Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 510
Filter
1.
Meat Sci ; 219: 109682, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39395211

ABSTRACT

This study aimed to explore the differences in the lipidome and mitochondrial fraction metabolome of Nellore cattle meat in different ranges of ultimate pH (pHu) normal (≤5.79), intermediate (5.80 to 6.19) and high (≥ 6.20) after 3- and 21-d postmortem. Instrumental color, myoglobin redox state, oxygen consumption, and metmyoglobin-reducing activity were measured during storage. A total of 472 lipids and 22 mitochondrial fraction metabolites were identified. Beef with high pHu showed positive regulation of ceramides involved in apoptosis and negative regulation of lipid classes related to membrane permeability and stability. In addition, lower carnitine content was noted in high-pHu beef than in normal-pHu beef. Acylcarnitines, phosphatidylinositol, and IMP showed upregulation in beef with intermediate pHu, indicating changes mainly related to energy, purine and pyruvate metabolism. Aging time impacted on the lipid content and metabolites involved in different metabolic pathways. These results provided new insights into beef's mitochondrial fraction lipid and metabolic profile with different pHu. In addition, beef with intermediate pHu differs from beef with high pHu due to changes in energy metabolism.


Subject(s)
Color , Muscle, Skeletal , Red Meat , Animals , Cattle , Red Meat/analysis , Hydrogen-Ion Concentration , Muscle, Skeletal/chemistry , Muscle, Skeletal/metabolism , Mitochondria/metabolism , Metabolome , Myoglobin/metabolism , Lipids/analysis , Lipids/chemistry , Lipid Metabolism , Oxygen Consumption
2.
Metabolomics ; 20(5): 113, 2024 Oct 07.
Article in English | MEDLINE | ID: mdl-39375265

ABSTRACT

BACKGROUND: Cancer is a significant public health problem, causing dozens of millions of deaths annually. New cancer screening programs are urgently needed for early cancer detection, as this approach can improve treatment outcomes and increase patient survival. The search for affordable, noninvasive, and highly accurate cancer detection methods revealed a valuable source of tumor-derived metabolites in the human metabolome through the exploration of volatile organic compounds (VOCs) in noninvasive biofluids. AIM OF REVIEW: This review discusses volatilomics-based approaches for cancer detection using noninvasive biomatrices (breath, saliva, skin secretions, urine, feces, and earwax). We presented the historical background, the latest approaches, and the required stages for clinical validation of volatilomics-based methods, which are still lacking in terms of making noninvasive methods available and widespread to the population. Furthermore, insights into the usefulness and challenges of volatilomics in clinical implementation steps for each biofluid are highlighted. KEY SCIENTIFIC CONCEPTS OF REVIEW: We outline the methodologies for using noninvasive biomatrices with up-and-coming clinical applications in cancer diagnostics. Several challenges and advantages associated with the use of each biomatrix are discussed, aiming at encouraging the scientific community to strengthen efforts toward the necessary steps to speed up the clinical translation of volatile-based cancer detection methods, as well as discussing in favor of (i) hybrid applications (i.e., using more than one biomatrix) to describe metabolite modulations that can be "cancer volatile fingerprints" and (ii) in multi-omics approaches integrating genomics, transcriptomics, and proteomics into the volatilomic data, which might be a breakthrough for diagnostic purposes, onco-pathway assessment, and biomarker validations.


Subject(s)
Neoplasms , Volatile Organic Compounds , Humans , Neoplasms/diagnosis , Neoplasms/metabolism , Volatile Organic Compounds/metabolism , Volatile Organic Compounds/analysis , Metabolomics/methods , Metabolome , Biomarkers, Tumor/metabolism , Early Detection of Cancer/methods , Body Fluids/metabolism , Body Fluids/chemistry
3.
Environ Sci Technol ; 58(41): 18076-18087, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39353139

ABSTRACT

Although phthalate exposure has been linked with multiple adverse pregnancy outcomes, their underlying biological mechanisms are not fully understood. We examined associations between biomarkers of phthalate exposures and metabolic alterations using untargeted metabolomics in 99 pregnant women and 86 newborns [mean (SD) gestational age = 39.5 (1.5) weeks] in the PROTECT cohort. Maternal urinary phthalate metabolites were quantified using isotope dilution high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS), while metabolic profiles in maternal and cord blood plasma were characterized via reversed-phase LC-MS. Multivariable linear regression was used in metabolome-wide association studies (MWAS) to identify individual metabolic features associated with elevated phthalate levels, while clustering and correlation network analyses were used to discern the interconnectedness of biologically relevant features. In the MWAS adjusted for maternal age and prepregnancy BMI, we observed significant associations between specific phthalates, namely, di(2-ethylhexyl) phthalate (DEHP) and mono(3-carboxypropyl) phthalate (MCPP), and 34 maternal plasma metabolic features. These associations predominantly included upregulation of fatty acids, amino acids, purines, or their derivatives and downregulation of ceramides and sphingomyelins. In contrast, fewer significant associations were observed with metabolic features in cord blood. Correlation network analysis highlighted the overlap of features associated with phthalates and those identified as differentiating markers for preterm birth in a previous study. Overall, our findings underscore the complex impact of phthalate exposures on maternal and fetal metabolism, highlighting metabolomics as a tool for understanding associated biological processes. Future research should focus on expanding the sample size, exploring the effects of phthalate mixtures, and validating identified metabolic features in larger, more diverse populations.


