we investigated whether curcumin administration would interfere with the main renal features of l-NAME-induced hypertension model. For this purpose, we conducted both in vitro and in vivo experiments to evaluate renal indicators of inflammation, oxidative stress, and metalloproteinases (MMPs) expression/activity. Hypertension was induced by l-NAME (70 mg/kg/day), and Wistar rats from both control and hypertensive groups were treated with curcumin (50 or 100 mg/kg/day; gavage) or vehicle for 14 days. Blood and kidneys were collected to determine serum creatinine levels, histological alterations, oxidative stress, MMPs expression and activity, and ED1 expression. l-NAME increased blood pressure, but both doses of curcumin treatment reduced these values. l-NAME treatment increased creatinine levels, glomeruli area, Bowman's space, kidney MMP-2 activity, as well as MMP-9 and ED1 expression, and reduced the number of glomeruli. Curcumin treatment prevented the increase in creatinine levels, MMP-2 activity, and reduced MMP-2, MMP-9, ED1, and superoxide levels, as well as increased superoxide dismutase activity and partially prevented glomeruli alterations. Moreover, curcumin directly inhibited MMP-2 activity in vitro. Thus, our main findings demonstrate that curcumin reduced l-NAME-induced hypertension and renal glomerular alterations, inhibited MMP-2 and MMP-9 expression/activity, and reduced oxidative stress and inflammatory processes, which may indirectly impact hypertension-induced renal outcomes.


Subject(s)
Curcumin , Hypertension , Matrix Metalloproteinase 2 , Matrix Metalloproteinase 9 , NG-Nitroarginine Methyl Ester , Animals , Male , Rats , Curcumin/pharmacology , Hypertension/chemically induced , Hypertension/drug therapy , Hypertension/metabolism , Kidney/drug effects , Kidney/pathology , Kidney/metabolism , Kidney Diseases/chemically induced , Kidney Diseases/prevention & control , Kidney Diseases/pathology , Kidney Diseases/metabolism , Kidney Diseases/drug therapy , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/metabolism , NG-Nitroarginine Methyl Ester/pharmacology , Oxidative Stress/drug effects , Rats, Wistar
6.
Acta Cir Bras ; 39: e394624, 2024.
Article in English | MEDLINE | ID: mdl-39230094

ABSTRACT

PURPOSE: Lipopolysaccharides is well-known in the acute renal injury process. It causes widespread activation of inflammatory cascades. Tumor necrosis factor (TNF)-α and interleukin (Il)-6 are essential proinflammatory cytokines that can induce the production of other cytokines in host response. Adalimumab suppresses TNF-α, IL-1ß, and IL-6. We aimed to evaluate whether adalimumab would prevent the toxicity of lipopolysaccharide on the rat renal tissue. METHODS: Adult female Wistar rats were divided into four groups. To the control group, only intraperitoneal saline injection procedure was carried out. For adalimumab group, adalimumab was injected at a dose for two days. For lipopolysaccharide group, animals were injected with lipopolysaccharide (a dose). For lipopolysaccharide-adalimumab group, animals were given adalimumab treatment before the injection of lipopolysaccharide. Histopathological changes and immunohistochemical analysis for TNF-α and IL-6 were determined. RESULTS: The pathological changes and immunohistochemical staining for TNF-α or IL-6 were similar for control and adalimumab groups (p > 0.05). The lipopolysaccharide group had significantly higher distorted features in the renal tissues (p < 0.001), and also significantly prominent immunohistochemical staining for TNF-α or IL-6 (0.003), compared to the control group. No severe pathological feature was detected in the lipopolysaccharide-adalimumab group, but moderate necrosis was found in all cases (p = 0.003). TNF-α staining and IL-6 staining in the lipopolysaccharide group was found to significantly prominent compared to lipopolysaccharide-adalimumab group (p = 0.013). CONCLUSIONS: Because of its anti-inflammatory property, adalimumab pretreatment may have protective effects on experimental kidney injury. Adalimumab could be considered as a protective agent to acute effects of lipopolysaccharide induced renal injury.


