Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 143
Filter
1.
PLoS One ; 19(8): e0307573, 2024.
Article in English | MEDLINE | ID: mdl-39110759

ABSTRACT

Streptococcus pneumoniae is a bacterium of great global importance, responsible for more than one million deaths per year. This bacterium is commonly acquired in the first years of life and colonizes the upper respiratory tract asymptomatically by forming biofilms that persist for extended times in the nasopharynx. However, under conditions that alter the bacterial environment, such as viral infections, pneumococci can escape from the biofilm and invade other niches, causing local and systemic disease of varying severity. The polyamine transporter PotABCD is required for optimal survival of the organism in the host. Immunization of mice with recombinant PotD can reduce subsequent bacterial colonization. PotD has also been suggested to be involved in pneumococcal biofilm development. Therefore, in this study we aimed to elucidate the role of PotABCD and polyamines in pneumococcal biofilm formation. First, the formation of biofilms was evaluated in the presence of exogenous polyamines-the substrate transported by PotABCD-added to culture medium. Next, a potABCD-negative strain was used to determine biofilm formation in different model systems using diverse levels of complexity from abiotic surface to cell substrate to in vivo animal models and was compared with its wild-type strain. The results showed that adding more polyamines to the medium stimulated biofilm formation, suggesting a direct correlation between polyamines and biofilm formation. Also, deletion of potABCD operon impaired biofilm formation in all models tested. Interestingly, more differences between wild-type and mutant strains were observed in the more complex model, which emphasizes the significance of employing more physiological models in studying biofilm formation.


Subject(s)
Biofilms , Streptococcus pneumoniae , Biofilms/growth & development , Streptococcus pneumoniae/physiology , Streptococcus pneumoniae/metabolism , Animals , Mice , Polyamines/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Pneumococcal Infections/microbiology , Membrane Transport Proteins/metabolism , Membrane Transport Proteins/genetics , Operon
2.
Protoplasma ; 261(5): 937-950, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38530427

ABSTRACT

In plant tissue culture, differences in endogenous levels of species-specific plant growth regulators (PGRs) may explain differences in regenerative capacity. In the case of polyamines (PAs), their dynamics and distribution may vary between species, genotypes, tissues, and developmental pathways, such as sexual reproduction and apomixis. In this study, for the first time, we aimed to assess the impact of varying endogenous PAs levels in seeds from distinct reproductive modes in Miconia spp. (Melastomataceae), on their in vitro regenerative capacity. We quantified the free PAs endogenous content in seeds of Miconia australis (obligate apomictic), Miconia hyemalis (facultative apomictic), and Miconia sellowiana (sexual) and evaluated their in vitro regenerative potential in WPM culture medium supplemented with a combination of 2,4-dichlorophenoxyacetic acid (2,4-D) and 6-benzylaminopurine (BAP). The morphogenic responses were characterized by light microscopy and scanning electron microscopy and discussed regarding the endogenous PAs profiles found. Seeds of M. sellowiana presented approximately eight times more putrescine than M. australis, which was associated with a higher percentage of regenerated calluses (76.67%) than M. australis (5.56%). On the other hand, spermine levels were significantly higher in M. australis. Spermine is indicated as an inhibitor of auxin-carrying gene expression, which may have contributed to its lower regenerative capacity under the tested conditions. These findings provide important insights into in vitro morphogenesis mechanisms in Miconia and highlight the significance of endogenous PA levels in plant regeneration. These discoveries can potentially optimize future regeneration protocols in Miconia, a plant group still underexplored in this area.


Subject(s)
Melastomataceae , Polyamines , Regeneration , Seeds , Seeds/physiology , Melastomataceae/physiology , Melastomataceae/metabolism , Melastomataceae/chemistry , Polyamines/metabolism , Regeneration/physiology
3.
Braz J Microbiol ; 54(4): 3073-3083, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37702923

ABSTRACT

Rhizosphere soil of aromatic rice inhabits different fungal species that produce many bioactive metabolites including 2-acetyl-1-pyrroline (2AP). The mechanism for the biosynthesis of 2AP in the fungal system is still elusive. Hence, the present study investigates the role of possible nitrogen (N) precursors such as some amino acids and polyamines as well as the enzymes involved in 2AP synthesis in the fungal species isolated from the rhizosphere of aromatic rice varieties. Three fungal isolates were found to synthesize 2AP (0.32-1.07 ppm) and maximum 2AP was synthesized by Aspergillus niger (1.07 ppm) isolated from rhizosphere of Dehradun Basmati (DB). To determine the N source for 2AP synthesis, various N sources such as proline, glutamate, ornithine putrescine, spermine, and spermidine were used in place of putrescine in the synthetic medium (Syn18). The results showed that maximum 2AP synthesis was found with putrescine (1.07 ppm) followed by spermidine (0.89 ppm) and spermine (0.84 ppm). Further, LC-QTOF-MS analysis revealed the mobilization of spermine and spermidine into the putrescine, indicating that putrescine is the key N source for 2AP synthesis. Moreover, higher enzyme activity of DAO, PAO, and ODC as well as higher content of methylglyoxal metabolite in the A. niger NFCCI 5060 as compared to A. niger NFCCI 4064 (control) suggests the prominent role of these enzymes in the synthesis of 2AP. In conclusion, this study showed evidence of the polyamines mediated 2AP biosynthesis in A. niger NFCCI 5060.