Subject(s)
Metabolomics , Phthalic Acids , Humans , Female , Phthalic Acids/urine , Pregnancy , Adult , Puerto Rico , Maternal Exposure , Infant, Newborn , Fetal Blood/chemistry , Fetal Blood/metabolism , Biomarkers/blood , Metabolome , Environmental Exposure
4.
Trop Anim Health Prod ; 56(8): 292, 2024 Sep 27.
Article in English | MEDLINE | ID: mdl-39331241

ABSTRACT

This study aimed to evaluate the effect of replacing Tifton 85 hay (TH) with Moringa hay (MH) on the intake, apparent digestibility, ingestive behaviour, rumen parameters, serum attributes, nitrogen balance, water balance, and urinary attributes of sheep. Thus, 5 rams, ½ Dorper + ½ Santa Inês, that were 12 ± 4 months of age with an initial body weight of 32.8 ± 2.6 kg were distributed in metabolic cages in a Latin square design. The experiment lasted 85 days and was divided into five 17-day periods. The animals received rations with increasing replacement (0, 100, 200, 300, or 400 g/kg of dry matter in the total diet) of TH for MH. The forage: concentrate ratio of the diets was 40:60. Replacing TH with MH reduced (P < 0.05) the intake of organic matter, crude protein, neutral detergent fibre (NDFap), and total digestible nutrients by sheep. The apparent digestibility of NDFap and the feeding and rumination efficiencies of NDFap were reduced (P < 0.05) when MH replaced TH in the animals' diet. This replacement did not influence (P > 0.05) serum urea, total protein, creatinine, or aspartate aminotransferase in sheep. Replacing TH with MH decreased water intake and excretion (P < 0.05). In addition, nitrogen excretion via urine, urinary creatinine, and nitrogen absorption decreased (P < 0.05) when TH was replaced with MH. However, there was an increase in the sheep's nitrogen retention and urine pH. We recommend replacing 30% TH with MH in the diet of lambs because it does not compromise nutrient metabolism.


Subject(s)
Animal Feed , Animal Nutritional Physiological Phenomena , Diet , Digestion , Moringa oleifera , Animals , Animal Feed/analysis , Male , Diet/veterinary , Moringa oleifera/chemistry , Sheep, Domestic/physiology , Rumen/metabolism , Metabolome , Water-Electrolyte Balance , Nutrients/metabolism , Nitrogen/metabolism , Sheep
5.
Int J Mol Sci ; 25(17)2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39273608

ABSTRACT

The coronavirus disease 2019 (COVID-19) survivors are frequently observed to present persistent symptoms constituting what has been called "post-acute COVID-19 syndrome" (PACS) or "long COVID-19". Some clinical risk factors have been identified to be associated with PACS development; however, specific mechanisms responsible for PACS pathology remain unknown. This study investigates clinical, immunological, and metabolomic risk factors associated with post-acute COVID-19 syndrome (PACS) in 51 patients, assessed 7-19 months after acute infection. Among the participants, 62.7% were male and 37.2% were female, with an average age of 47.8 years. At the follow-up, 37.2% met the criteria for PACS, revealing significant differences in immunological and metabolomic profiles at the time of acute infection. Patients with PACS were characterized by elevated levels of mature low-density granulocytes (LDGs), interleukin-8 (IL-8), pyruvate, pseudouridine, and cystine. Baseline multivariate analysis showed increased pyruvate and decreased alpha tocopherol levels. At follow-up, there was a decrease in absolute B lymphocytes and an increase in non-classical monocytes and 3-hydroxyisovaleric acid levels. These findings suggest that specific immunological and metabolomic markers during acute infection can help identify patients at higher risk of developing persistent PACS.


Subject(s)
COVID-19 , Post-Acute COVID-19 Syndrome , SARS-CoV-2 , Humans , Female , COVID-19/immunology , COVID-19/metabolism , COVID-19/complications , Male , Middle Aged , Adult , Risk Factors , Biomarkers , Metabolomics/methods , Aged , Metabolome , Interleukin-8/metabolism
6.
Metabolomics ; 20(5): 101, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39235566

