Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 168
Filter
1.
J Exp Bot ; 75(20): 6312-6330, 2024 Oct 30.
Article in English | MEDLINE | ID: mdl-39113673

ABSTRACT

Successful plant reproduction depends on the adequate development of floral organs controlled by cell proliferation and other processes. The Stigma/style cell-cycle inhibitor 1 (SCI1) gene regulates cell proliferation and affects the final size of the female reproductive organ. To unravel the molecular mechanism exerted by Nicotiana tabacum SCI1 in cell proliferation control, we searched for its interaction partners through semi-in vivo pull-down experiments, uncovering a cyclin-dependent kinase, NtCDKG;2. Bimolecular fluorescence complementation and co-localization experiments showed that SCI1 interacts with NtCDKG;2 and its cognate NtCyclin L in nucleoli and splicing speckles. The screening of a yeast two-hybrid cDNA library using SCI1 as bait revealed a novel DEAD-box RNA helicase (NtRH35). Interaction between the NtCDKG;2-NtCyclin L complex and NtRH35 is also shown. Subcellular localization experiments showed that SCI1, NtRH35, and the NtCDKG;2-NtCyclin L complex associate with each other within splicing speckles. The yeast two-hybrid screening of NtCDKG;2 and NtRH35 identified the conserved spliceosome components U2a', NF-κB activating protein (NKAP), and CACTIN. This work presents SCI1 and its interactors, the NtCDKG;2-NtCyclin L complex and NtRH35, as new spliceosome-associated proteins. Our findings reveal a network of interactions and indicate that SCI1 may regulate cell proliferation through the splicing process, providing new insights into the intricate molecular pathways governing plant development.


Subject(s)
Cell Proliferation , Flowers , Nicotiana , Plant Proteins , RNA Splicing , Flowers/growth & development , Flowers/genetics , Flowers/metabolism , Nicotiana/genetics , Nicotiana/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Two-Hybrid System Techniques , DEAD-box RNA Helicases/metabolism , DEAD-box RNA Helicases/genetics , Gene Expression Regulation, Plant
2.
Planta ; 260(1): 28, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38878167

ABSTRACT

MAIN CONCLUSION: We generated transplastomic tobacco lines that stably express a human Basic Fibroblast Growth Factor (hFGFb) in their chloroplasts stroma and purified a biologically active recombinant hFGFb. MAIN: The use of plants as biofactories presents as an attractive technology with the potential to efficiently produce high-value human recombinant proteins in a cost-effective manner. Plastid genome transformation stands out for its possibility to accumulate recombinant proteins at elevated levels. Of particular interest are recombinant growth factors, given their applications in animal cell culture and regenerative medicine. In this study, we produced recombinant human Fibroblast Growth Factor (rhFGFb), a crucial protein required for animal cell culture, in tobacco chloroplasts. We successfully generated two independent transplastomic lines that are homoplasmic and accumulate rhFGFb in their leaves. Furthermore, the produced rhFGFb demonstrated its biological activity by inducing proliferation in HEK293T cell lines. These results collectively underscore plastid genome transformation as a promising plant-based bioreactor for rhFGFb production.


Subject(s)
Chloroplasts , Fibroblast Growth Factor 2 , Nicotiana , Plants, Genetically Modified , Recombinant Proteins , Nicotiana/genetics , Nicotiana/metabolism , Humans , Fibroblast Growth Factor 2/genetics , Fibroblast Growth Factor 2/metabolism , Chloroplasts/metabolism , Chloroplasts/genetics , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , HEK293 Cells , Cell Proliferation , Plant Leaves/metabolism , Plant Leaves/genetics
3.
J Exp Bot ; 75(15): 4625-4640, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-38364822