Subject(s)
Oryza , Polyamines , Polyamines/metabolism , Spermidine/metabolism , Putrescine/metabolism , Spermine/metabolism , Aspergillus niger/genetics , Aspergillus niger/metabolism , Oryza/metabolism , Ornithine Decarboxylase/metabolism
4.
PLoS One ; 18(3): e0283696, 2023.
Article in English | MEDLINE | ID: mdl-37000792

ABSTRACT

Leishmania is a protozoan that causes leishmaniasis, a neglected tropical disease with clinical manifestations classified as cutaneous, mucocutaneous, and visceral leishmaniasis. In the infection context, the parasite can modulate macrophage gene expression affecting the microbicidal activity and immune response. The metabolism of L-arginine into polyamines putrescine, spermidine, and spermine reduces nitric oxide (NO) production, favoring Leishmania survival. Here, we investigate the effect of supplementation with L-arginine and polyamines in infection of murine BALB/c macrophages by L. amazonensis and in the transcriptional regulation of genes involved in arginine metabolism and proinflammatory response. We showed a reduction in the percentage of infected macrophages upon putrescine supplementation compared to L-arginine, spermidine, and spermine supplementation. Unexpectedly, deprivation of L-arginine increased nitric oxide synthase (Nos2) gene expression without changes in NO production. Putrescine supplementation increased transcript levels of polyamine metabolism-related genes Arg2, ornithine decarboxylase (Odc1), Spermidine synthase (SpdS), and Spermine synthase (SpmS), but reduced Arg1 in L. amazonensis infected macrophages, while spermidine and spermine promoted opposite effects. Putrescine increased Nos2 expression without leading to NO production, while L-arginine plus spermine led to NO production in uninfected macrophages, suggesting that polyamines can induce NO production. Besides, L-arginine supplementation reduced Il-1b during infection, and L-arginine or L-arginine plus putrescine increased Mcp1 at 24h of infection, suggesting that polyamines availability can interfere with cytokine/chemokine production. Our data showed that putrescine shifts L-arginine-metabolism related-genes on BALB/c macrophages and affects infection by L. amazonensis.


Subject(s)
Leishmania , Leishmaniasis , Animals , Mice , Putrescine/pharmacology , Putrescine/metabolism , Spermidine/pharmacology , Spermidine/metabolism , Spermine/metabolism , Polyamines/metabolism , Leishmaniasis/drug therapy , Ornithine Decarboxylase/genetics , Ornithine Decarboxylase/metabolism , Nitric Oxide Synthase/metabolism , Macrophages/metabolism , Arginine/pharmacology , Arginine/metabolism , Dietary Supplements
5.
Sci Rep ; 13(1): 4279, 2023 03 15.
Article in English | MEDLINE | ID: mdl-36922543

ABSTRACT

Bacterial phytopathogens living on the surface or within plant tissues may experience oxidative stress because of the triggered plant defense responses. Although it has been suggested that polyamines can defend bacteria from this stress, the mechanism behind this action is not entirely understood. In this study, we investigated the effects of oxidative stress on the polyamine homeostasis of the plant pathogen Pseudomonas syringae and the functions of these compounds in bacterial stress tolerance. We demonstrated that bacteria respond to H2O2 by increasing the external levels of the polyamine putrescine while maintaining the inner concentrations of this compound as well as the analogue amine spermidine. In line with this, adding exogenous putrescine to media increased bacterial tolerance to H2O2. Deletion of arginine decarboxylase (speA) and ornithine decarboxylate (speC), prevented the synthesis of putrescine and augmented susceptibility to H2O2, whereas targeting spermidine synthesis alone through deletion of spermidine synthase (speE) increased the level of extracellular putrescine and enhanced H2O2 tolerance. Further research demonstrated that the increased tolerance of the ΔspeE mutant correlated with higher expression of H2O2-degrading catalases and enhanced outer cell membrane stability. Thus, this work demonstrates previously unrecognized connections between bacterial defense mechanisms against oxidative stress and the polyamine metabolism.