Subject(s)
Acute Kidney Injury , Adalimumab , Interleukin-6 , Lipopolysaccharides , Rats, Wistar , Tumor Necrosis Factor-alpha , Animals , Adalimumab/pharmacology , Adalimumab/therapeutic use , Female , Tumor Necrosis Factor-alpha/analysis , Acute Kidney Injury/prevention & control , Acute Kidney Injury/chemically induced , Interleukin-6/analysis , Kidney/drug effects , Kidney/pathology , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Immunohistochemistry , Rats , Disease Models, Animal , Reproducibility of Results
7.
Catheter Cardiovasc Interv ; 104(5): 1008-1011, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39279204

ABSTRACT

Bleeding following a percutaneous renal biopsy is a complication that can be life-threatening. Embolization of the bleeding artery is a procedure that can limit the damage; however, embolization devices can be costly or not immediately available. This is why we present the case of a 25-year-old man with a history of multiple thromboses who underwent a renal biopsy due to suspected systemic lupus erythematosus. Five days after the procedure, he developed hypovolemic shock. A CT scan was performed due to suspected hemorrhage and showed active bleeding at the renal biopsy site. Since embolization devices were not immediately available, selective embolization of the bleeding artery was successfully performed using autologous fat. It is known that embolization with coils is the most frequently used interventional procedure to stop bleeding secondary to renal biopsies. However, embolization with autologous fat is a proven technique to stop bleeding in coronary perforations. In this case, we adapted this technique to treat an actively bleeding renal artery secondary to a renal biopsy. Based on this case, we consider that this technique may be an alternative when coil embolization is not available.


Subject(s)
Embolization, Therapeutic , Hemorrhage , Kidney , Renal Artery , Humans , Male , Adult , Hemorrhage/etiology , Hemorrhage/therapy , Treatment Outcome , Kidney/pathology , Kidney/blood supply , Biopsy , Renal Artery/diagnostic imaging , Adipose Tissue
8.
J Ethnopharmacol ; 335: 118637, 2024 Dec 05.
Article in English | MEDLINE | ID: mdl-39097212

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Moringa oleifera (Moringaceae family), commonly known as horseradish or tree of life, is traditionally used for various diseases, such as diabetes, hypercholesterolemia, neurological disorders, among others. AIM OF THE STUDY: To evaluate the toxicological profile of the oral use of an aqueous extract of Moringa oleifera leaves for 13 weeks in mice. MATERIALS AND METHODS: Initially, a factorial design (23) was carried out to optimize aqueous extraction using as variables; the extraction method and proportion of drug. The 13-week repeated-dose toxicity trial used female and male mice, with oral administration of aqueous extract of Moringa oleifera leaves at doses of 250, 500, and 1000 mg/kg. The animals were evaluated for body weight, water and feed intake, biochemical and hematological parameters, urinalysis, ophthalmology and histopathology of the liver, spleen and kidneys. RESULTS: The extraction efficiency was evidenced by the extraction by maceration at 5%, obtaining the optimized extract of Moringa oleifera (OEMo). The oral administration of OEMo did not promote significant difference (p > 0.05) in the weight gain, food and water consumption of the control animals and those treated with 250 and 500 mg/kg. However, treatment with 1000 mg/kg promoted a reduction (p < 0.05) in food intake and body weight from the 7th week onwards in male and female mice. No alterations were detected in the hematological and histological parameters in the concentrations tested for both sexes. The highest concentration treatment (1000 mg/kg) promoted an increase in transaminases in males and females. All concentrations promoted a significant decrease (p < 0.05) in the serum lipid profile of mice. CONCLUSION: This study developed an optimized extract of Moringa oleifera leaves, which should be used with caution in preparations above 500 mg/kg for the long term because it leads to significant changes in liver enzymes. On the other hand, the extract proved to be a promising plant preparation for hyperlipidemia in mice.