ABSTRACT

Foliar development involves successive phases of cell proliferation and expansion that determine the final leaf size, and is characterized by an early burst of reactive oxygen species generated in the photosynthetic electron transport chain (PETC). Introduction of the alternative PETC acceptor flavodoxin in tobacco chloroplasts led to a reduction in leaf size associated to lower cell expansion, without affecting cell number per leaf. Proteomic analysis showed that the biogenesis of the PETC proceeded stepwise in wild-type leaves, with accumulation of light-harvesting proteins preceding that of electron transport components, which might explain the increased energy and electron transfer to oxygen and reactive oxygen species build-up at this stage. Flavodoxin expression did not affect biogenesis of the PETC but prevented hydroperoxide formation through its function as electron sink. Mature leaves from flavodoxin-expressing plants were shown to contain higher levels of transcripts encoding components of the proteasome, a key negative modulator of organ size. Proteome profiling revealed that this differential accumulation was initiated during expansion and led to increased proteasomal activity, whereas a proteasome inhibitor reverted the flavodoxin-dependent size phenotype. Cells expressing plastid-targeted flavodoxin displayed lower endoreduplication, also associated to decreased organ size. These results provide novel insights into the regulation of leaf growth by chloroplast-generated redox signals, and highlight the potential of alternative electron shuttles to investigate the link(s) between photosynthesis and plant development.


Subject(s)
Chloroplasts , Nicotiana , Plant Leaves , Proteasome Endopeptidase Complex , Chloroplasts/metabolism , Plant Leaves/metabolism , Plant Leaves/growth & development , Plant Leaves/genetics , Proteasome Endopeptidase Complex/metabolism , Nicotiana/genetics , Nicotiana/metabolism , Nicotiana/growth & development , Electron Transport , Photosynthesis , Flavodoxin/metabolism , Flavodoxin/genetics , Plant Proteins/metabolism , Plant Proteins/genetics
4.
Methods Mol Biol ; 2686: 553-565, 2023.
Article in English | MEDLINE | ID: mdl-37540377

ABSTRACT

Protein-DNA interactions are determinant of the regulation of gene expression in living organisms. Luminescence studies have been used in a wide range of techniques to identify how gene transcription can be regulated by proteins such as transcription factors (TFs). Despite the great advances in the use of luciferases as reporters in the performance of this mechanism, some of them still have disadvantages that have been tried to be solved by the generation of new luciferases that induce a more stable and perfectly visualizable reaction. NanoLuc is a recently described luciferase that has been characterized by its efficient, stable, and powerful luminescence. These qualities have been considered to create a new and efficient reporter system to detect protein-DNA interactions. In this chapter, we take advantage of NanoLuc and describe its use in a reliable procedure to detect protein-DNA interactions in Nicotiana benthamiana extracts and entire leaves.


Subject(s)
Nicotiana , Transcription Factors , Transcriptional Activation , Luciferases/genetics , Luciferases/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Nicotiana/genetics , Nicotiana/metabolism
5.
Transgenic Res ; 32(3): 223-233, 2023 06.
Article in English | MEDLINE | ID: mdl-37131050

ABSTRACT

Plant defensins are a potential tool in crop improvement programs through biotechnology. Their antifungal action makes them attractive molecules for the production of transgenic plants. Information is currently lacking on what happens to the expression of defense genes in transgenic plants that overexpress a defensin. Here we show the relative expression of four defense-related genes: Mn-sod, PAL1, aos1 and HPL evaluated in two transgenic soybean events (Def1 and Def17) constitutively expressing the NmDef02 defensin gene from Nicotiana megalosiphon. The expression of these defense genes showed a differential profile in the transgenic events, with the increased expression of the aos1 gene and the repression of the Mn-sod gene in both events, when compared to the non-transgenic control. Furthermore, the expression of the PAL1 gene only increased in the Def17 event. The results indicate that although there were some changes in the expression of defense genes in transgenic plants overexpressing the defensin NmDef02; the morphoagronomic parameters evaluated were similar to the non-transgenic control. Understanding the molecular changes that occur in these transgenic plants could be of interest in the short, medium and long term.