Subject(s)
Polyamines , Spermidine , Polyamines/metabolism , Spermidine/metabolism , Putrescine/metabolism , Pseudomonas syringae/metabolism , Hydrogen Peroxide/metabolism , Oxidative Stress , Ornithine Decarboxylase/genetics , Ornithine Decarboxylase/metabolism
6.
Microbiology (Reading) ; 169(1)2023 01.
Article in English | MEDLINE | ID: mdl-36748569

ABSTRACT

We previously showed that specific polyamines (PAs) present in the extracellular environment markedly affect extracellular polysaccharide (EPS) production, biofilm formation and motility in Sinorhizobium meliloti Rm8530. We hypothesized that extracellular PA signals were sensed and transduced by the NspS and MbaA proteins, respectively, which are homologs of the PA-sensing, c-di-GMP modulating NspS-MbaA proteins described in Vibrio cholerae. Here we show that the decrease in biofilm formation and EPS production in the quorum-sensing (QS)-deficient S. meliloti wild-type strain 1021 in cultures containing putrescine or spermine did not occur in a 1021 nspS mutant (1021 nspS). The transcriptional expression of nspS in strain 1021 was significantly increased in cultures containing either of these polyamines, but not by exogenous cadaverine, 1,3-diaminopropane (DAP), spermidine (Spd) or norspermidine (NSpd). Cell aggregation in liquid cultures did not differ markedly between strain 1021 and 1021 nspS in the presence or absence of PAs. The S. meliloti QS-proficient Rm8530 wild-type and nspS mutant (Rm8530 nspS) produced similar levels of biofilm under control conditions and 3.2- and 2.2-fold more biofilm, respectively, in cultures with NSpd, but these changes did not correlate with EPS production. Cells of Rm8530 nspS aggregated from two- to several-fold more than the wild-type in cultures without PAs or in those containing Spm. NSpd, Spd and DAP differently affected swimming and swarming motility in strains 1021 and Rm8530 and their respective nspS mutants. nspS transcription in strain Rm8530 was greatly reduced by exogenous Spm. Bioinformatic analysis revealed similar secondary structures and functional domains in the MbaA proteins of S. meliloti and V. cholerae, while their NspS proteins differed in some residues implicated in polyamine recognition in the latter species. NspS-MbaA homologs occur in a small subset of soil and aquatic bacterial species that commonly interact with eukaryotes. We speculate that the S. meliloti NspS-MbaA system modulates biofilm formation, EPS production and motility in response to environmental or host plant-produced PAs.


Subject(s)
Polyamines , Sinorhizobium meliloti , Polyamines/metabolism , Sinorhizobium meliloti/genetics , Sinorhizobium meliloti/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biofilms , Gene Expression Regulation, Bacterial , Polysaccharides, Bacterial/metabolism
7.
Biomed Chromatogr ; 37(5): e5601, 2023 May.
Article in English | MEDLINE | ID: mdl-36775344

ABSTRACT

Polyamines are low molecular weight compounds that are present in all living organisms. They are related to the pathological processes, and have been studied as biomarkers for tumor progression, being analyzed in patients' biological fluids. However, polyamines can undergo degradation in serum samples, depending on storage conditions, which impairs their quantification in these matrices. In this work, capillary electrophoresis using indirect ultraviolet detection has been developed and applied to evaluate the stability of polyamines [cadaverine (Cad), putrescine (Put), spermine (Spm), and spermidine (Spd)] in human serum at different storage temperatures. By using this method, Cad, Put, Spm, and Spd were separated in less than 4 min. The range of the correlation coefficients was 0.993-0.998. The corresponding limits of detection and quantification were as follows (in mg L-1 ): Spm: 0.209 and 0.697; Spd: 0.165 and 0.549; Put: 0.189 and 0.632; Cad: 0.125 and 0.417. Besides, the coefficient of variation was lower than 1% for all analytes and the recovery was 92%-110%. The method was successfully applied for polyamines spiked in human serum samples from healthy people. The results showed that the degradation of polyamines was lower in samples stored in a freezer (-20°C).


Subject(s)
Polyamines , Spermidine , Humans , Polyamines/analysis , Polyamines/metabolism , Temperature , Spermidine/metabolism , Putrescine/metabolism , Spermine/metabolism , Cadaverine , Electrophoresis, Capillary/methods
8.
Sci Rep ; 12(1): 17712, 2022 10 21.
Article in English | MEDLINE | ID: mdl-36271284