ABSTRACT

INTRODUCTION: In soccer, most studies evaluate metabolic profile changes in male athletes, often using data from a single match. Given the current landscape of women's soccer and the effects of biological sex on the physiological response and adaptation to exercise, more studies targeting female athletes and analyzing pre- and post-game moments throughout the season are necessary. OBJECTIVES: To describe the metabolomics profile of female soccer athletes from an elite team in Brazil. The study observed the separation of groups in three pre- and post-game moments and identified the discriminating metabolites. METHODS: The study included 14 female soccer athletes. Urine samples were collected and analyzed using Nuclear Magnetic Resonance in pre-game and immediate post-game moments over three national championship games. The metabolomics data were then used to generate OPLS-DA and VIP plots. RESULTS: Forty-three metabolites were identified in the samples. OPLS-DA analyses demonstrated a progressive separation between pre-post conditions, as supported by an increasing Q2 value (0.534, 0.625, and 0.899 for games 1, 2 and 3, respectively) and the first component value (20.2% and 19.1% in games 1 and 2 vs. 29.9% in game 3). Eight out of the fifteen most discriminating metabolites appeared consistently across the three games: glycine, formate, citrate, 3-hydroxyvalerate, glycolic acid, trimethylamine, urea, and dimethylglycine. CONCLUSION: The main difference between the three games was the increasing separation between groups throughout the championship. Since the higher VIP-scores metabolites are linked to energy and protein metabolism, this separation may be attributed several factors, one being the accumulation of fatigue.


Subject(s)
Athletes , Biomarkers , Metabolomics , Soccer , Soccer/physiology , Humans , Metabolomics/methods , Biomarkers/urine , Female , Young Adult , Metabolome , Adult , Brazil , Magnetic Resonance Spectroscopy/methods
7.
Metabolomics ; 20(5): 106, 2024 Sep 21.
Article in English | MEDLINE | ID: mdl-39306645

ABSTRACT

INTRODUCTION: Bisphenol A (BPA), an organic compound used to produce polycarbonate plastics and epoxy resins, has become a ubiquitous contaminant due to its high-volume production and constant release to the environment. Plant metabolomics can trace the stress effects induced by environmental contaminants to the variation of specific metabolites, making it an alternative way to study pollutants toxicity to plants. Nevertheless, there is an important knowledge gap in metabolomics applications in this area. OBJECTIVE: Evaluate the influence of BPA in French lettuce (Lactuca Sativa L. var capitata) leaves metabolic profile by gas chromatography coupled to mass spectrometry (GC-MS) using a hydroponic system. METHODS: Lettuces were cultivated in the laboratory to minimize biological variation and were analyzed 55 days after sowing (considered the plant's adult stage). Hexanoic and methanolic extracts with and without derivatization were prepared for each sample and analyzed by GC-MS. RESULTS: The highest number of metabolites was obtained from the hexanoic extract, followed by the derivatized methanolic extract. Although no physical differences were observed between control and contaminated lettuce leaves, the multivariate analysis determined a statistically significant difference between their metabolic profiles. Pathway analysis of the most affected metabolites showed that galactose metabolism, starch and fructose metabolism and steroid biosynthesis were significantly affected by BPA exposure. CONCLUSIONS: The preparation of different extracts from the same sample permitted the determination of metabolites with different physicochemical properties. BPA alters the leaves energy and membrane metabolism, plant growth could be affected at higher concentrations and exposition times.


Subject(s)
Benzhydryl Compounds , Gas Chromatography-Mass Spectrometry , Hydroponics , Lactuca , Metabolomics , Phenols , Plant Leaves , Benzhydryl Compounds/analysis , Lactuca/metabolism , Lactuca/drug effects , Lactuca/growth & development , Lactuca/chemistry , Gas Chromatography-Mass Spectrometry/methods , Plant Leaves/metabolism , Plant Leaves/drug effects , Phenols/metabolism , Phenols/analysis , Metabolomics/methods , Hydroponics/methods , Metabolome/drug effects
8.
Expert Rev Respir Med ; 18(10): 815-829, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39327745

ABSTRACT

BACKGROUND: Compare the changes and differences in metabolome and lipidome profiles among severe COVID-19 and CAP patients with ARF to identify biomarkers that could be used for personalized diagnosis, prognosis, and treatment. RESEARCH DESIGN AND METHODS: Plasma samples were taken at hospital admission (baseline) and on the 5th day of hospitalization (follow-up) and examined by RP-LC-QTOF-MS and HILIC-LC-QTOF-MS. RESULTS: 127 patients, 17 with CAP and 110 with COVID-19, were included. The analysis revealed 87 altered metabolites, suggesting changes in the metabolism of arachidonic acid, glycerolipids, glycerophospholipids, linoleic acid, pyruvate, glycolysis, among others. Most of these metabolites are involved in inflammatory, hypoxic, and thrombotic processes. At baseline, the greatest differences were found in phosphatidylcholine (PC) 31:4 (p < 0.001), phosphoserine (PS) 34:3 (p < 0.001), and phosphatidylcholine (PC) 36:5 (p < 0.001), all of which were notably decreased in COVID-19 patients. At follow-up, the most dysregulated metabolites were monomethyl-phosphatidylethanolamine (PE-Nme) 40:5 (p < 0.001) and phosphatidylcholine (PC) 38:4 (p < 0.001). CONCLUSIONS: Metabolic and lipidic alterations suggest inhibition of innate anti-inflammatory and anti-thrombotic mechanisms in COVID-19 patients, which might lead to increased viral proliferation, uncontrolled inflammation, and thrombi formation. Results provide novel targets for predictive biomarkers against CAP and COVID-19. TRIAL REGISTRATION: Not applicable.