Subject(s)
Moringa oleifera , Plant Extracts , Plant Leaves , Animals , Moringa oleifera/chemistry , Plant Extracts/toxicity , Plant Extracts/administration & dosage , Plant Extracts/pharmacology , Male , Female , Mice , Body Weight/drug effects , Eating/drug effects , Dose-Response Relationship, Drug , Liver/drug effects , Liver/pathology , Administration, Oral , Kidney/drug effects , Kidney/pathology
9.
Acta Parasitol ; 69(3): 1661-1673, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39162926

ABSTRACT

The recent discovery of disease caused by Nucleospora braziliensis in Nile tilapia (Oreochromis niloticus) is important as it has highlighted the high prevalence of infection and associated mortality in cultured fish. Thus, this study conducted an experimental infection of this microsporidium to evaluate pathological alterations and conduct proteomic analysis. For pathological observation, samples of brain, eyes, gall bladder, gut, heart, kidney, liver, muscle, skin, spleen, and stomach tissue, were collected, and liquid chromatography-mass spectrometry (LC-MS/MS) was performed for proteomic analysis. The most prevalent lesions were brownish color of the liver, gill filament fusion, gut ischemia, hemorrhage of the lips and fins, hepatomegaly, spleen atrophy, splenomegaly, and stomach congestion. The most common microscopic lesions were degeneration, hemorrhage, and inflammation in the brain, gills, gut, kidney, liver, muscle, spleen, and stomach. The digested peptides were identified by LC-MS/MS and the intersection of each group showed that in the spleen there were 121 exclusive proteins in the infected sample and 252 in the control, while in the kidney, 129 proteins were identified in the infected specimen compared to 83 in the control. In conclusion, this study demonstrates the proteome profile of O. niloticus kidney and spleen tissue in response to infection with N. braziliensis.


Subject(s)
Cichlids , Fish Diseases , Microsporidiosis , Proteomics , Animals , Fish Diseases/microbiology , Fish Diseases/pathology , Microsporidiosis/veterinary , Microsporidiosis/pathology , Chromatography, Liquid , Proteome/analysis , Tandem Mass Spectrometry , Kidney/pathology , Kidney/microbiology , Spleen/pathology , Spleen/microbiology , Apansporoblastina/genetics
10.
Acta Cir Bras ; 39: e395324, 2024.
Article in English | MEDLINE | ID: mdl-39109782

ABSTRACT

PURPOSE: To assess the effect of Amorphophallus campanulatus tuber (Ac) extract in the protection of diabetic nephropathy in streptozotocin (STZ) induced diabetic nephropathy (DN) rat model. METHODS: Diabetes was induced with STZ (60 mg/kg, i.p.), and DN was confirmed after six weeks of STZ administration with the estimation of kidney function test. Further rats were treated with Ac 250 and 500 mg/kg p.o. for next four week. Oxidative stress and level of inflammatory cytokines were estimated in the kidney tissue of DN rats. Histopathology of kidney tissue was performed using hematoxylin and eosin staining. RESULTS: There was improvement in the body weight of Ac treated groups than DN group of rats. Blood glucose level was observed to be reduced in Ac treated groups than DN group on 42nd and 70th day of protocol. Treatment with Ac ameliorated the altered level of kidney function tests (creatinine and BUN), enzymes of liver function (aspartate aminotransferase and alanine aminotransferase), and lipid profile in the serum of DN rats. Oxidative stress parameters (malondialdehyde and reactive oxygen species enhances and reduction in the level of glutathione and superoxide dismutase) and inflammatory cytokines such as interleukin-6, tumour necrosis factor-α, and monocyte chemoattractant protein-1 reduces in the tissue of Ac treated group than DN group. Treatment with Ac also attenuates the altered histopathological changes in the kidney tissue of DN rats. CONCLUSIONS: The report suggests that Ac protects renal injury in DN rats by regulating inflammatory cytokines and oxidative stress.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Nephropathies , Oxidative Stress , Plant Extracts , Tumor Necrosis Factor-alpha , Animals , Oxidative Stress/drug effects , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/prevention & control , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Male , Streptozocin , Rats , Rats, Wistar , Kidney/drug effects , Kidney/pathology , Blood Glucose/drug effects , Blood Glucose/analysis , Disease Models, Animal , Reproducibility of Results , Plant Tubers/chemistry
11.
Curr Top Membr ; 93: 1-25, 2024.
Article in English | MEDLINE | ID: mdl-39181576