ABSTRACT

Transcriptional analysis of the network of transcription regulators and target pathways in exposed organisms may be a hard task when their genome remains unknown. The development of hundreds of qPCR assays, including primer design and normalization of the results with the appropriate housekeeping genes, seems an unreachable task. Alternatively, we took advantage of a whole transcriptome study on Rhinella arenarum larvae exposed to the organophosphorus pesticides azinphos-methyl and chlorpyrifos to evaluate the transcriptional effects on a priori selected groups of genes. This approach allowed us to evaluate the effects on hypothesis-selected pathways such as target esterases, detoxifying enzymes, polyamine metabolism and signaling, and regulatory pathways modulating them. We could then compare the responses at the transcriptional level with previously described effects at the enzymatic or metabolic levels to obtain global insight into toxicity-response mechanisms. The effects of both pesticides on the transcript levels of these pathways could be considered moderate, while chlorpyrifos-induced responses were more potent and earlier than those elicited by azinphos-methyl. Finally, we inferred a prevailing downregulation effect of pesticides on signaling pathways and transcription factor transcripts encoding products that modulate/control the polyamine and antioxidant response pathways. We also tested and selected potential housekeeping genes based on those reported for other species. These results allow us to conduct future confirmatory studies on pesticide modulation of gene expression in toad larvae.


Subject(s)
Chlorpyrifos , Pesticides , Animals , Azinphosmethyl , Chlorpyrifos/metabolism , Pesticides/pharmacology , Larva , Transcriptome , Organophosphorus Compounds/pharmacology , Antioxidants/metabolism , Bufo arenarum/metabolism , Esterases/metabolism , Polyamines/metabolism , Transcription Factors/metabolism
9.
Exp Parasitol ; 242: 108395, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36179851

ABSTRACT

The knowledge about amino acid metabolism in trypanosomatids is a valuable source of new therapeutic targets. l-arginine is an essential amino acid for Leishmania parasites, and it participates in the synthesis of polyamines, a group of essential nutrients used for nucleic acids, proteins biosynthesis, and redox modulation necessary for proliferation. In the present study, we evaluated the effect of changes in the availability of this amino acid on promastigotes and intracellular amastigotes on U937 macrophages and showed that the absence of l-arginine in culture medium negatively influences the growth and infectivity of Leishmania (Viannia) braziliensis, causing a decrease in the percentage of the infected cells and parasite load tested through light microscopy. In addition, the absence of l-arginine resulted in the parasite's inability to regulate its reactive oxygen species (ROS) production, which persisted for up to 24 h by flow cytometry following the probe H2DCF-DA dye. Moreover, the differentiation of promastigote to amastigote in axenic culture was more significant at low concentrations of l-arginine suggesting that this depletion induces a stress environment to increase this transformation under axenic conditions. No association was established between the availability of l-arginine and the effectiveness of antileishmanial drugs. All these results confirm the importance of l-arginine in L. braziliensis life cycle vital processes, such as its replication and infectivity, as documented in other Leishmania species. Based on these results, we proposed that the l-arginine uptake/metabolism route is possible in exploring new antileishmanial drugs.


Subject(s)
Leishmania braziliensis , Leishmania , Nucleic Acids , Animals , Mice , Reactive Oxygen Species/metabolism , Arginine , Polyamines/metabolism , Polyamines/pharmacology , Nucleic Acids/pharmacology , Mice, Inbred BALB C
10.
Eur J Pharmacol ; 910: 174456, 2021 Nov 05.
Article in English | MEDLINE | ID: mdl-34464603

ABSTRACT

Spermine, spermidine and putrescine polyamines are naturally occurring ubiquitous positively charged amines and are essential metabolites for biological functions in our life. These compounds play a crucial role in many cell processes, including cellular proliferation, growth, and differentiation. Intracellular levels of polyamines depend on their biosynthesis, transport and degradation. Polyamine levels are high in cancer cells, which leads to the promotion of tumor growth, invasion and metastasis. Targeting polyamine metabolism as an anticancer strategy is considerably rational. Due to compensatory mechanisms, a single strategy does not achieve satisfactory clinical effects when using a single agent. Combination regimens are more clinically promising for cancer chemoprevention because they work synergistically with causing little or no adverse effects due to each individual agent being used at lower doses. Moreover, bioactive substances have advantages over single chemical agents because they can affect multiple targets. In this review, we discuss anticancer strategies targeting polyamine metabolism and describe how combination treatments and effective natural active ingredients are promising therapies. The existing research suggests that polyamine metabolic enzymes are important therapeutic targets and that combination therapies can be more effective than monotherapies based on polyamine depletion.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Homeostasis/drug effects , Neoplasms/drug therapy , Neoplasms/metabolism , Polyamines/antagonists & inhibitors , Polyamines/metabolism , Animals , Biological Products/pharmacology , Biological Products/therapeutic use , Humans , Polyamines/chemistry
11.
Food Chem ; 343: 128397, 2021 May 01.
Article in English | MEDLINE | ID: mdl-33406569