Subject(s)
Glycine max , Superoxide Dismutase , Glycine max/genetics , Glycine max/metabolism , Superoxide Dismutase/genetics , Plants, Genetically Modified/metabolism , Nicotiana/genetics , Nicotiana/metabolism , Defensins/genetics , Gene Expression Regulation, Plant
6.
Int J Mol Sci ; 23(20)2022 Oct 20.
Article in English | MEDLINE | ID: mdl-36293447

ABSTRACT

The RPW8s (Resistance to Powdery Mildew 8) are atypical broad-spectrum resistance genes that provide resistance to the powdery mildew fungi. Powdery mildew of rubber tree is one of the serious fungal diseases that affect tree growth and latex production. However, the RPW8 homologs in rubber tree and their role of resistance to powdery mildew remain unclear. In this study, four RPW8 genes, HbRPW8-a, b, c, d, were identified in rubber tree, and phylogenetic analysis showed that HbRPW8-a was clustered with AtRPW8.1 and AtRPW8.2 of Arabidopsis. The HbRPW8-a protein was localized on the plasma membrane and its expression in rubber tree was significantly induced upon powdery mildew infection. Transient expression of HbRPW8-a in tobacco leaves induced plant immune responses, including the accumulation of reactive oxygen species and the deposition of callose in plant cells, which was similar to that induced by AtRPW8.2. Consistently, overexpression of HbRPW8-a in Arabidopsis thaliana enhanced plant resistance to Erysiphe cichoracearum UCSC1 and Pseudomonas syringae pv. tomato DC30000 (PstDC3000). Moreover, such HbRPW8-a mediated resistance to powdery mildew was in a salicylic acid (SA) dependent manner. Taken together, we demonstrated a new RPW8 member in rubber tree, HbRPW8-a, which could potentially contribute the resistance to powdery mildew.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Ascomycota , Hevea , Arabidopsis/metabolism , Hevea/genetics , Hevea/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Ectopic Gene Expression , Phylogeny , Reactive Oxygen Species/metabolism , Latex/metabolism , Plant Diseases/microbiology , Ascomycota/physiology , Erysiphe , Salicylic Acid/metabolism , Nicotiana/metabolism , Disease Resistance/genetics
7.
Plant Sci ; 324: 111427, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36007629

ABSTRACT

Although floral nectar is a rich source of nutrients, it is rarely infected by microorganisms. Defense molecules such as proteins have been identified in this fluid, but defense peptides have been largely overlooked. Thus, the aim of this study was to perform an extensive peptidomic analysis of the ornamental tobacco floral nectar to seek peptides involved in nectar defense. Using LC-MS/MS, 793 peptides were sequenced and characterized. After extensive bioinformatics analysis, six peptides were selected for further characterization, synthesis, and evaluation of their antimicrobial properties against phytopathogenic fungi and bacteria. All six peptides had antimicrobial activity to some extent. However, the activity varied by peptide concentration and microorganism tested. An analysis of the action mechanism revealed damage in the cell membrane induced by peptides. The results show that floral nectar is rich in peptides and that, together with proteins and hydrogen peroxide, they contribute to plant defense against microorganisms during pollination.


Subject(s)
Anti-Infective Agents , Plant Nectar , Anti-Infective Agents/analysis , Anti-Infective Agents/metabolism , Antimicrobial Peptides , Chromatography, Liquid , Flowers/metabolism , Hydrogen Peroxide/metabolism , Plant Nectar/metabolism , Plant Proteins/metabolism , Pollination , Tandem Mass Spectrometry , Nicotiana/metabolism
8.
Biotechnol Bioeng ; 119(9): 2505-2517, 2022 09.
Article in English | MEDLINE | ID: mdl-35689353

ABSTRACT

Plants are economical and sustainable factories for the production of recombinant proteins. Currently, numerous proteins produced using different plant-based systems with applications as cosmetic and tissue culture ingredients, research and diagnostic reagents, and industrial enzymes are marketed worldwide. In this study, we aimed to demonstrate the usefulness of a plant-based system to synthesize a single-chain antibody (scFv)-elastin-like polypeptide (ELP) fusion to be applied as an affinity precipitation reagent of the difficult to produce recombinant proteins. We used the human tissue transglutaminase (TG2), the main celiac disease autoantigen, as a proof of concept. We cloned a TG2-specific scFv and fused it to a short hydrophobic ELP tag. The anti-TG2-scFv-ELP was produced in Nicotiana benthamiana and was efficiently recovered by an inverse transition cycling procedure improved by coaggregation with bacteria-made free ELP. Finally, the scFv-ELP was used to purify both plant-synthesized human TG2 and also Caco-2-TG2. In conclusion, this study showed for the first time the usefulness of a plant-based expression system to produce an antibody-ELP fusion designed for the purification of low-yield proteins.


