ABSTRACT
The COVID-19 pandemic has revealed weaknesses in healthcare systems and underscored the need for advanced antimicrobial materials. This study investigates the quaternization of agar, a seaweed-derived polysaccharide, and the development of electrospun membranes for air filtration in facemasks and biomedical applications. Using the betacoronavirus MHV-3 as a model, quaternized agar and membranes achieved a 90-99.99 % reduction in viral load, without associated cytotoxicity. The quaternization process reduced the viscosity of the solution from 1.19 ± 0.005 to 0.64 ± 0.005 Pa.s and consequently the electrospun fiber diameter ranged from 360 to 185 nm. Membranes synthesized based on polyvinyl alcohol and thermally cross-linked with citric acid exhibited lower water permeability. Avoiding organic solvents in the electrospinning technique ensured eco-friendly production. This approach offers a promising way to develop biocompatible and functional materials for healthcare and environmental applications.
Subject(s)
Agar , SARS-CoV-2 , Agar/chemistry , SARS-CoV-2/drug effects , COVID-19/virology , COVID-19/prevention & control , Humans , Virus Inactivation/drug effects , Viscosity , Membranes, Artificial , Animals , Polyvinyl Alcohol/chemistry , Polyvinyl Alcohol/pharmacology , Pandemics/prevention & control , Chlorocebus aethiops , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacologyABSTRACT
Materials with a soft tissue regenerative capacity can be produced using biopolymer scaffolds and nanomaterials, which allow injured tissue to recover without any side effects or limitations. Four formulations were prepared using polyvinyl alcohol (PVA) and chitosan (CS), with silicon dioxide nanoparticles (NPs-SiO2) incorporated using the freeze-drying method at a temperature of -50 °C. TGA and DSC showed no change in thermal degradation, with glass transition temperatures around 74 °C and 77 °C. The interactions between the hydroxyl groups of PVA and CS remained stable. Scanning electron microscopy (SEM) indicated that the incorporation of NPs-SiO2 complemented the freeze-drying process, enabling the dispersion of the components on the polymeric matrix and obtaining structures with a small pore size (between 30 and 60 µm) and large pores (between 100 and 160 µm). The antimicrobial capacity analysis of Gram-positive and Gram-negative bacteria revealed that the scaffolds inhibited around 99% of K. pneumoniae, E. cloacae, and S. aureus ATCC 55804. The subdermal implantation analysis demonstrated tissue growth and proliferation, with good biocompatibility, promoting the healing process for tissue restoration through the simultaneous degradation and formation of type I collagen fibers. All the results presented expand the boundaries in tissue engineering and regenerative medicine by highlighting the crucial role of nanoparticles in optimizing scaffold properties.
Subject(s)
Chitosan , Freeze Drying , Nanoparticles , Polyvinyl Alcohol , Silicon Dioxide , Tissue Engineering , Tissue Scaffolds , Chitosan/chemistry , Polyvinyl Alcohol/chemistry , Silicon Dioxide/chemistry , Tissue Scaffolds/chemistry , Nanoparticles/chemistry , Tissue Engineering/methods , Animals , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Regenerative Medicine/methods , Regeneration/drug effectsABSTRACT
Persistent bacterial infections are the leading risk factor that complicates the healing of chronic wounds. In this work, we formulate mixtures of polyvinyl alcohol (P), chitosan (CH), collagen (C), and honey (H) to produce nanofibrous membranes with healing properties. The honey effect at concentrations of 0 % (PCH and PCHC), 5 % (PCHC-5H), 10 % (PCHC-10H), and 15 % (PCHC-15H) on the physicochemical, antibacterial, and biological properties of the developed nanofibers was investigated. Morphological analysis by SEM demonstrated that PCH and PCHC nanofibers had a uniform and homogeneous distribution on their surfaces. However, the increase in honey content increased the fiber diameter (118.11-420.10) and drastically reduced the porosity of the membranes (15.79-92.62 nm). The addition of honey reduces the water vapor transmission rate (WVTR) and the adsorption properties of the membranes. Mechanical tests revealed that nanofibers were more flexible and elastic when honey was added, specifically the PCHC-15H nanofibers with the lowest modulus of elasticity (15 MPa) and the highest elongation at break (220 %). Also, honey significantly improved the antibacterial efficiency of the nanofibers, mainly PCHC-15H nanofibers, which presented the best bacterial reduction rates against Staphylococcus aureus (59.84 %), Pseudomonas aeruginosa (47.27 %), Escherichia coli (65.07 %), and Listeria monocytogenes (49.58 %). In vitro tests with cell cultures suggest that nanofibers were not cytotoxic and exhibited excellent biocompatibility with human fibroblasts (HFb) and keratinocytes (HaCaT), since all treatments showed higher or similar cell viability as opposed to the cell control. Based on the findings, PVA-chitosan-collagen-honey nanofibrous membranes have promise as an antibacterial dressing substitute.