ABSTRACT

Chocolate is an important source of free bioactive amines and amino acids which play important roles in human health. Considering the limited information on the bioaccessibility of these compounds from chocolate, the objective of this study was to characterize their profiles and bioaccessibility in 70% cocoa dark chocolate through in vitro simulation of oral, gastric and intestinal digestions. Seven amines were detected; polyamines were predominant before in vitro digestion, whereas tyramine, cadaverine and spermidine after digestion. All amines showed high bioaccessibility with slight influence of digestive enzymes. Amines increased after gastrointestinal digestion: tyramine (13-fold), tryptamine (9-fold), others (2.4-4.2-fold) and histamine appeared. All amino acids, GABA and ammonia were detected in chocolate, and their contents increased after in vitro digestion due to digestive enzymes (4.6, 2.8 and 2.1, respectively). Dark chocolate protein is a good source of tryptophan, phenylalanine + tyrosine, isoleucine, histidine, but limiting for lysine, leucine, and threonine.


Subject(s)
Amines/metabolism , Amino Acids/metabolism , Cacao/metabolism , Chocolate/analysis , Amines/analysis , Amino Acids/analysis , Ammonia/metabolism , Cacao/chemistry , Chromatography, High Pressure Liquid , Cluster Analysis , Histamine/analysis , Histamine/metabolism , Humans , Nutritive Value , Polyamines/analysis , Polyamines/metabolism , Principal Component Analysis , gamma-Aminobutyric Acid/analysis
12.
Biochim Biophys Acta Proteins Proteom ; 1868(12): 140529, 2020 12.
Article in English | MEDLINE | ID: mdl-32853775

ABSTRACT

The light spectrum quality is an important signal for plant growth and development. We evaluated the effects of different light spectra on the in vitro shoot development of Cedrela fissilis and its proteomic and polyamine (PA) profiles. Cotyledonary and apical nodal segments were grown under different light emitting diodes (LED) and fluorescent lamps. Shoots from cotyledonary nodal segments cultured with 6-benzyladenine (BA) that were grown under WmBdR LED showed increased length and higher fresh and dry matter compared to shoots grown under fluorescent lamps. A nonredundant protein databank generated by transcriptome sequencing and the de novo assembly of C. fissilis improved, and almost doubled, the protein identification compared to a Citrus sinensis databank. A total of 616 proteins were identified, with 23 up- and 103 down-accumulated in the shoots under WmBdR LEDs compared to fluorescent lamps. Most differentially accumulated proteins in shoots grown under the WmBdR LED lamp treatment compared to the fluorescent lamp treatment are involved in responding to metabolic processes, stress, biosynthetic and cellular protein modifications, and light stimulus processes. Among the proteins, the up-accumulation of argininosuccinate synthase was associated with an increase in the free putrescine content and, consequently, with higher shoot elongation under WmBdR LED. The down-accumulation of calreticulin, heat shock proteins, plastid-lipid-associated protein, ubiquitin-conjugating enzymes, and ultraviolet-B receptor UVR8 isoform X1 could be related to the longer shoot length noted under LED treatment. This study provides important data related to the effects of the light spectrum quality on in vitro morphogenesis through the modulation of specific proteins and free putrescine biosynthesis in C. fissilis, an endangered wood species from the Brazilian Atlantic Forest of economic and ecological relevance. The nonredundant protein databank of C. fissilis is available via ProteomeXchange under identifier PXD018020.


Subject(s)
Cedrela/physiology , Cedrela/radiation effects , Light , Plant Shoots/physiology , Plant Shoots/radiation effects , Polyamines/metabolism , Proteome/radiation effects , Cedrela/growth & development , Germination , Mass Spectrometry , Plant Development/radiation effects , Plant Shoots/growth & development , Proteomics/methods
13.
Sci Rep ; 10(1): 10543, 2020 06 29.
Article in English | MEDLINE | ID: mdl-32601369

ABSTRACT

Tegumentary leishmaniasis (TL) is a parasitic disease that can result in wide spectrum clinical manifestations. It is necessary to understand host and parasite determinants of clinical outcomes to identify novel therapeutic targets. Previous studies have indicated that the polyamine biosynthetic pathway is critical for Leishmania growth and survival. Despite its importance, expression of the such pathway has not been previously investigated in TL patients. We performed an exploratory analysis employing Systems Biology tools to compare circulating polyamines and amino acid concentration as well as polyamine pathway gene expression in cutaneous lesions patients presenting with distinct TL disease presentations. Diffuse cutaneous leishmaniasis (DCL) was associated with higher concentrations of amino acids, polyamines and its substrate transporters than mucosal cutaneous leishmaniasis or localized cutaneous leishmaniasis. In addition, the RNA expression of polyamine-related genes of patients lesions from two separate cohorts demonstrated that differential activation of this pathway is associated with parasite loads and able to discriminate the clinical spectrum of TL. Taken together, our findings highlight a new aspect of DCL immunopathogenesis indicating that the polyamine pathway may be explored as a novel therapeutic target to control disease burden.