Subject(s)
Elastin , Nicotiana , Caco-2 Cells , Elastin/chemistry , Humans , Immunoglobulin Fragments , Peptides/chemistry , Recombinant Fusion Proteins/metabolism , Nicotiana/genetics , Nicotiana/metabolism
9.
Int J Mol Sci ; 23(9)2022 Apr 29.
Article in English | MEDLINE | ID: mdl-35563329

ABSTRACT

Post-transcriptional gene silencing (PTGS) is an evolutionarily conserved plant defense mechanism against viruses. This paper aimed to evaluate a dsDNA construct (77 bp) as a template for in vitro production of virus-derived artificial small hairpin RNAs (shRNAs) and test for their potential to trigger the RNAi mechanism in Nicotiana benthamiana plants against CMV after their foliar infiltration. This approach allowed for the production of significant amounts of shRNAs (60-mers) quickly and easily. The gene silencing was confirmed using polymerase chain reaction (PCR), immunological-based assays, and real-time PCR (qPCR). The highest levels of gene silencing were recorded for mRNAs coding for replication protein (ORF1a), the viral suppressor of RNA silencing (ORF2b), and the capsid protein (ORF3b), with 98, 94, and 70% of total transcript silencing, respectively. This protocol provides an alternative to producing significant shRNAs that can effectively trigger the RNAi mechanism against CMV.


Subject(s)
Cucumovirus , Cytomegalovirus Infections , Cucumovirus/genetics , Cucumovirus/metabolism , Cytomegalovirus Infections/genetics , Plant Diseases/genetics , Plants/metabolism , RNA Interference , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Nicotiana/metabolism
10.
Mol Biol Rep ; 49(7): 6113-6123, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35526244

ABSTRACT

BACKGROUND: The COVID-19 pandemic caused by the SARS-CoV-2 coronavirus has currently affected millions of people around the world. To combat the rapid spread of COVID-19 there is an urgent need to implement technological platforms for the production of vaccines, drugs and diagnostic systems by the scientific community and pharmaceutical companies. The SARS-CoV-2 virus enters the cells by the interaction between the receptor-binding domain (RBD) present in the viral surface spike protein and its human receptor ACE2. The RBD protein is therefore considered as the target for potential subunit-based vaccines. METHODS AND RESULTS: We evaluate the use of Nicotiana benthamiana plants as the host to transiently-producing recombinant RBD (RBDr) protein. The identity of the plant-produced RBDr was confirmed by immune assays and mass spectrometry. Immunogenicity was confirmed through the specific antibodies generated in all of the immunized mice compared to the PBS treated group. CONCLUSIONS: In conclusions, the immunogenicity of the RBDr produced in N. benthamiana was confirmed. These findings support the use of plants as an antigen expression system for the rapid development of vaccine candidates.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , Humans , Mice , Pandemics/prevention & control , Spike Glycoprotein, Coronavirus/genetics , Nicotiana/genetics , Nicotiana/metabolism , Vaccines, Subunit
11.
Methods Mol Biol ; 2457: 411-426, 2022.
Article in English | MEDLINE | ID: mdl-35349157

ABSTRACT

Cells have developed mechanisms for cytoplasmic RNA transport and localization that participate in the regulation and subcellular localization of protein synthesis. In addition, plants can exchange RNA molecules between cells through plasmodesmata and to distant tissues in the phloem. These mechanisms are hijacked by RNA viruses to establish their replication complexes and to disseminate their genomes throughout the plant organism with the help of virus-encoded movement proteins (MP). Live imaging of RNA molecules is a fundamental approach to understand the regulation and molecular basis of these processes. The most widely used experimental systems for the in vivo visualization of genetically encoded RNA molecules are based on fluorescently tagged RNA binding proteins that bind to specific motifs inserted into the RNA, thus allowing the tracking of the specific RNA molecule by fluorescent microscopy. Recently, we developed the use of the E. coli RNA binding protein BglG for the imaging of RNAs tagged with BglG-binding sites in planta. We describe here the detailed method by which we use this in vivo RNA tagging system for the real-time imaging of Tobacco mosaic virus (TMV) MP mRNA.