Subject(s)
Biomarkers , COVID-19 , Community-Acquired Infections , Humans , COVID-19/blood , Male , Female , Middle Aged , Prognosis , Biomarkers/blood , Aged , Community-Acquired Infections/blood , Community-Acquired Infections/diagnosis , Lipidomics , Severity of Illness Index , SARS-CoV-2 , Adult , Metabolome
9.
Sci Rep ; 14(1): 18360, 2024 08 07.
Article in English | MEDLINE | ID: mdl-39112666

ABSTRACT

Evidence suggests that maternal metabolome may be associated with child health outcomes. We analyzed the association between the maternal metabolome between 28-35 gestational weeks and child growth and development during the first year. A prospective cohort of 98 mother-child dyads was followed at birth, 1, 6, and 12 months. Maternal serum samples were collected for targeted LC-MS/MS analysis, which measured 132 metabolites. The child's growth and development were assessed at each time-point. Z-scores were calculated based on WHO growth standards, and the domains of development were assessed using the Ages and Stages Questionnaires (ASQ-3). Multiple linear mixed-effects models were performed and confounders were identified using a Diagram Acyclic Graph. The Benjamini-Hochberg correction was used for multiple comparison adjustments. We found a positive association between lysophosphatidylcholines (14:0; 16:0; 16:1; 17:0; 18:0; 18:1; 18:2; 20:4) with the z-score of weight-for-age, and lysophosphatidylcholines (14:0; 16:0; 16:1; 18:0) and taurine with the z-score of weight-for-length, and lysophosphatidylcholines (14:0; 16:0; 16:1; 17:0; 18:0; 18:1; 18:2; 20:4) and glycine with the z-score of BMI-for-age. The leucine, methionine, tryptophan, and valine were negatively associated with the fine motor skills domain. We observed an association between maternal metabolome and the growth and child's development throughout the first year.


Subject(s)
Child Development , Metabolome , Pregnancy Trimester, Third , Humans , Female , Pregnancy , Infant , Pregnancy Trimester, Third/blood , Infant, Newborn , Male , Prospective Studies , Adult , Mothers
10.
Int J Mol Sci ; 25(16)2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39201325

ABSTRACT

Breast cancer (BC) remains a significant global health concern, with neoadjuvant chemotherapy (NACT) offering preoperative benefits like tumor downstaging and treatment response assessment. However, identifying factors influencing post-NACT treatment response and survival outcomes is challenging. Metabolomic approaches offer promising insights into understanding these outcomes. This study analyzed the serum of 80 BC patients before and after NACT, followed for up to five years, correlating with disease-free survival (DFS) and overall survival (OS). Using untargeted nuclear magnetic resonance (NMR) spectroscopy and a novel statistical model that avoids collinearity issues, we identified metabolic changes associated with survival outcomes. Four metabolites (histidine, lactate, serine, and taurine) were significantly associated with DFS. We developed a metabolite-related survival score (MRSS) from these metabolites, stratifying patients into low- and high-risk relapse groups, independent of classical prognostic factors. High-risk patients had a hazard ratio (HR) for DFS of 3.42 (95% CI 1.51-7.74; p = 0.003) after adjustment for disease stage and age. A similar trend was observed for OS (HR of 3.34, 95% CI 1.64-6.80; p < 0.001). Multivariate Cox proportional hazards analysis confirmed the independent prognostic value of the MRSS. Our findings suggest the potential of metabolomic data, alongside traditional markers, in guiding personalized treatment decisions and risk stratification in BC patients undergoing NACT. This study provides a methodological framework for leveraging metabolomics in survival analyses.


Subject(s)
Breast Neoplasms , Metabolomics , Neoadjuvant Therapy , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/mortality , Breast Neoplasms/metabolism , Breast Neoplasms/blood , Breast Neoplasms/pathology , Middle Aged , Metabolomics/methods , Adult , Prognosis , Aged , Disease-Free Survival , Metabolome , Chemotherapy, Adjuvant , Biomarkers, Tumor/blood , Biomarkers, Tumor/metabolism , Proportional Hazards Models
11.
Meat Sci ; 217: 109621, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39116534