Subject(s)
Amino Acids/metabolism , Biosynthetic Pathways/physiology , Leishmaniasis, Diffuse Cutaneous/metabolism , Polyamines/metabolism , Skin/metabolism , Adult , Amino Acids/blood , Cross-Sectional Studies , Female , Humans , Male , Mucous Membrane/metabolism , Polyamines/blood
14.
Environ Microbiol Rep ; 12(3): 258-266, 2020 06.
Article in English | MEDLINE | ID: mdl-32227463

ABSTRACT

The importance of short-chained aliphatic polyamines (PAs) to bacterioplankton-mediated carbon and nitrogen cycles has been repeatedly proposed. However, bacterial taxa and genes involved in the transformations of different PA compounds and their potential spatial variations remain unclear. This study collected surface bacterioplankton from nearshore, offshore, and open ocean stations in the Gulf of Mexico and examined how metatranscriptomes responded to additions of three single PA model compounds (i.e. putrescine, spermidine, or spermine). Our data showed an overrepresentation of genes affiliated with γ-glutamylation and spermidine cleavage pathways in metatranscriptomes received PA amendments and the expression level of each pathway varied among different PA compounds and sampling locations. PA-transforming taxa were affiliated with Actinobacteria, Bacteroidetes, Cyanobacteria, Planctomycetes, and Proteobacteria and their relative importance was also compound and location specific. These findings suggest that PAs are transformed via multiple pathways and by a diversity of marine bacterioplankton in the Gulf of Mexico. The relative importance of different PA transforming pathways and composition of functional microbial communities may be regulated by nutrient status of local environments.


Subject(s)
Bacteria , Plankton , Polyamines/metabolism , Seawater/microbiology , Actinobacteria/classification , Actinobacteria/genetics , Actinobacteria/isolation & purification , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Bacteroidetes/classification , Bacteroidetes/genetics , Bacteroidetes/isolation & purification , Cyanobacteria/classification , Cyanobacteria/genetics , Cyanobacteria/isolation & purification , Gulf of Mexico , Metagenomics , Microbiota , Nitrogen/metabolism , Phylogeny , Planctomycetales/classification , Planctomycetales/genetics , Planctomycetales/isolation & purification , Plankton/metabolism , Plankton/microbiology , Proteobacteria/classification , Proteobacteria/genetics , Proteobacteria/isolation & purification , RNA, Ribosomal, 16S/genetics , Seawater/chemistry , Transcriptome
15.
Colloids Surf B Biointerfaces ; 190: 110895, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32145605

ABSTRACT

Multistage delivery systems with size reduction capacity have been proposed as a powerful strategy for improving tissue drug penetration. Here we developed a simple and fast supramolecular approach to construct size-shrinkable polyamine-salt aggregates by ionic cross-linking of biodegradable poly-L-lysine dendrigraft with tripolyphosphate anion. The use of a peptide dendrimer as a nanobuilding block (∼7 nm in diameter) allows the formation of supraparticles (SPs) with well-defined dimensions (∼200 nm in diameter), narrow size distribution and great capacity to encapsulate different molecules, including chemotherapeutic agents as Curcumin and Doxorubicin. When exposed to slightly acidic environments, the crosslinked matrix is instantaneously disassembled to free dendrimer units. Subsequently, model cargo molecules entrapped in the dendrimer architecture can be released by the action of trypsin enzyme through peptide biodegradation. Therefore, these SPs with proved sequential pH and enzyme-responsiveness could be exploited as nanocarriers in multistage drug delivery systems.


Subject(s)
Curcumin/chemistry , Dendrimers/chemistry , Doxorubicin/chemistry , Peptides/chemistry , Trypsin/chemistry , Curcumin/metabolism , Dendrimers/chemical synthesis , Dendrimers/metabolism , Doxorubicin/metabolism , Drug Delivery Systems , Drug Liberation , Hydrogen-Ion Concentration , Macromolecular Substances/chemistry , Macromolecular Substances/metabolism , Molecular Structure , Particle Size , Peptides/chemical synthesis , Peptides/metabolism , Polyamines/chemistry , Polyamines/metabolism , Polylysine/chemistry , Polylysine/metabolism , Surface Properties , Trypsin/metabolism
16.
Food Res Int ; 130: 108938, 2020 04.
Article in English | MEDLINE | ID: mdl-32156385