Subject(s)
Anti-Bacterial Agents , Bandages , Chitosan , Collagen , Honey , Membranes, Artificial , Nanofibers , Wound Healing , Chitosan/chemistry , Chitosan/pharmacology , Nanofibers/chemistry , Bandages/microbiology , Collagen/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Humans , Wound Healing/drug effects , Staphylococcus aureus/drug effects , Porosity , Polyvinyl Alcohol/chemistry , Fibroblasts/drug effectsABSTRACT
The pollution caused by petroleum-derived plastic materials has become a major environmental problem that has encouraged the development of new compostable and environmentally friendly materials for food packaging based on biomodified polymers with household residues. This study aims to design, synthesize, and characterize a biobased polymeric microstructure film from polyvinyl alcohol and chitosan reinforced with holocellulose from spent coffee grounds for food-sustainable packaging. Chemical isolation with a chlorite-based solution was performed to obtain the reinforced holocellulose from the spent coffee ground, and the solvent casting method was used to obtain the films to study. Physicochemical and microscopic characterizations were conducted to identify and select the best formulations using a simplex-centroid design analysis. The response surface methodology results indicate that the new packaging material obtained with equal amounts of polymers and reinforced material (1:1:1) possesses the appropriate barrier properties and microstructural character to prevent water attack and hydrophobic behavior and thus could be used as an alternative for food packaging materials.
Subject(s)
Chitosan , Coffee , Food Packaging , Polyvinyl Alcohol , Food Packaging/methods , Coffee/chemistry , Chitosan/chemistry , Polyvinyl Alcohol/chemistry , Cellulose/chemistry , Biopolymers/chemistry , Hydrophobic and Hydrophilic InteractionsABSTRACT
Global concerns over environmental damage caused by non-biodegradable single-use packaging have sparked interest in developing biomaterials. The food packaging industry is a major contributor to non-degradable plastic waste. This study investigates the impact of incorporating different concentrations of polyvinyl alcohol (PVA) and yerba mate extract as a natural antioxidant into carboxymethyl cassava starch films to possibly use as active degradable packaging to enhance food shelf life. Films with starch and PVA blends (SP) at different ratios (SP radios of 100:0, 90:10, 80:20 and 70:30) with and without yerba mate extract (Y) were successfully produced through extrusion and thermoforming. The incorporation of up to 20â¯wt% PVA improved starch extrusion processing and enhanced film transparency. PVA played a crucial role in improving the hydrophobicity, tensile strength and flexibility of the starch films but led to a slight deceleration in their degradation in compost. In contrast, yerba mate extract contributed to better compost degradation of the blend films. Additionally, it provided antioxidant activity, particularly in hydrophilic and lipophilic food simulants, suggesting its potential to extend the shelf life of food products. Starch-PVA blend films with yerba mate extract emerged as a promising alternative for mechanically resistant and active food packaging.