ABSTRACT

The objective of this exploratory study was to assess the changes on lipidome and metabolome profiling of Longissimus lumborum bull muscle with different ultimate pH (pHu) and aging periods. The bull muscles classified as normal, intermediate, or high pHu were collected from a Brazilian commercial slaughterhouse, cut into steaks, individually vacuum-packaged, and aged for 3 days (3-d) or 21 days (21-d) at 2 °C. Muscle extracts were analyzed for the profiles of both lipids, by mass spectrometry (via direct flow-injection), and metabolites, by nuclear magnetic resonance, with downstream multivariate data analysis. As major results, pairwise comparisons identified C12:0 and C14:0 acylcarnitines as potential biomarkers of the intermediate pHu-muscle, which are related to lipid catabolism for alternative energy metabolism and indicate less protein breakage postmortem. Interestingly, the concentration of arginine at early postmortem aging (3-d) may influence the previously reported improved tenderness in normal and high pHu-muscles. Moreover, upregulation of fumarate, formate, and acetate with increased pHu muscle at 21-d aging indicate more intense tricarboxylic acid cycle, amino acid degradation, and pyruvate oxidation by reactive oxygen species, respectively. These three compounds (fumarate, formate, and acetate) discriminated statistically the muscle with high pHu at 21-d aging. The normal pHu-muscle showed higher concentrations of glycogenolysis and glycolysis metabolites, including glucose, mannose, and pyruvate. Hence, our results enhance knowledge of postmortem biochemical changes of beef within different pHu groups aged up to 21 days, which is essential to understand the mechanisms underpinning bull meat quality changes.


Subject(s)
Metabolome , Muscle, Skeletal , Red Meat , Animals , Cattle , Red Meat/analysis , Muscle, Skeletal/chemistry , Muscle, Skeletal/metabolism , Hydrogen-Ion Concentration , Male , Lipidomics/methods , Postmortem Changes , Brazil , Food Handling/methods , Formates , Carnitine/analogs & derivatives , Carnitine/metabolism , Carnitine/analysis
12.
J Proteome Res ; 23(10): 4273-4285, 2024 Oct 04.
Article in English | MEDLINE | ID: mdl-39024464

ABSTRACT

Petroleum-derived substances, like industrial oils and grease, are ubiquitous in our daily lives. Comprised of petroleum hydrocarbons (PH), these substances can come into contact with our skin, potentially causing molecular disruptions and contributing to the development of chronic disease. In this pilot study, we employed mass spectrometry-based untargeted metabolomics and 16S rRNA gene sequencing analyses to explore these effects. Superficial skin samples were collected from subjects with and without chronic dermal exposure to PH at two anatomical sites: the fingers (referred to as the hand) and arms (serving as an intersubject variability control). Exposed hands exhibited higher bacterial diversity (Shannon and Simpson indices) and an enrichment of oil-degrading bacteria (ODB), including Dietzia, Paracoccus, and Kocuria. Functional prediction suggested enriched pathways associated with PH degradation in exposed hands vs non-exposed hands, while no differences were observed when comparing the arms. Furthermore, carboxylic acids, glycerophospholipids, organooxygen compounds, phenol ethers, among others, were found to be more abundant in exposed hands. We observed positive correlations among multiple ODB and xenobiotics, suggesting a chemical remodeling of the skin favorable for ODB thriving. Overall, our study offers insights into the complex dysregulation of bacterial communities and the chemical milieu induced by chronic dermal exposure to PH.


Subject(s)
Hydrocarbons , Metabolome , Microbiota , Petroleum , Skin , Humans , Pilot Projects , Petroleum/toxicity , Petroleum/metabolism , Skin/microbiology , Skin/metabolism , Skin/drug effects , Microbiota/drug effects , Metabolome/drug effects , Hydrocarbons/metabolism , Adult , Male , Female , RNA, Ribosomal, 16S/genetics , Bacteria/genetics , Bacteria/classification , Bacteria/metabolism , Bacteria/drug effects , Middle Aged
13.
Eur J Clin Invest ; 54(11): e14288, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39058257

ABSTRACT

BACKGROUND: Low physical performance is associated with higher mortality rate in multiple pathological conditions. Here, we aimed to determine whether body composition and physical performance could be prognostic factors in non-small cell lung cancer (NSCLC) patients. Moreover, we performed an exploratory approach to determine whether plasma samples from NSCLC patients could directly affect metabolic and structural phenotypes in primary muscle cells. METHODS: This prospective cohort study included 55 metastatic NSCLC patients and seven age-matched control subjects. Assessments included physical performance, body composition, quality of life and overall survival rate. Plasma samples from a sub cohort of 18 patients were collected for exploratory studies in cell culture and metabolomic analysis. RESULTS: We observed a higher survival rate in NSCLC patients with high performance in the timed up-and-go (+320%; p = .007), sit-to-stand (+256%; p = .01) and six-minute walking (+323%; p = .002) tests when compared to NSCLC patients with low physical performance. There was no significant association for similar analysis with body composition measurements (p > .05). Primary human myotubes incubated with plasma from NSCLC patients with low physical performance had impaired oxygen consumption rate (-54.2%; p < .0001) and cell proliferation (-44.9%; p = .007). An unbiased metabolomic analysis revealed a list of specific metabolites differentially expressed in the plasma of NSCLC patients with low physical performance. CONCLUSION: These novel findings indicate that physical performance is a prognostic factor for overall survival in NSCLC patients and provide novel insights into circulating factors that could impair skeletal muscle metabolism.