ABSTRACT

The anti-proliferative potential of Passiflora mollissima seeds, an underexplored agri-food waste, was investigated in this work by evaluating the molecular changes induced at transcript and metabolite expression levels on HT-29 human colon cancer cells. For this purpose, a pressurized-liquid extract from P. mollissima seeds obtained under optimized conditions was used for the treatment of HT-29 cells and a multi-omics strategy applied, integrating transcriptomics and metabolomics analysis, along with viability and cell cycle assays to study the molecular mechanisms that explain the anti-proliferative activity of this fruit by-product. After treatment for 48 and 72 h, the viability of HT-29 colon cancer cells was markedly affected, whereas minor effects were observed on normal human colon fibroblast cells. The bioactive extract was shown to arrest HT-29 cells in the S and G2/M phases of the cell cycle, which might be mediated by the inactivation of the FAT10 cancer signalling pathway among other genes identified as altered in the transcriptomic analysis. In addition, cellular redox homeostasis, as well as the polyamines pathway and methionine metabolism were found to be affected as suggested from the metabolomics data. Finally, the Foodomics integration enabled the identification of genes, such as MAD2L1, involved in the polyamine and glutathione metabolism, or the inactivation of the NUPR1 transcription factor, that might be related with the alteration of the intracellular ceramide levels in response to endoplasmic reticulum stress.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Cell Survival/drug effects , Passiflora/chemistry , Plant Extracts/pharmacology , Seeds/chemistry , Antineoplastic Agents, Phytogenic/chemistry , Cell Line , Cell Proliferation/drug effects , Glutathione/metabolism , Humans , Metabolomics , Methionine/metabolism , Plant Extracts/chemistry , Polyamines/metabolism
17.
Ecotoxicol Environ Saf ; 195: 110450, 2020 Jun 01.
Article in English | MEDLINE | ID: mdl-32197181

ABSTRACT

Due to diverse human activities zinc (Zn) may reach phytotoxic levels in the soil. Here, we evaluated the differential sensibility of three Brazilian tree species from the Fabaceae to increasing soil Zn concentrations and its physiological response to cope with excess Zn. A greenhouse experiment was conducted with the species: Mimosa caesalpiniaefolia, Erythrina speciosa and Schizolobium parahyba, and the addition of 0, 200, 400 and 600 mg Zn kg-1 to the soil. Plants were harvested after three months of cultivation, and growth, root symbiosis, biochemical markers and elemental composition were analyzed. Soil Zn addition reduced seedling growth, irrespective of the species, with a strong reduction in M. caesalpiniaefolia. Regarding root symbiosis, in N2-fixing species, nitrogenase activity was reduced by the highest Zn concentrations. Zn addition caused plants nutritional imbalances, mainly in roots. The content of photosynthetic pigments in leaves decreased up to 40%, suggesting that high Zn contents interfered with its biosynthesis, and altered the content of foliar polyamines and free amino acids, depending on the species and the soil Zn concentration. Zn toxicity in M. caesalpiniaefolia plants was observed at available soil Zn concentrations greater than 100 mg kg-1 (DTPA-extractable), being the most sensitive species and E. speciosa was moderately sensitive. S. parahyba was a moderately tolerant species, which seems to be related to polyamines accumulation and to mycorrhizal association. This last species has the potential for revegetation of areas with moderately high soil Zn concentration and for phytostabilization purposes. Future research evaluating the tolerance to multiple metal stress under field conditions should confirm S. parayba suitability in Zn contaminated areas of tropical regions.


Subject(s)
Fabaceae/drug effects , Soil Pollutants/toxicity , Zinc/toxicity , Amino Acids/metabolism , Brazil , Fabaceae/metabolism , Fabaceae/microbiology , Mycorrhizae/metabolism , Nitrogenase/metabolism , Plant Leaves/drug effects , Plant Leaves/metabolism , Plant Roots/drug effects , Plant Roots/metabolism , Polyamines/metabolism , Seedlings/drug effects , Seedlings/metabolism , Symbiosis , Trees
18.
Microbiology (Reading) ; 166(3): 278-287, 2020 03.
Article in English | MEDLINE | ID: mdl-31935179

ABSTRACT

In nitrogen-fixing rhizobia, emerging evidence shows significant roles for polyamines in growth and abiotic stress resistance. In this work we show that a polyamine-deficient ornithine decarboxylase null mutant (odc2) derived from Sinorhizobium meliloti Rm8530 had significant phenotypic differences from the wild-type, including greatly reduced production of exopolysaccharides (EPS; ostensibly both succinoglycan and galactoglucan), increased sensitivity to oxidative stress and decreased swimming motility. The introduction of the odc2 gene borne on a plasmid into the odc2 mutant restored wild-type phenotypes for EPS production, growth under oxidative stress and swimming. The production of calcofluor-binding EPS (succinoglycan) by the odc2 mutant was also completely or mostly restored in the presence of exogenous spermidine (Spd), norspermidine (NSpd) or spermine (Spm). The odc2 mutant formed about 25 % more biofilm than the wild-type, and its ability to form biofilm was significantly inhibited by exogenous Spd, NSpd or Spm. The odc2 mutant formed a less efficient symbiosis with alfalfa, resulting in plants with significantly less biomass and height, more nodules but less nodule biomass, and 25 % less nitrogen-fixing activity. Exogenously supplied Put was not able to revert these phenotypes and caused a similar increase in plant height and dry weight in uninoculated plants and in those inoculated with the wild-type or odc2 mutant. We discuss ways in which polyamines might affect the phenotypes of the odc2 mutant.