Subject(s)
Escherichia coli , Plant Viral Movement Proteins , Escherichia coli/genetics , Plant Viral Movement Proteins/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Viral/genetics , RNA, Viral/metabolism , Nicotiana/metabolism
13.
Cells ; 10(7)2021 06 29.
Article in English | MEDLINE | ID: mdl-34209875

ABSTRACT

The plant hormone cytokinin (CK) plays central roles in plant development and throughout plant life. The perception of CKs initiating their signaling cascade is mediated by histidine kinase receptors (AHKs). Traditionally thought to be perceived mostly at the endoplasmic reticulum (ER) due to receptor localization, CK was recently reported to be perceived at the plasma membrane (PM), with CK and its AHK receptors being trafficked between the PM and the ER. Some of the downstream mechanisms CK employs to regulate developmental processes are unknown. A seminal report in this field demonstrated that CK regulates auxin-mediated lateral root organogenesis by regulating the endocytic recycling of the auxin carrier PIN1, but since then, few works have addressed this issue. Modulation of the cellular cytoskeleton and trafficking could potentially be a mechanism executing responses downstream of CK signaling. We recently reported that CK affects the trafficking of the pattern recognition receptor LeEIX2, influencing the resultant defense output. We have also recently found that CK affects cellular trafficking and the actin cytoskeleton in fungi. In this work, we take an in-depth look at the effects of CK on cellular trafficking and on the actin cytoskeleton in plant cells. We find that CK influences the actin cytoskeleton and endomembrane compartments, both in the context of defense signaling-where CK acts to amplify the signal-as well as in steady state. We show that CK affects the distribution of FLS2, increasing its presence in the plasma membrane. Furthermore, CK enhances the cellular response to flg22, and flg22 sensing activates the CK response. Our results are in agreement with what we previously reported for fungi, suggesting a fundamental role for CK in regulating cellular integrity and trafficking as a mechanism for controlling and executing CK-mediated processes.


Subject(s)
Actin Cytoskeleton/metabolism , Arabidopsis/immunology , Cytokinins/pharmacology , Actin Cytoskeleton/drug effects , Arabidopsis/drug effects , Arabidopsis/genetics , Biological Transport/drug effects , Endosomes/drug effects , Endosomes/metabolism , Flagellin/pharmacology , Models, Biological , Plant Epidermis/cytology , Plant Immunity/drug effects , Plant Proteins/metabolism , Plants, Genetically Modified , Receptors, Pattern Recognition/metabolism , Nicotiana/metabolism
14.
Mol Biotechnol ; 63(10): 973-982, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34146324

ABSTRACT

Rotavirus is the most common cause of severe diarrhea in infants and children worldwide and is responsible for about 215,000 deaths annually. Over 85% of these deaths originate in low-income/developing countries in Asia and Africa. Therefore, it is necessary to explore the development of vaccines that avoid the use of "living" viruses and furthermore, vaccines that have viral antigens capable of generating powerful heterotypic responses. Our strategy is based on the expression of the fusion of the anti-DEC205 single-chain variable fragment (scFv) coupled by an OLLAS tag to a viral protein (VP6) of Rotavirus in Nicotiana plants. It was possible to express transiently in N. benthamiana and N. sylvestris a recombinant protein consisting of the single chain variable fragment linked by an OLLAS tag to the VP6 protein. The presence of the recombinant protein, which had a molecular weight of approximately 75 kDa, was confirmed by immunodetection, in both plant species and in both cellular compartments (cytoplasm and apoplast) where it was expressed. In addition, the recombinant protein was modeled, and it was observed that some epitopes of interest are exposed on the surface, which could favor their immunogenic response.