ABSTRACT

Mammalian cell membranes are very dynamic where they respond to several environmental stimuli by rearranging the membrane composition by basic biological processes, including endocytosis. In this context, receptor-mediated endocytosis, either clathrin-dependent or caveolae-dependent, is involved in different physiological and pathological conditions. In the last years, an important amount of evidence has been reported that kidney function involves the modulation of different types of endocytosis, including renal protein handling. In addition, the dysfunction of the endocytic machinery is involved with the development of proteinuria as well as glomerular and tubular injuries observed in kidney diseases associated with hypertension, diabetes, and others. In this present review, we will discuss the mechanisms underlying the receptor-mediated endocytosis in different glomerular cells and proximal tubule epithelial cells as well as their modulation by different factors during physiological and pathological conditions. These findings could help to expand the current understanding regarding renal protein handling as well as identify possible new therapeutic targets to halt the progression of kidney disease.


Subject(s)
Endocytosis , Humans , Animals , Kidney Diseases/metabolism , Kidney Diseases/pathology , Kidney/metabolism , Kidney/pathology , Receptors, Cell Surface/metabolism
12.
Am J Physiol Endocrinol Metab ; 327(3): E302-E312, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39018175

ABSTRACT

Acute kidney injury (AKI) is a public health concern associated with high rates of mortality, even in milder cases. One of the reasons for the difficulty in managing AKI in patients is due to its association with pre-existing comorbidities, such as diabetes. In fact, diabetes increases the susceptibility to develop more severe AKI after renal ischemia. However, the long-term effects of this association are not known. Thus, an experimental model was designed to evaluate the chronic effects of renal ischemia/reperfusion (IR) in streptozotocin (STZ)-treated mice. We focused on the glomerular and tubulointerstitial damage, as well as kidney function and metabolic profile. It was found that pre-existing diabetes may potentiate progressive kidney disease after AKI, mainly by exacerbating proinflammatory and sustaining fibrotic responses and altering renal glucose metabolism. To our knowledge, this is the first report that highlights the long-term effects of renal IR on diabetes. The findings of this study can support the management of AKI in clinical practice.NEW & NOTEWORTHY This study demonstrated that early diabetes potentiates progressive kidney disease after ischemia/reperfusion (IR)-induced acute kidney injury, mainly by exacerbating pro-inflammatory and sustaining fibrotic responses and altering renal glucose metabolism. Thus, these findings will contribute to the therapeutic support of patients with type 1 diabetes with eventual renal IR intervention in clinical practice.


Subject(s)
Acute Kidney Injury , Diabetes Mellitus, Experimental , Diabetic Nephropathies , Disease Progression , Kidney , Reperfusion Injury , Animals , Reperfusion Injury/metabolism , Reperfusion Injury/complications , Reperfusion Injury/pathology , Mice , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/metabolism , Acute Kidney Injury/etiology , Acute Kidney Injury/metabolism , Acute Kidney Injury/pathology , Male , Kidney/metabolism , Kidney/pathology , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , Diabetic Nephropathies/etiology , Mice, Inbred C57BL , Streptozocin , Fibrosis
13.
Biochem Pharmacol ; 227: 116425, 2024 09.
Article in English | MEDLINE | ID: mdl-39004233

ABSTRACT

Hemorrhagic shock (HS), a leading cause of preventable death, is characterized by severe blood loss and inadequate tissue perfusion. Reoxygenation of ischemic tissues exacerbates organ damage through ischemia-reperfusion injury. SUMOylation has been shown to protect neurons after stroke and is upregulated in response to cellular stress. However, the role of SUMOylation in organ protection after HS is unknown. This study aimed to investigate SUMOylation-mediated organ protection following HS. Male Wistar rats were subjected to HS (blood pressure of 40 ± 2 mmHg, for 90 min) followed by reperfusion. Blood, kidney, and liver samples were collected at various time points after reperfusion to assess organ damage and investigate the profile of SUMO1 and SUMO2/3 conjugation. In addition, human kidney cells (HK-2), treated with the SUMOylation inhibitor TAK-981 or overexpressing SUMO proteins, were subjected to oxygen and glucose deprivation to investigate the role of SUMOylation in hypoxia/reoxygenation injury. The animals presented progressive multiorgan dysfunction, except for the renal system, which showed improvement over time. Compared to the liver, the kidneys displayed distinct patterns in terms of oxidative stress, apoptosis activation, and tissue damage. The global level of SUMO2/3 in renal tissue was also distinct, suggesting a differential role. Pharmacological inhibition of SUMOylation reduced cell viability after hypoxia-reoxygenation damage, while overexpression of SUMO1 or SUMO2 protected the cells. These findings suggest that SUMOylation might play a critical role in cellular protection during ischemia-reperfusion injury in the kidneys, a role not observed in the liver. This difference potentially explains the renal resilience observed in HS animals when compared to other systems.