Subject(s)
Body Composition , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Physical Functional Performance , Humans , Lung Neoplasms/metabolism , Lung Neoplasms/blood , Lung Neoplasms/pathology , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/blood , Carcinoma, Non-Small-Cell Lung/pathology , Male , Female , Middle Aged , Prognosis , Aged , Prospective Studies , Metabolome/physiology , Case-Control Studies , Oxygen Consumption/physiology , Survival Rate , Quality of Life , Muscle Fibers, Skeletal/metabolism , Cell Proliferation , Walk Test
14.
Planta ; 260(3): 55, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39020000

ABSTRACT

MAIN CONCLUSIONS: In contrast to Neltuma species, S. tamarugo exhibited higher stress tolerance, maintaining photosynthetic performance through enhanced gene expression and metabolites. Differentially accumulated metabolites include chlorophyll and carotenoids and accumulation of non-nitrogen osmoprotectants. Plant species have developed different adaptive strategies to live under extreme environmental conditions. Hypothetically, extremophyte species present a unique configuration of physiological functions that prioritize stress-tolerance mechanisms while carefully managing resource allocation for photosynthesis. This could be particularly challenging under a multi-stress environment, where the synthesis of multiple and sequential molecular mechanisms is induced. We explored this hypothesis in three phylogenetically related woody species co-occurring in the Atacama Desert, Strombocarpa tamarugo, Neltuma alba, and Neltuma chilensis, by analyzing their leaf dehydration and freezing tolerance and by characterizing their photosynthetic performance under natural growth conditions. Besides, the transcriptomic profiling, biochemical analyses of leaf pigments, and metabolite analysis by untargeted metabolomics were conducted to study gene expression and metabolomic landscape within this challenging multi-stress environment. S. tamarugo showed a higher photosynthetic capacity and leaf stress tolerance than the other species. In this species, a multifactorial response was observed, which involves high photochemical activity associated with a higher content of chlorophylls and ß-carotene. The oxidative damage of the photosynthetic apparatus is probably attenuated by the synthesis of complex antioxidant molecules in the three species, but S. tamarugo showed the highest antioxidant capacity. Comparative transcriptomic and metabolomic analyses among the species showed the differential expression of genes involved in the biosynthetic pathways of key stress-related metabolites. Moreover, the synthesis of non-nitrogen osmoprotectant molecules, such as ciceritol and mannitol in S. tamarugo, would allow the nitrogen allocation to support its high photosynthetic capacity without compromising leaf dehydration tolerance and freezing stress avoidance.


Subject(s)
Desert Climate , Photosynthesis , Stress, Physiological , Transcriptome , Photosynthesis/genetics , Stress, Physiological/genetics , Chlorophyll/metabolism , Metabolomics , Plant Leaves/metabolism , Plant Leaves/genetics , Plant Leaves/physiology , Gene Expression Regulation, Plant , Gene Expression Profiling , Carotenoids/metabolism , Metabolome/genetics , Chile
15.
Food Res Int ; 191: 114687, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39059945

ABSTRACT

Considered the symbol fruit of the Brazilian Cerrado, pequi (Caryocar brasiliense Camb.) is an exotic and much-appreciated fruit with an internal mesocarp (edible part) with an eye-catching golden yellow color. In an unprecedented way, this study characterized the proteome throughout pequi development. The most influential and essential transcription factors operating in the regulation of pequi ripening identified were members of the MAD-box family. A group of proteins related to the methionine cycle indicates the high consumption and recycling of methionine. However this consumption does not occur mainly for the biosynthesis of ethylene, a process dependent on methionine consumption. In the bioactive compounds presented, different proteins could be correlated with the presence of these phytochemicals, such as monodehydroascorbate reductase and ascorbate peroxidase in ascorbic acid recycling; pyruvate kinase, fructose bisphosphate aldolase and phytoene synthase with carotenoid biosynthesis; S-adenosylmethionine synthase 1 as a donor of methyl groups in the formation of trigonelline and aspartate aminotransferase as a biomarker of initial regulation of the trigonelline biosynthetic pathway; phenylalanine ammonia lyase, chorismate synthesis and chalcone-flavononone isomerase in the biosynthesis of phenolic compounds. Among the volatile organic compounds identified, the majority compound in pequi was ethyl hexanoate ester, with an area of 50.68 % in the ripe fruit, and in this group of esters that was the most representative, alcohol dehydrogenase, a fundamental enzyme in the synthesis of esters, was identified with an increase of approximately 7.2 times between the first and last stages. Therefore, an extensive group of proteins and some metabolites can serve as biomarkers of ripening in pequi, as most were more expressed in the last stage, which is the ripe fruit suitable for consumption.