Subject(s)
Antioxidants , Food Packaging , Manihot , Plant Extracts , Polyvinyl Alcohol , Starch , Food Packaging/methods , Polyvinyl Alcohol/chemistry , Starch/chemistry , Starch/analogs & derivatives , Antioxidants/chemistry , Manihot/chemistry , Plant Extracts/chemistry , Ilex paraguariensis/chemistry , Tensile Strength , Hydrophobic and Hydrophilic Interactions , Mechanical PhenomenaABSTRACT
Poly(vinyl alcohol) (PVOH) is a water-soluble polymer having a hydroxyl group as a functional group contributing to excellent membrane-forming and mechanical performance. PVOH is obtained by the hydrolysis of polyvinyl acetate, and its physical properties are affected by its degree of hydrolysis, whether, partial or complete. In this study, PVOH hydrogels were synthesized by a solution under stirring and heating techniques with citric (AC) and tartaric acids (AT) crosslinker agents, with different time reactions of 20 min.; 1; 2, and 3 h were investigated. These samples were characterized by the kinetics of water uptake, gel fraction, thermal analysis, and physical-chemical analysis, and their structure was elucidated. The results obtained have shown chemical modification by organic acids and improved the properties to good thermal stability and swelling to AT hydrogels up to 900% water uptake. In the gel fraction, the samples' esterification was shown and verified by FTIR spectra. To AC hydrogels the chemical modification was low due to the steric hindrance, which caused disintegration of the hydrogel in swelling and gel fraction test, but with absorption in the moisture test performed. The incorporation and effects of citric and tartaric acids enable the development of new hydrogel systems, with specific properties.
Subject(s)
Hydrogels , Polyvinyl Alcohol , Polyvinyl Alcohol/chemistry , Reaction Time , Hydrogels/chemistry , WaterABSTRACT
Anthocyanins (ACNs) are natural compounds with potential applications due to their colorimetric response to pH. Due to their sensitivity to various environmental factors, nanoencapsulation with biopolymers is a successful strategy for stabilizing ACNs. In this work ACNs were extracted from grape skins and encapsulated into chitosan (CS) nanoparticles by ionic gelation using sodium tripolyphosphate (TPP) as a cross-linking agent. CS nanoparticles loaded with ACNs had particle sizes between 291 and 324 nm and polydispersity index around 0.3. The encapsulation efficiency of ACNs was approximately 60 %; and encapsulated anthocyanins (ACN-NPs) exhibited color change properties under different pH conditions. pH-sensitive labels based on polyvinyl alcohol (PVA) were prepared by the casting method. The effect of incorporating ACN-NPs on the physical, structural, and pH-sensitive properties of PVA labels was evaluated, and its application as shrimp freshness indicator was studied. The nanoencapsulation protected ACNs against heat and light treatments, preserving the original purple color. When applying the label, visible changes from red to blue until reaching yellow were observed with the change in the quality of the shrimp at the refrigeration temperature. The results suggest that PVA labels containing ACNs encapsulated in C-NPs can be used as smart packaging labels in the food industry.
Subject(s)
Chitosan , Nanoparticles , Vitis , Chitosan/chemistry , Polyvinyl Alcohol/chemistry , Anthocyanins/chemistry , Nanoparticles/chemistry , Plant Extracts/chemistry , Food Packaging/methods , Hydrogen-Ion ConcentrationABSTRACT
Second-degree burns require greater care, as the damage is more extensive and worrisome and the use of a biomaterial can help in the cell repair process, with better planning, low cost, and better accessibility. Arnica has anti-inflammatory and analgesic properties in skin lesions treatments and laser therapy is another therapeutic alternative for burns. Evaluate the effects of arnica incorporated into PVA associated or not with low intensity laser on burns in rats. PVA and PVA with arnica (PVA+A) were obtained and characterized physicochemically. Through in vivo studies, the effects of PVA and PVA+A with or without the application of laser on the lesions allowed histological and immunohistochemical analyzes. PVA+A was biocompatible and with sustained release of the active, being a promising pharmacological tool and confirmed that laser therapy was effective in accelerating the healing process, due to its potential biomodulator, improving inflammatory aspects, promoting rapid healing in skin lesions.