Subject(s)
Rats, Wistar , Shock, Hemorrhagic , Sumoylation , Animals , Male , Shock, Hemorrhagic/metabolism , Sumoylation/drug effects , Sumoylation/physiology , Rats , Humans , Kidney/metabolism , Kidney/pathology , Kidney/drug effects , Reperfusion Injury/metabolism , Cell Line
14.
J Biochem Mol Toxicol ; 38(8): e23781, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39051179

ABSTRACT

Lisdexamfetamine dimesylate (LDX) is a prodrug of dextroamphetamine, which has been widely recommended for the treatment of Attention-Deficit/Hyperactivity Disorder (ADHD). There are still no data in the literature relating the possible toxic effects of LDX in the kidney. Therefore, the present study aims to evaluate the effects of LDX exposure on morphological, oxidative stress, cell death and inflammation parameters in the kidneys of male pubertal Wistar rats, since the kidneys are organs related to the excretion of most drugs. For this, twenty male Wistar rats were distributed randomly into two experimental groups: LDX group-received 11,3 mg/kg/day of LDX; and Control group-received tap water. Animals were treated by gavage from postnatal day (PND) 25 to 65. At PND 66, plasma was collected to the biochemical dosage, and the kidneys were collected for determinations of the inflammatory profile, oxidative status, cell death, and for histochemical, and morphometric analyses. Our results show that there was an increase in the number of cells marked for cell death, and a reduction of proximal and distal convoluted tubules mean diameter in the group that received LDX. In addition, our results also showed an increase in MPO and NAG activity, indicating an inflammatory response. The oxidative status showed that the antioxidant system is working undisrupted and avoiding oxidative stress. Therefore, LDX-exposition in male rats during the peripubertal period causes renal changes in pubertal age involving inflammatory mechanisms, antioxidant activity and apoptosis process.


Subject(s)
Antioxidants , Apoptosis , Kidney , Lisdexamfetamine Dimesylate , Oxidative Stress , Rats, Wistar , Animals , Male , Apoptosis/drug effects , Rats , Kidney/drug effects , Kidney/metabolism , Kidney/pathology , Antioxidants/pharmacology , Antioxidants/metabolism , Oxidative Stress/drug effects , Inflammation/metabolism , Inflammation/pathology , Sexual Maturation/drug effects
15.
J Biomed Mater Res B Appl Biomater ; 112(7): e35443, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38968028

ABSTRACT

The aim of this work was to analyze the effects of long-term exposure to titanium dioxide (TiO2) micro- (MPs) and nanoparticles (NPs) (six and 12 months) on the biochemical and histopathological response of target organs using a murine model. Male Wistar rats were intraperitoneally injected with a suspension of TiO2 NPs (5 nm; TiO2-NP5 group) or MPs (45 µm; TiO2-NP5 group); the control group was injected with saline solution. Six and 12 months post-injection, titanium (Ti) concentration in plasma and target organs was determined spectrometrically (ICP-MS). Blood smears and organ tissue samples were evaluated by light microscopy. Liver and kidney function was evaluated using serum biochemical parameters. Oxidative metabolism was assessed 6 months post-injection (determination of superoxide anion by nitroblue tetrazolium (NBT) test, superoxide dismutase (SOD) and catalase (CAT), lipid peroxidation, and paraoxonase 1). Titanium (Ti) concentration in target organs and plasma was significantly higher in the TiO2-exposed groups than in the control group. Histological evaluation showed the presence of titanium-based particles in the target organs, which displayed no structural alterations, and in blood monocytes. Oxidative metabolism analysis showed that TiO2 NPs were more reactive over time than MPs (p < .05) and mobilization of antioxidant enzymes and membrane damage varied among the studied organs. Clearance of TiO2 micro and nanoparticles differed among the target organs, and lung clearance was more rapid than clearance from the lungs and kidneys (p < .05). Conversely, Ti concentration in plasma increased with time (p < .05). In conclusion, neither serum biochemical parameters nor oxidative metabolism markers appear to be useful as biomarkers of tissue damage in response to TiO2 micro- and nanoparticle deposits at chronic time points.