Subject(s)
Antigens, Viral/genetics , Capsid Proteins/genetics , Nicotiana/growth & development , Rotavirus/metabolism , Single-Chain Antibodies/genetics , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/metabolism , Antigens, Viral/chemistry , Antigens, Viral/metabolism , Capsid Proteins/chemistry , Capsid Proteins/metabolism , Cytoplasm/genetics , Cytoplasm/metabolism , Models, Molecular , Molecular Weight , Protein Engineering , Protein Structure, Secondary , Recombinant Proteins/metabolism , Rotavirus/genetics , Single-Chain Antibodies/chemistry , Single-Chain Antibodies/metabolism , Nicotiana/genetics , Nicotiana/metabolism
15.
Biotechnol Prog ; 37(3): e3141, 2021 05.
Article in English | MEDLINE | ID: mdl-33666366

ABSTRACT

Gastrointestinal infections caused by Clostridium difficile lead to significant impact in terms of morbidity and mortality, causing from mild symptoms, such as a low-grade fever, watery stools, and minor abdominal cramping as well as more severe symptoms such as bloody diarrhea, pseudomembrane colitis, and toxic megacolon. Vaccination is a viable approach to fight against C. difficile and several efforts in this direction are ongoing. Plants are promising vaccine biofactories offering low cost, enhanced safety, and allow for the formulation of oral vaccines. Herein, the CdeM protein, which is a spore antigen associated with immunoprotection against C. difficile, was selected to begin the development of plant-based vaccine candidates. The vaccine antigen is based in a fusion protein (LTB-CdeM), carrying the CdeM antigen, fused to the carboxi-terminus of the B subunit of the Escherichia coli heat-labile enterotoxin (LTB) as a mucosal immunogenic carrier. LTB-CdeM was produced in plants using a synthetic optimized gene according codon usage and mRNA stability criteria. The obtained transformed tobacco lines produced the LTB-CdeM antigen in the range of 52-90 µg/g dry weight leaf tissues. The antigenicity of the plant-made LTB-CdeM antigen was evidenced by GM1-ELISA and immunogenicity assessment performed in test mice revealed that the LTB-CdeM antigen is orally immunogenic inducing humoral responses against CdeM epitopes. This report constitutes the first step in the development of plant-based vaccines against C. difficile infection.


Subject(s)
Antigens, Bacterial , Clostridioides difficile/genetics , Plants, Genetically Modified , Spores, Bacterial/genetics , Vaccines, Edible , Administration, Oral , Animals , Antibodies, Bacterial/blood , Antigens, Bacterial/genetics , Antigens, Bacterial/metabolism , Enterotoxins/genetics , Escherichia coli Proteins/genetics , Immunoglobulin G/blood , Mice , Mice, Inbred BALB C , Molecular Farming , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Nicotiana/genetics , Nicotiana/metabolism , Vaccines, Edible/genetics , Vaccines, Edible/immunology , Vaccines, Edible/metabolism
16.
Physiol Plant ; 172(3): 1630-1640, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33547660

ABSTRACT

Flavonoids are natural pigments occurring in plants and are present in fruits, leaves, stems, roots, and flowers. Tobacco plants transformed with an MYB regulatory gene from either Solanum chilense (Sc) or S. lycopersicum (Sl) demonstrate that ScANT1 induces a higher level of anthocyanin accumulation in comparison to SlANT1 and that this gene is sufficient to promote increased anthocyanin levels. We compared the aptitude of ScANT1 protein to induce anthocyanin accumulation to that of SlANT1 protein in tobacco plants. We also tested the effect of amino acid substitutions in ScANT1 and SlANT1. We examined these synthetic alleles' effect following the over-expression of additional anthocyanin synthesis regulators, such as the tomato bHLH (SlJAF13) protein. Our results show that the amino acid changes that differentiate ScANT1 from SlANT1 are the main contributors to the advantage that ScANT1 has over SlANT1 in anthocyanin accumulation per transcript unit. We further demonstrated that altering the amino acid composition of SlANT1 could increase anthocyanin accumulation, while reciprocally modifying ScANT1 lowers the anthocyanin level. These results confirm the increased anthocyanin level in tobacco is attributed to the amino acid differences between ScANT1 and SlANT1. We also show that the co-expression of SlJAF13 with SlANT1 in tobacco plants represses the anthocyanin production.