Subject(s)
Burns , Polyvinyl Alcohol , Wound Healing , Animals , Polyvinyl Alcohol/chemistry , Burns/therapy , Wound Healing/drug effects , Rats , Rats, Wistar , Male , Skin/injuries , Skin/pathology , Biocompatible Materials/chemistry , Plant Extracts/chemistry , Plant Extracts/administration & dosage , Plant Extracts/pharmacology , Laser Therapy/methods , Membranes, Artificial , Low-Level Light Therapy/methodsABSTRACT
The economic burden of chronic wounds, the complexity of the process of tissue repair and the possibility of resistant bacterial infections, have triggered a significant research interest in the application of natural alternative therapies for wound healing. Biomolecules are intrinsically multi-active, as they affect multiple mechanisms involved in tissue repair phenomenon, including immunomodulatory, anti-inflammatory, cell proliferation, extra cellular matrix remodeling and angiogenesis. Chitosan features a unique combination of attributes, including intrinsic hemostatic, antimicrobial, and immunomodulatory properties, that make it an exceptional candidate for wound management, in the development of wound dressings and scaffolds. In this study, we produced nanoemulsions (NE) loaded with SFO, characterized them, and evaluated their tissue repairing properties. Dynamic light scattering (DLS) analysis confirmed the formation of a nanoemulsion with a droplet size of 21.12 ± 2.31 nm and a polydispersity index (PdI) of 0.159, indicating good stability for up to 90 days. To investigate the potential wound healing effects, SFO-loaded NE were applied on male C57BL/6 mice for seven consecutive days, producing a significantly higher wound closure efficiency (p < 0.05) for the group treated with SFO-loaded NE compared to the control group treated with the saline solution. This finding indicates that the SFO-loaded NE exhibits therapeutic properties that effectively promote wound healing in this experimental model. Then, SFO-loaded NE were incorporated into chitosan:polyvinyl alcohol (PVA)-based films. The inclusion of NE into the polymer matrix resulted in increased lipophilicity reflected by the contact angle results, while decreasing moisture absorption, water solubility, and crystallinity. Moreover, FTIR analysis confirmed the formation of new bonds between SFO-NE and the film matrix, which also impacted on porosity properties. Thermal analysis indicated a decrease in the glass transition temperature of the films due to the presence of SFO-NE, suggesting a plasticizing role of NE, confirmed by XRD results, that showed a decrease in the crystallinity of the blend films upon the addition of SFO-NE. AFM images showed no evidence of NE droplet aggregation in the Chitosan:PVA film matrix. Moisture absorption and water content decreased upon incorporation of SFO-loaded NE. Although the inclusion of NE increased hydrophobicity and water contact angle, the values remained within an acceptable range for wound healing applications. Overall, our results emphasize the significant tissue repairing properties of SFO-loaded NE and the potential of Chitosan:PVA films containing nanoencapsulated SFO as effective formulations for wound healing with notable tissue repairing properties.
Subject(s)
Chitosan , Oils, Volatile , Humans , Mice , Animals , Male , Chitosan/chemistry , Oils, Volatile/pharmacology , Mice, Inbred C57BL , Wound Healing , Water/pharmacology , Polyvinyl Alcohol/chemistry , Anti-Bacterial Agents/pharmacologyABSTRACT
Films based on poly(vinyl alcohol) (PVA) and cationic starch (CS) were combined with different percentages of sorbitol (S; 15.0, 22.5, and 30.0% w v-1) to assess the effect of plasticizer on the films. Spectroscopic analyses confirmed the interaction between them. However, micrographs indicated the formation of sorbitol crystals on the surface of the films, especially at higher sorbitol concentrations. The blends presented low water vapor transmission rate values, reaching (7.703 ± 0.000) g h-1 m-2 (PVA75CS25S15), and low solubility values for the films containing higher CS amounts. The lack of statistical differences in most parameters suggests that no significant gain comes from increasing the amount of sorbitol at percentages higher than 15%. As a coating, the blend PVA75CS25S15 successfully decreased the loss of moisture content in acerolas by 1.15 times (compared to the control), confirming the suitability of this matrix as a fruit coating.
Subject(s)
Polyvinyl Alcohol , Starch , Starch/chemistry , Polyvinyl Alcohol/chemistry , Plasticizers/chemistry , Spectrum Analysis , Ethanol , SorbitolABSTRACT
Given the environmental issues caused by the extensive use of conventional petroleum-based packaging, this work proposes functional films based on commercial κ-carrageenan (κc), poly(vinyl alcohol) (PVA), and gallic acid (GA) prepared by the "casting" method. Metallic ions in the κc composition stabilized the films, supporting processability and suitable mechanical properties. However, the incorporated GA amount (6.25 and 10 wt%) in the films created from an aqueous κc solution at 3.0 % wt/v (κc3) prevented crystalline domains in the resulting materials. The κc3/GA6.25 and κc3/GA10 films had less tensile strength (8.50 ± 0.61 and 10.28 ± 0.65 MPa) and high elongation at break (2.36 ± 0.16 and 1.19 ± 0.17 %) compared to the other samples, respectively. Low κc contents (κc2.5/GA6.25 and κc2.5/GA10) promoted stiff films and less permeability to water vapor (5.36 ± 0.51 and 3.76 ± 0.02 [×10-12 g(Pa × m × s)-1], respectively. The κc/GA weight ratio also influenced the film wettability, indicating water contact angles (WCAs) between 55 and 74°. The surface wettability implies a low oil permeability and high water swelling capacity of up to 1600 %. The κc/GA also played an essential role in the film's antimicrobial action against Staphylococcus aureus and Escherichia coli. Thus, the κc3/GA10 film showed suitable physical, chemical, and biological properties, having the potential to be applied as food coatings.