Subject(s)
Medicago sativa/microbiology , Ornithine Decarboxylase/genetics , Polyamines/metabolism , Root Nodules, Plant , Sinorhizobium meliloti/genetics , Bacterial Proteins/genetics , Medicago sativa/growth & development , Medicago sativa/metabolism , Mutation , Nitrogen/metabolism , Phenotype , Polysaccharides, Bacterial/metabolism , Root Nodules, Plant/metabolism , Root Nodules, Plant/microbiology , Sinorhizobium meliloti/metabolism
19.
Int Microbiol ; 23(1): 121-126, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31915950

ABSTRACT

In the present manuscript, we describe the mechanisms involved in the yeast-to-hypha dimorphic transition of the plant pathogenic Basidiomycota fungus Ustilago maydis. During its life cycle, U. maydis presents two stages: one in the form of haploid saprophytic yeasts that divide by budding and the other that is the product of the mating of sexually compatible yeast cells (sporidia), in the form of mycelial dikaryons that invade the plant host. The occurrence of the involved dimorphic transition is controlled by the two mating loci a and b. In addition, the dimorphic event can be obtained in vitro by different stimuli: change in the pH of the growth medium, use of different carbon sources, and by nitrogen depletion. The presence of other factors and mechanisms may affect this phenomenon; among these, we may cite the PKA and MAPK signal transduction pathways, polyamines, and factors that affect the structure of the nucleosomes. Some of these factors and conditions may affect all these dimorphic events, or they may be specific for only one or more but not all the processes involved. The conclusion reached by these experiments is that U. maydis has constituted a useful model for the analysis of the mechanisms involved in cell differentiation of fungi in general.


Subject(s)
Signal Transduction , Ustilago/cytology , Ustilago/physiology , Cyclic AMP-Dependent Protein Kinases/metabolism , DNA Methylation , Fungal Proteins/genetics , Fungal Proteins/metabolism , Histidine Kinase/metabolism , Histone Acetyltransferases/metabolism , Homeostasis , Hydrogen-Ion Concentration , Mitogen-Activated Protein Kinases/metabolism , Polyamines/metabolism
20.
Arch. Clin. Psychiatry (Impr.) ; Arch. Clin. Psychiatry (Impr.);46(5): 120-124, Sept.-Oct. 2019. tab, graf
Article in English | LILACS | ID: biblio-1054911

ABSTRACT

Abstract Background Current evidence suggests that upregulation of polyamines system plays a role both in cognitive deficit and synaptic loss observed in Alzheimer's disease (AD). Objective The aim of this study was to determine the plasmatic concentration of polyamines in mild cognitive impairment (MCI) and AD patients in comparison with healthy controls (HC). Methods Plasmatic polyamines were quantified using the AbsoluteIDQ® p180 and liquid chromatography coupled to tandem mass spectrometry (LC/MS-MS). Results The study group comprised 34 AD patients, 20 MCI and 25 HC. All individuals were followed for 4 years. During this period 8 amnestic MCI patients (40% of the MCI sample at baseline) converted to AD. Spermidine level was lower in both patient groups (AD; MCI) compared to HC (p = 0.007). Plasma levels of spermine were higher in the MCI group (p < 0.001), but decreased in the sub-sample of MCI patients who converted to AD (p = 0.043). No statistically significant differences were found in ornithine and putrescine levels (p = 0.056 and p = 0.126, respectively). Discussion Our results suggest dynamic changes in the expression of polyamines in the MCI-AD continuum.


Subject(s)
Humans , Male , Female , Aged , Aged, 80 and over , Polyamines/blood , Spermine/blood , Alzheimer Disease/physiopathology , Cognitive Dysfunction/physiopathology , Ornithine/blood , Polyamines/metabolism , Biomarkers/blood , Putrescine/blood , Spermidine/blood , Chromatography, Liquid/methods , Tandem Mass Spectrometry/methods , Metabolomics/methods , Alzheimer Disease/diagnosis , Cognitive Dysfunction/diagnosis
SELECTION OF CITATIONS
SEARCH DETAIL