Subject(s)
Rats, Wistar , Titanium , Titanium/chemistry , Animals , Male , Rats , Metal Nanoparticles/chemistry , Kidney/metabolism , Kidney/pathology , Kidney/drug effects , Oxidative Stress/drug effects , Nanoparticles/chemistry , Liver/metabolism , Liver/pathology
16.
Front Immunol ; 15: 1404954, 2024.
Article in English | MEDLINE | ID: mdl-39072328

ABSTRACT

Introduction: Kimura's disease (KD) is a rare chronic inflammatory disorder characterized by subcutaneous lymphoid hyperplasia with peripheral eosinophilia. Kidney involvement is reported in 15%-18% of adult patients with KD, in many cases as nephrotic syndrome. We present a case of overlapping membranous nephropathy and IgA nephropathy associated with KD. Case report: A 27-year-old man was admitted with a history of bilateral leg edema for the last 2 months and concomitant progressive increase of cervical mass and fever. Laboratory findings were as follows: peripheral leukocyte count, 10,080/mm³; eosinophils, 3,200/mm³ (31.7%); serum creatinine, 0.83 mg/dL; and eGFR: 140 mL/min per 1.73 m2. Urinalysis revealed the presence of hematuria and proteinuria and the following results: 24-h proteinuria, 12.9 g; serum albumin, 1.3 g/dL; and elevated IgE level, 750 kU/L. Serologies for hepatitis B, hepatitis C, HIV, and VDRL were all negative. Complement C3 and C4 levels were normal. No monoclonal protein was detected in blood and urine. Parasite infestation was discarded. A biopsy of the cervical lymph node revealed eosinophilic lymphoid hyperplasia, suggesting KD. A kidney biopsy revealed findings consistent with the overlapping of membranous nephropathy with IgA nephropathy. The patient was treated for KD with prednisone 1 mg/kg/d with progressive dose tapering and posterior association of methotrexate 15 mg/week. A renin-angiotensin system inhibitor was prescribed for nephrotic syndrome. The cervical mass regressed, and proteinuria achieved partial remission, with an increase in serum albumin level and normalization of eosinophils and IgE levels. Conclusion: Although uncommon, kidney involvement must be considered in patients with KD. Glomerular diseases are the most frequent form of kidney injury.


Subject(s)
Glomerulonephritis, IGA , Glomerulonephritis, Membranous , Kimura Disease , Humans , Adult , Glomerulonephritis, IGA/diagnosis , Glomerulonephritis, IGA/complications , Glomerulonephritis, IGA/drug therapy , Male , Glomerulonephritis, Membranous/drug therapy , Glomerulonephritis, Membranous/diagnosis , Glomerulonephritis, Membranous/immunology , Kimura Disease/diagnosis , Kimura Disease/complications , Kimura Disease/drug therapy , Biopsy , Kidney/pathology
17.
Biol Res ; 57(1): 47, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39033184