Subject(s)
Gallic Acid , Polyvinyl Alcohol , Carrageenan/chemistry , Polyvinyl Alcohol/chemistry , Tensile Strength , Permeability , Escherichia coli , Food Packaging/methodsABSTRACT
Macromolecules with antioxidant properties such as polysaccharides from Agaricus blazei Murill mushroom (PAbs) are an excellent option for manufacturing wound dressings. Based on this, this study aimed to analyze preparation, physicochemical characterization, and assessment of the potential wound-healing activity of films based on sodium alginate and polyvinyl alcohol loaded with PAbs. PAbs did not significantly alter the cell viability of human neutrophils in a concentration range of 1-100 µg mL-1. The Infrared Spectroscopy (FTIR) indicates that the components present in the films (PAbs/Sodium Alginate (SA)/Polyvinyl Alcohol (PVA)) present an increase in hydrogen bonds due to the increase of hydroxyls present in the components. Thermogravimetry (TGA), Differential Scanning Calorimetry (DSC) and X-ray Diffraction (XRD) characterizations indicate a good miscibility between the components where PAbs increasing the amorphous characteristics of the films and that the addition of SA increased the mobility of the chains PVA polymers. The addition of PAbs to films significantly improves properties such as mechanical, thickness, and water vapor permeation. The morphological study evidenced good miscibility between the polymers. The wound healing evaluation indicated that F100 film presented better results from the fourth day onward compared to the other groups. It favored the formation of a thicker dermis (476.8 ± 18.99 µm), with greater collagen deposition and a significant reduction in malondialdehyde and nitrite/nitrate, markers of oxidative stress. These results indicate that PAbs is a candidate for wound dressing.
Subject(s)
Alginates , Polyvinyl Alcohol , Humans , Polyvinyl Alcohol/chemistry , Alginates/chemistry , Polysaccharides/pharmacology , Wound Healing , Bandages , PolymersABSTRACT
Nanofibers have shown promising clinical results in the process of tissue regeneration since they provide a similar structure to the extracellular matrix of different tissues, high surface-to-volume ratio and porosity, flexibility, and gas permeation, offering topographical features that stimulate cell adhesion and proliferation. Electrospinning is one of the most used techniques for manufacturing nanomaterials due to its simplicity and low cost. In this review, we highlight the use of nanofibers produced with polyvinyl alcohol and polymeric associations (PVA/blends) as a matrix for release capable of modifying the pharmacokinetic profile of different active ingredients in the regeneration of connective, epithelial, muscular, and nervous tissues. Articles were selected by three independent reviewers by analyzing the databases, such as Web of Science, PubMed, Science Direct, and Google Scholar (last 10 years). Descriptors used were "nanofibers", "poly (vinyl alcohol)", "muscle tissue", "connective tissue", "epithelial tissue", and "neural tissue engineering". The guiding question was: How do different compositions of polyvinyl alcohol polymeric nanofibers modify the pharmacokinetics of active ingredients in different tissue regeneration processes? The results demonstrated the versatility of the production of PVA nanofibers by solution blow technique with different actives (lipo/hydrophilic) and with pore sizes varying between 60 and 450 nm depending on the polymers used in the mixture, which influences the drug release that can be controlled for hours or days. The tissue regeneration showed better cellular organization and greater cell proliferation compared to the treatment with the control group, regardless of the tissue analyzed. We highlight that, among all blends, the combinations PVA/PCL and PVA/CS showed good compatibility and slow degradation, indicating their use in prolonged times of biodegradation, thus benefiting tissue regeneration in bone and cartilage connective tissues, acting as a physical barrier that results in guided regeneration, and preventing the invasion of cells from other tissues with increased proliferation rate.