Subject(s)
Fruit , Metabolome , Plant Proteins , Proteome , Fruit/growth & development , Fruit/metabolism , Proteome/metabolism , Plant Proteins/metabolism , Gene Expression Regulation, Plant
16.
Molecules ; 29(13)2024 Jun 23.
Article in English | MEDLINE | ID: mdl-38998936

ABSTRACT

Metabolic alterations are increasingly recognized as important aspects of colorectal cancer (CRC), offering potential avenues for identifying therapeutic targets. Previous studies have demonstrated the cytotoxic potential of bamboo leaf extract obtained from Guadua incana (BLEGI) against HCT-116 colon cancer cells. However, the altered metabolic pathways in these tumor cells remain unknown. Therefore, this study aimed to employ an untargeted metabolomic approach to reveal the metabolic alterations of the endometabolome and exometabolome of HCT-116 cells upon exposure to BLEGI treatment. First, a chemical characterization of the BLEGI was conducted through liquid chromatography coupled with mass spectrometry (LC-MS). Next, we assessed cell viability via MTT and morphological analysis using an immunofluorescence assay against colon cancer cells, and anti-inflammatory activity using an LPS-stimulated macrophage model. Subsequently, we employed LC-MS and proton nuclear magnetic resonance (1H-NMR) to investigate intra- and extracellular changes. Chemical characterization primarily revealed the presence of compounds with a flavone glycoside scaffold. Immunofluorescence analysis showed condensed chromatin and subsequent formation of apoptotic bodies, suggesting cell death by apoptosis. The results of the metabolomic analysis showed 98 differential metabolites, involved in glutathione, tricarboxylic acid cycle, and lipoic acid metabolism, among others. Additionally, BLEGI demonstrated significant nitric oxide (NO) inhibitory capacity in macrophage cells. This study enhances our understanding of BLEGI's possible mechanism of action and provides fresh insights into therapeutic targets for treating this disease.


Subject(s)
Colonic Neoplasms , Plant Extracts , Plant Leaves , Humans , Plant Extracts/pharmacology , Plant Extracts/chemistry , Plant Leaves/chemistry , Colonic Neoplasms/drug therapy , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , HCT116 Cells , Metabolomics/methods , Metabolome/drug effects , Cell Survival/drug effects , Apoptosis/drug effects , Animals , RAW 264.7 Cells , Mice , Chromatography, Liquid
17.
Nutrients ; 16(13)2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38999737

ABSTRACT

The entero-mammary pathway is a specialized route that selectively translocates bacteria to the newborn's gut, playing a crucial role in neonatal development. Previous studies report shared bacterial and archaeal taxa between human milk and neonatal intestine. However, the functional implications for neonatal development are not fully understood due to limited evidence. This study aimed to identify and characterize the microbiota and metabolome of human milk, mother, and infant stool samples using high-throughput DNA sequencing and FT-ICR MS methodology at delivery and 4 months post-partum. Twenty-one mothers and twenty-five infants were included in this study. Our results on bacterial composition suggest vertical transmission of bacteria through breastfeeding, with major changes occurring during the first 4 months of life. Metabolite chemical characterization sheds light on the growing complexity of the metabolites. Further data integration and network analysis disclosed the interactions between different bacteria and metabolites in the biological system as well as possible unknown pathways. Our findings suggest a shared bacteriome in breastfed mother-neonate pairs, influenced by maternal lifestyle and delivery conditions, serving as probiotic agents in infants for their healthy development. Also, the presence of food biomarkers in infants suggests their origin from breast milk, implying selective vertical transmission of these features.


Subject(s)
Breast Feeding , Feces , Gastrointestinal Microbiome , Milk, Human , Humans , Milk, Human/microbiology , Milk, Human/chemistry , Female , Infant, Newborn , Gastrointestinal Microbiome/physiology , Feces/microbiology , Infant , Adult , Metabolome , Bacteria/metabolism , Bacteria/classification , Bacteria/genetics , Male , Mothers
18.
Article in English | MEDLINE | ID: mdl-38994463

ABSTRACT

Objective: To evaluate the effects of surgical treatment of deep endometriosis on the metabolic profile, quality of life and psychological aspects. Methods: Prospective observational study, carried out with women of reproductive age diagnosed with deep endometriosis, treated in a specialized outpatient clinic, from October/2020 to September/2022, at a University Hospital in Fortaleza - Brazil. Standardized questionnaires were applied to collect data on quality of life and mental health, in addition to laboratory tests to evaluate dyslipidemia and dysglycemia, at two moments, preoperatively and six months after surgery. The results were presented using tables, averages and percentages. Results: Thirty women with an average age of 38.5 years were evaluated. Seven quality of life domains showed improved scores: pain, control and impotence, well-being, social support, self-image, work life and sexual relations after surgery (ES ≥ 0.80). There was an improvement in mental health status with a significant reduction in anxiety and depression postoperatively. With the metabolic profile, all average levels were lower after surgery: total cholesterol 8.2% lower, LDL 12.8% lower, triglycerides 10.9% lower, and fasting blood glucose 7.3% lower (p < 0.001). Conclusion: Surgical treatment of deep endometriosis improved the quality of life and psychological aspects of patients. The lipid profile of patients after laparoscopy was favorable when compared to the preoperative lipid profile.