ABSTRACT

BACKGROUND: MiRNA-146a and miRNA-223 are key epigenetic regulators of toll-like receptor 4 (TLR4)/tumor necrosis factor-receptor-associated factor 6 (TRAF6)/NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome pathway, which is involved in diabetic nephropathy (DN) pathogenesis. The currently available oral anti-diabetic treatments have been insufficient to halt DN development and progression. Therefore, this work aimed to assess the renoprotective effect of the natural compound 6-gingerol (GR) either alone or in combination with metformin (MET) in high-fat diet/streptozotocin-induced DN in rats. The proposed molecular mechanisms were also investigated. METHODS: Oral gavage of 6-gingerol (100 mg/kg) and metformin (300 mg/kg) were administered to rats daily for eight weeks. MiRNA-146a, miRNA-223, TLR4, TRAF6, nuclear factor-kappa B (NF-κB) (p65), NLRP3, caspase-1, and hypoxia-inducible factor-1 alpha (HIF-1α) mRNA expressions were measured using real-time PCR. ELISA was used to measure TLR4, TRAF6, NLRP3, caspase-1, tumor necrosis factor-alpha (TNF-α), and interleukin-1-beta (IL-1ß) renal tissue levels. Renal tissue histopathology and immunohistochemical examination of fibronectin and NF-κB (p65) were performed. RESULTS: 6-Gingerol treatment significantly reduced kidney tissue damage and fibrosis. 6-Gingerol up-regulated miRNA-146a and miRNA-223 and reduced TLR4, TRAF6, NF-κB (p65), NLRP3, caspase-1, TNF-α, IL-1ß, HIF-1α and fibronectin renal expressions. 6-Gingerol improved lipid profile and renal functions, attenuated renal hypertrophy, increased reduced glutathione, and decreased blood glucose and malondialdehyde levels. 6-Gingerol and metformin combination showed superior renoprotective effects than either alone. CONCLUSION: 6-Gingerol demonstrated a key protective role in DN by induction of miRNA-146a and miRNA-223 expression and inhibition of TLR4/TRAF6/NLRP3 inflammasome signaling. 6-Gingerol, a safe, affordable, and abundant natural compound, holds promise for use as an adjuvant therapy with metformin in diabetic patients to attenuate renal damage and stop the progression of DN.


Subject(s)
Catechols , Diabetes Mellitus, Experimental , Diabetic Nephropathies , Diet, High-Fat , Inflammasomes , Metformin , MicroRNAs , Animals , Male , Rats , Catechols/pharmacology , Diabetes Mellitus, Experimental/metabolism , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/prevention & control , Drug Therapy, Combination , Fatty Alcohols/pharmacology , Hypoglycemic Agents/pharmacology , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Inflammasomes/drug effects , Inflammasomes/metabolism , Kidney/drug effects , Kidney/metabolism , Kidney/pathology , Metformin/pharmacology , Metformin/administration & dosage , MicroRNAs/metabolism , MicroRNAs/drug effects , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Rats, Sprague-Dawley , Signal Transduction/drug effects , Streptozocin , Toll-Like Receptor 4/metabolism
18.
J Pathol ; 263(4-5): 496-507, 2024 08.
Article in English | MEDLINE | ID: mdl-38934262

ABSTRACT

Chronic kidney disease (CKD) has emerged as a significant global public health concern. Recent epidemiological studies have highlighted the link between exposure to fine particulate matter (PM2.5) and a decline in renal function. PM2.5 exerts harmful effects on various organs through oxidative stress and inflammation. Acute kidney injury (AKI) resulting from ischaemia-reperfusion injury (IRI) involves biological processes similar to those involved in PM2.5 toxicity and is a known risk factor for CKD. The objective of this study was to investigate the impact of PM2.5 exposure on IRI-induced AKI. Through a unique environmentally controlled setup, mice were exposed to urban PM2.5 or filtered air for 12 weeks before IRI followed by euthanasia 48 h after surgery. Animals exposed to PM2.5 and IRI exhibited reduced glomerular filtration, impaired urine concentration ability, and significant tubular damage. Further, PM2.5 aggravated local innate immune responses and mitochondrial dysfunction, as well as enhancing cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway activation. This increased renal senescence and suppressed the anti-ageing protein klotho, leading to early fibrotic changes. In vitro studies using proximal tubular epithelial cells exposed to PM2.5 and hypoxia/reoxygenation revealed heightened activation of the STING pathway triggered by cytoplasmic mitochondrial DNA, resulting in increased tubular damage and a pro-inflammatory phenotype. In summary, our findings imply a role for PM2.5 in sensitising proximal tubular epithelial cells to IRI-induced damage, suggesting a plausible association between PM2.5 exposure and heightened susceptibility to CKD in individuals experiencing AKI. Strategies aimed at reducing PM2.5 concentrations and implementing preventive measures may improve outcomes for AKI patients and mitigate the progression from AKI to CKD. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Subject(s)
Acute Kidney Injury , Mice, Inbred C57BL , Particulate Matter , Reperfusion Injury , Animals , Acute Kidney Injury/pathology , Acute Kidney Injury/chemically induced , Acute Kidney Injury/etiology , Acute Kidney Injury/metabolism , Reperfusion Injury/pathology , Particulate Matter/adverse effects , Particulate Matter/toxicity , Mice , Male , Air Pollution/adverse effects , Disease Models, Animal , Kidney/pathology , Kidney/metabolism , Signal Transduction , Glomerular Filtration Rate
19.
Int J Mol Sci ; 25(11)2024 May 28.
Article in English | MEDLINE | ID: mdl-38892068