Subject(s)
Solanum lycopersicum , Solanum , Alleles , Anthocyanins , Gene Expression Regulation, Plant/genetics , Solanum lycopersicum/genetics , Solanum lycopersicum/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Solanum/genetics , Solanum/metabolism , Nicotiana/genetics , Nicotiana/metabolism
17.
Plant Cell Rep ; 40(1): 127-142, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33068174

ABSTRACT

KEY MESSAGE: The HbCAld5H1 gene cloned from Hevea brasiliensis regulates the cambial activity, xylem differentiation, syringyl-guaiacyl ratio, secondary wall structure, lignification pattern and xylan distribution in xylem fibres of transgenic tobacco plants. Molecular characterization of lignin biosynthesis gene coniferaldehyde-5-hydroxylase (CAld5H) from Hevea brasiliensis and its functional validation was performed. Both sense and antisense constructs of HbCAld5H1 gene were introduced into tobacco through Agrobacterium-mediated genetic transformation for over expression and down-regulation of this key enzyme to understand its role affecting structural and cell wall chemistry. The anatomical studies of transgenic tobacco plants revealed the increase of cambial activity leading to xylogenesis in sense lines and considerable reduction in antisense lines. The ultra-structural studies showed that the thickness of secondary wall (S2 layer) of fibre had been decreased with non-homogenous lignin distribution in antisense lines, while sense lines showed an increase in S2 layer thickness. Maule color reaction revealed that syringyl lignin distribution in the xylem elements was increased in sense and decreased in antisense lines. The immunoelectron microscopy revealed a reduction in LM 10 and LM 11 labelling in the secondary wall of antisense tobacco lines. Biochemical studies showed a radical increase in syringyl lignin in sense lines without any significant change in total lignin content, while S/G ratio decreased considerably in antisense lines. Our results suggest that CAld5H gene plays an important role in xylogenesis stages such as cambial cell division, secondary wall thickness, xylan and syringyl lignin distribution in tobacco. Therefore, CAld5H gene could be considered as a promising target for lignin modification essential for timber quality improvement in rubber.


Subject(s)
Cell Wall/chemistry , Mixed Function Oxygenases/genetics , Nicotiana/genetics , Plant Proteins/genetics , Xylem/cytology , Acrolein/analogs & derivatives , Acrolein/metabolism , Cell Wall/genetics , Cell Wall/metabolism , Gene Expression Regulation, Plant , Lignin/genetics , Lignin/metabolism , Mixed Function Oxygenases/metabolism , Phenotype , Plant Cells/metabolism , Plant Leaves/anatomy & histology , Plant Leaves/genetics , Plant Proteins/metabolism , Plant Stems/anatomy & histology , Plant Stems/genetics , Plant Stems/metabolism , Plants, Genetically Modified , Nicotiana/cytology , Nicotiana/metabolism , Xylans/genetics , Xylans/metabolism , Xylem/metabolism
18.
Plant Mol Biol ; 105(1-2): 65-82, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32909182

ABSTRACT

KEY MESSAGE: NbWRKY22 and NbWRKY25 are required for full activation of bacteria-associated pattern- and effector-triggered immunity as well as for the response to other non-bacterial defense elicitors. Plants defend themselves against pathogens using a two-layered immune system. Pattern-triggered immunity (PTI) can be activated upon recognition of epitopes from flagellin including flg22. Pseudomonas syringae pv. tomato (Pst) delivers effector proteins into the plant cell to promote host susceptibility. However, some plants express resistance (R) proteins that recognize specific effectors leading to the activation of effector-triggered immunity (ETI). Resistant tomato lines such as Rio Grande-PtoR (RG-PtoR) recognize two Pst effectors, AvrPto and AvrPtoB, and activate ETI through the Pto/Prf protein complex. Using RNA-seq, we identified two tomato WRKY transcription factor genes, SlWRKY22 and SlWRKY25, whose expression is increased during Pst-induced ETI. Silencing of the WRKY25/22 orthologous genes in Nicotiana benthamiana led to a delay in programmed cell death normally associated with AvrPto recognition or several non-bacterial effector/R protein pairs. An increase in disease symptoms was observed in silenced plants infiltrated with Pseudomonas syringae pv. tabaci expressing AvrPto or HopQ1-1. Expression of both tomato WRKY genes is also induced upon treatment with flg22 and callose deposition and cell death suppression assays in WRKY25/22-silenced N. benthamiana plants supported their involvement in PTI. Our results reveal an important role for two WRKYs as positive regulators of plant immunity against bacterial and potentially non-bacterial pathogens.