Subject(s)
Endometriosis , Quality of Life , Humans , Female , Endometriosis/surgery , Endometriosis/psychology , Adult , Prospective Studies , Middle Aged , Young Adult , Metabolome , Mental Health
19.
J Pediatr ; 274: 114175, 2024 Nov.
Article in English | MEDLINE | ID: mdl-38945444

ABSTRACT

OBJECTIVE: To investigate the effects of gestational age (GA) and phototherapy on the plasma metabolite profile of preterm infants with neonatal hyperbilirubinemia (NHB). STUDY DESIGN: From a cohort of prospectively enrolled infants born preterm (n = 92), plasma samples of very preterm (VPT; GA, 28 + 0 to 31 + 6 weeks, n = 27) and moderate/late preterm (M/LPT; GA, 32 + 0 to 35 + 6 weeks, n = 33) infants requiring phototherapy for NHB were collected prior to the initiation of phototherapy and 24 hours after starting phototherapy. An additional sample was collected 48 hours after starting phototherapy in a randomly selected subset (n = 30; VPT n = 15; M/LPT n = 15). Metabolite profiles were determined using ultraperformance liquid chromatography tandem mass spectroscopy. Two-way ANCOVA was used to identify metabolites that differed between GA groups and timepoints after adjusting for total serum bilirubin levels (false discovery rate q-value < 0.05). Top impacted pathways were identified using pathway over-representation analysis. RESULTS: Phototherapy was initiated at lower total serum bilirubin (mean ± SD mg/dL) levels in VPT compared with M/LPT infants (7.3 ± 1.4 vs 9.9 ± 1.9, P < .01). We identified 664 metabolites that were significant for a phototherapy effect, 191 metabolites significant for GA, and 46 metabolites significant for GA × phototherapy interaction (false discovery rate q-value < 0.05). Longer duration phototherapy had a larger mean effect size (24 hours postphototherapy: d = 0.36; 48 hours postphototherapy: d = 0.43). Top pathways affected by phototherapy included membrane lipid metabolism, one-carbon metabolism, creatine biosynthesis, and oligodendrocyte differentiation. CONCLUSION: Phototherapy alters the plasma metabolite profile more than GA in preterm infants with NHB, affecting pathways related to lipid and one-carbon metabolism, energy biosynthesis, and oligodendrocyte differentiation.


Subject(s)
Gestational Age , Hyperbilirubinemia, Neonatal , Infant, Premature , Phototherapy , Humans , Infant, Newborn , Phototherapy/methods , Hyperbilirubinemia, Neonatal/therapy , Hyperbilirubinemia, Neonatal/blood , Male , Female , Infant, Premature/blood , Prospective Studies , Bilirubin/blood , Metabolome
20.
Eur J Sport Sci ; 24(6): 721-731, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38874966

ABSTRACT

It has been assumed that exercise intensity variation throughout a cycling time trial (TT) occurs in alignment of various metabolic changes to prevent premature task failure. However, this assumption is based on target metabolite responses, which limits our understanding of the complex interconnection of metabolic responses during exercise. The current study characterized the metabolomic profile, an untargeted metabolic analysis, after specific phases of a cycling 4-km TT. Eleven male cyclists performed three separated TTs in a crossover counterbalanced design, which were interrupted at the end of the fast-start (FS, 600 ± 205 m), even-pace (EP, 3600 ± 190 m), or end-spurt (ES, 4000 m) phases. Blood samples were taken before any exercise and 5 min after exercise cessation, and the metabolomic profile characterization was performed using Nuclear Magnetic Resonance metabolomics. Power output (PO) was also continually recorded. There were higher PO values during the FS and ES compared to the EP (all p < 0.05), which were accompanied by distinct metabolomic profiles. FS showed high metabolite expression in TCA cycle and its related pathways (e.g., glutamate, citric acid, and valine metabolism); whereas, the EP elicited changes associated with antioxidant effects and oxygen delivery adjustment. Finally, ES was related to pathways involved in NAD turnover and serotonin metabolism. These findings suggest that the specific phases of a cycling TT are accompanied by distinct metabolomic profiles, providing novel insights regarding the relevance of specific metabolic pathways on the process of exercise intensity regulation.


Subject(s)
Bicycling , Cross-Over Studies , Metabolome , Humans , Male , Metabolome/physiology , Adult , Bicycling/physiology , Citric Acid Cycle , Serotonin/blood , NAD/blood , NAD/metabolism , Young Adult , Glutamic Acid/blood , Glutamic Acid/metabolism , Metabolomics , Valine/blood , Citric Acid/blood
SELECTION OF CITATIONS
SEARCH DETAIL