ABSTRACT

Food-grade titanium dioxide (E171) and zinc oxide nanoparticles (ZnO NPs) are common food additives for human consumption. We examined multi-organ toxicity of both compounds on Wistar rats orally exposed for 90 days. Rats were divided into three groups: (1) control (saline solution), (2) E171-exposed, and (3) ZnO NPs-exposed. Histological examination was performed with hematoxylin-eosin (HE) staining and transmission electron microscopy (TEM). Ceramide (Cer), 3-nitrotyrosine (NT), and lysosome-associated membrane protein 2 (LAMP-2) were detected by immunofluorescence. Relevant histological changes were observed: disorganization, inflammatory cell infiltration, and mitochondrial damage. Increased levels of Cer, NT, and LAMP-2 were observed in the liver, kidney, and brain of E171- and ZnO NPs-exposed rats, and in rat hearts exposed to ZnO NPs. E171 up-regulated Cer and NT levels in the aorta and heart, while ZnO NPs up-regulated them in the aorta. Both NPs increased LAMP-2 expression in the intestine. In conclusion, chronic oral exposure to metallic NPs causes multi-organ injury, reflecting how these food additives pose a threat to human health. Our results suggest how complex interplay between ROS, Cer, LAMP-2, and NT may modulate organ function during NP damage.


Subject(s)
Ceramides , Metal Nanoparticles , Rats, Wistar , Titanium , Zinc Oxide , Animals , Zinc Oxide/toxicity , Titanium/toxicity , Titanium/adverse effects , Rats , Ceramides/metabolism , Metal Nanoparticles/chemistry , Metal Nanoparticles/toxicity , Male , Administration, Oral , Lysosomal-Associated Membrane Protein 2/metabolism , Tyrosine/analogs & derivatives , Tyrosine/metabolism , Liver/drug effects , Liver/metabolism , Liver/pathology , Kidney/drug effects , Kidney/metabolism , Kidney/pathology
20.
Toxicon ; 246: 107797, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-38852745

ABSTRACT

The Brazilian Amazon is home to a rich fauna of scorpion species of medical importance, some of them still poorly characterized regarding their biological actions and range of clinical symptoms after envenoming. The Amazonian scorpion species Tityus strandi and Tityus dinizi constitute some of the scorpions in this group, with few studies in the literature regarding their systemic repercussions. In the present study, we characterized the clinical, inflammatory, and histopathological manifestations of T. strandi and T. dinizi envenoming in a murine model using Balb/c mice. The results show a robust clinical response based on clinical score, hyperglycemia, leukocytosis, increased cytokines, and histopathological changes in the kidneys and lungs. Tityus strandi envenomed mice presented more prominent clinical manifestations when compared to Tityus dinizi, pointing to the relevance of this species in the medical scenario, with both species inducing hyperglycemia, leukocytosis, increased cytokine production in the peritoneal lavage, increased inflammatory infiltrate in the lungs, and acute tubular necrosis after T. strandi envenoming. The results presented in this research can help to understand the systemic manifestations of scorpion accidents in humans caused by the target species of the study and point out therapeutic strategies in cases of scorpionism in remote regions of the Amazon.


Subject(s)
Mice, Inbred BALB C , Scorpion Stings , Scorpion Venoms , Scorpions , Animals , Scorpion Venoms/toxicity , Mice , Disease Models, Animal , Cytokines/metabolism , Brazil , Leukocytosis/chemically induced , Lung/pathology , Lung/drug effects , Male , Kidney/pathology , Kidney/drug effects , Female
SELECTION OF CITATIONS
SEARCH DETAIL