Subject(s)
Nicotiana/genetics , Nicotiana/metabolism , Plant Immunity/physiology , Plant Proteins/genetics , Plant Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Apoptosis , Arabidopsis/genetics , Arabidopsis Proteins , Cell Death , Disease Resistance/genetics , Gene Expression Regulation, Plant , Gene Silencing , Genes, Plant/genetics , Solanum lycopersicum/genetics , Phylogeny , Plant Diseases/immunology , Plant Diseases/microbiology , Plant Immunity/genetics , Plant Proteins/classification , Pseudomonas syringae/pathogenicity , Transcription Factors/classification
19.
Methods Mol Biol ; 2181: 13-34, 2021.
Article in English | MEDLINE | ID: mdl-32729072

ABSTRACT

Computers are able to systematically exploit RNA-seq data allowing us to efficiently detect RNA editing sites in a genome-wide scale. This chapter introduces a very flexible computational framework for detecting RNA editing sites in plant organelles. This framework comprises three major steps: RNA-seq data processing, RNA read alignment, and RNA editing site detection. Each step is discussed in sufficient detail to be implemented by the reader. As a study case, the framework will be used with publicly available sequencing data to detect C-to-U RNA editing sites in the coding sequences of the mitochondrial genome of Nicotiana tabacum.


Subject(s)
Computational Biology/methods , Genome, Mitochondrial , Mitochondria/genetics , Nicotiana/genetics , RNA Editing/genetics , RNA, Mitochondrial/genetics , Cytidine/chemistry , Cytidine/genetics , High-Throughput Nucleotide Sequencing , Mitochondria/metabolism , RNA, Mitochondrial/metabolism , Software , Nicotiana/metabolism , Transcriptome , Uridine/chemistry , Uridine/genetics
20.
Sci Rep ; 10(1): 20639, 2020 11 26.
Article in English | MEDLINE | ID: mdl-33244131

ABSTRACT

Farnesyl pyrophosphate synthase (FPS) is a key enzyme that catalyzes the formation of farnesyl pyrophosphate, the main initiator for rubber chain initiation in Hevea brasiliensis Muell. Arg. The transcriptional regulatory mechanisms of the FPS gene still not well understood. Here, a WRKY transcription factor designated HbWRKY27 was obtained by screening the latex cDNA library applied the HbFPS1 promoter as bait. HbWRKY27 interacted with the HbFPS1 promoter was further identified by individual Y1H and EMSA assays. HbWRKY27 belongs to group IIe WRKY subfamily which contains a typical WRKY domain and C-X5-CX23-HXH motif. HbWRKY27 was localized to the nucleus. HbWRKY27 predominantly accumulated in latex. HbWRKY27 was up-regulated in latex by ethrel, salicylic acid, abscisic acid, and methyl jasmonate treatment. Transient expression of HbWRKY27 led to increasing the activity of the HbFPS1 promoter in tobacco plant, suggesting that HbWRKY27 positively regulates the HbFPS1 expression. Taken together, an upstream transcription factor of the key natural rubber biosynthesis gene HbFPS1 was identified and this study will provide novel transcriptional regulatory mechanisms of the FPS gene in Hevea brasiliensis.


Subject(s)
Hevea/genetics , Plant Proteins/genetics , Transcription Factors/genetics , Acetates/metabolism , Amino Acid Sequence , Cell Nucleus/genetics , Cyclopentanes/metabolism , Gene Expression Regulation, Plant/genetics , Genes, Plant/genetics , Hevea/metabolism , Latex/metabolism , Oxylipins/metabolism , Plant Growth Regulators/genetics , Promoter Regions, Genetic/genetics , Rubber/metabolism , Nicotiana/genetics , Nicotiana/metabolism , Up-Regulation/genetics
SELECTION OF CITATIONS
SEARCH DETAIL