Subject(s)
Nanofibers , Polyvinyl Alcohol , Humans , Polyvinyl Alcohol/chemistry , Tissue Engineering/methods , Drug Delivery Systems , Polymers , Cell Proliferation , Tissue ScaffoldsABSTRACT
This work aimed the development and evaluation of the wound healing activity of films based on sodium alginate, polyvinyl alcohol (PVA) and Ca2+ loaded with Agaricus blazei Murill hydroalcoholic extract (AbE). Firstly, AbE was prepared using a previously standardized methodology. The films were prepared by casting technique and cross-linked with Ca2+ using CaCl2 as cross-linking agent. The physicochemical, morphological and water vapor barrier properties of the films were analyzed and the pre-clinical efficacy was investigated against the cutaneous wound model in mice. The films showed barrier properties to water vapor promising for wound healing. AbE showed physical and chemical interactions between both polymers, noticed by Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, and thermal analysis. The delivery of AbE in alginate/PVA films enhanced the antioxidant and wound healing properties of these polymers. Consequently, a reduction of malondialdehyde levels was observed, as well as an increase of the epidermis/dermis thickness and enhancement in collagen I deposition. Thus, these formulations are promising biomaterials for wound care and tissue repairing.
Subject(s)
Alginates , Polyvinyl Alcohol , Mice , Animals , Alginates/pharmacology , Alginates/chemistry , Polyvinyl Alcohol/pharmacology , Polyvinyl Alcohol/chemistry , Steam , Wound HealingABSTRACT
The skin is the largest organ in the human body and its physical integrity must be maintained for body homeostasis and to prevent the entry of pathogenic microorganisms. Sodium alginate (SA) and polyvinyl alcohol (PVA) are two polymers widely used in films for wound dressing applications. Furthermore, blends between SA and PVA improve physical, mechanical and biological properties of the final wound healing material when compared to the individual polymers. Different drugs have been incorporated into SA/PVA-based films to improve wound healing activity. It is noteworthy that SA/PVA films can be crosslinked with Ca2+ or other agents, which improves physicochemical and biological properties. Thus, SA/PVA associations are promising for the biomedical field, as a potential alternative for wound treatment. This review focuses on the main techniques for obtaining SA/PVA films, their physical-chemical characterization, drug incorporation, and the advantages and challenges of these films for wound healing.
Subject(s)
Alginates , Polyvinyl Alcohol , Humans , Polyvinyl Alcohol/chemistry , Alginates/chemistry , Wound Healing , Bandages , PolymersABSTRACT
Type I collagen (Col_1) is one of the main proteins present in the skin extracellular matrix, serving as support for skin regeneration and maturation in its granulation stage. Electrospun materials have been intensively studied as the next generation of skin wound dressing mainly due to their high surface area and fibrous porosity. However, the electrospinning of collagen-based solutions causes degradation of its structure. In this work, a coaxial electrospinning process was proposed to overcome this limitation. The production of mats of polycaprolactone (PCL)-Col_1/PVA (collagen/poly(vinyl alcohol)) composed of core-shell nanofibers was investigated. PCL solution was used as the core solution, while Col_1/PVA was used as the shell solution. PVA was used to improve the processability of collagen, while PCL was employed to improve the mechanical properties and morphology of Col_1/PVA fibers. The morphology and the cytotoxicity of the fibers were highly dependent on the processing parameters. Defect-free core-shell nanofibers were obtained with a shell/core flow rates ratio = 4, flight distance of 12 cm, and an applied voltage of 16 kV. Using this strategy, the triple helix structure characteristic of the collagen molecule was preserved. Moreover, the common post-processing of solvent removal could be suppressed, simplifying the manufacturing processing of these biomaterials. The nanostructured mats showed no cytotoxicity, high liquid absorption, structural stability, hydrophilic character, and collagen release capacity, making them a potential novel dressing for skin damage regeneration, in special in the case of chronic wounds treatment, in which exogenous collagen delivery is necessary.
Subject(s)
Collagen Type I , Nanofibers , Nanofibers/chemistry , Polyesters/chemistry , Wound Healing , Polyvinyl Alcohol/pharmacology , Polyvinyl Alcohol/chemistry , Collagen/pharmacologyABSTRACT
One of the most widely used molecules used for photodynamic therapy (PDT) is 5-aminolevulinic acid (5-ALA), a precursor in the synthesis of tetrapyrroles such as chlorophyll and heme. The 5-ALA skin permeation is considerably reduced due to its hydrophilic characteristics, decreasing its local bioavailability and therapeutic effect. For this reason, five different systems containing polymeric particles of poly [D, L-lactic-co-glycolic acid (PLGA)] were developed to encapsulate 5-ALA based on single and double emulsions methodology. All systems were standardized (according to the volume of reagents and mass of pharmaceutical ingredients) and compared in terms of laboratory scaling up, particle formation and stability over time. UV-VIS spectroscopy revealed that particle absorption/adsorption of 5-ALA was dependent on the method of synthesis. Different size distribution was observed by DLS and NTA techniques, revealing that 5-ALA increased the particle size. The contact angle evaluation showed that the system hydrophobicity was dependent on the surfactant and the 5-ALA contribution. The FTIR results indicated that the type of emulsion influenced the particle formation, as well as allowing PEG functionalization and interaction with 5-ALA. According to the 1H-NMR results, the 5-ALA reduced the T1 values of polyvinyl alcohol (PVA) and PLGA in the double emulsion systems due to the decrease in molecular packing in the hydrophobic region. The results indicated that the system formed by single emulsion containing the combination PVA-PEG presented greater stability with less influence from 5-ALA. This system is a promising candidate to successfully encapsulate 5-ALA and achieve good performance and specificity for in vitro skin cancer treatment.
Subject(s)
Aminolevulinic Acid , Polyglycolic Acid , Chlorophyll , Emulsions , Heme , Lactic Acid/chemistry , Particle Size , Polyethylene Glycols/chemistry , Polyglycolic Acid/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer , Polyvinyl Alcohol/chemistry , Surface-Active Agents , TetrapyrrolesABSTRACT
The objective of this work was to develop biodegradable films by mixing gelatin/carboxymethylcellulose (FG/CMC) and gelatin/polyvinyl alcohol (FG/PVOH) and to evaluate the effect of adding these polymers on the properties of fish gelatin films. The films FG/CMC and FG/PVOH were produced in the proportions 90/10, 80/20 and 70/30 and characterized their physical, chemical and functional properties. The addition of CMC and PVOH improved the mechanical strength, barrier property and water solubility of gelatin films. FG/CMC films showed greater tensile strength and greater solubility than FG/PVOH. The maximum concentration of CMC promoted the highest mechanical resistance, while the highest PVOH content produced the film with the lowest solubility. The proposed mixing systems proved to be adequate to improve the properties of fish gelatin films, with potential for application in the packaging sector.
Subject(s)
Gelatin , Polyvinyl Alcohol , Animals , Carboxymethylcellulose Sodium/chemistry , Fishes , Gelatin/chemistry , Polyvinyl Alcohol/chemistry , Tensile StrengthABSTRACT
This study aimed to evaluate the influence of formulation and procedure parameters in obtaining thick and continuous chitosan/PVA/glycerol nanofibres to be applied in skin care. For that, the polymers were characterized by nuclear magnetic resonance, Fourier-transform infrared spectroscopy, and size-exclusion chromatography. After this, 96 chitosan/PVA/glycerol nanofibre scaffolds were prepared by electrospinning method, using factorial designs. The independent variables were crude and pure chitosan, 2 brands of PVA, 2 needle gauges, high and low polymer concentration, high and low glycerol concentration, and final solution with and without ultrafiltration. Morphological analysis was performed by scanning electron microscopy, atomic force microscopy, and confocal microscopy. The best sample (NF67) presented an average thickness of 268.3 nm, uniform distribution, and high yield. It was obtained at a 1:3.5 (crude chitosan: PVA with lower molecular weight, but more hydrolysed) ratio and lower glycerol concentration, suggesting that the degree of hydrolysis of the PVA is more important than its molecular weight for obtaining better quality nanofibres and that the glycerol also makes the electrospinning process difficult. Thus, it was possible to choose parameters that provide scaffolds that could be applied as a matrix extracellular-like material in wound healing.
Subject(s)
Chitosan/chemistry , Glycerol/chemistry , Nanofibers/chemistry , Nanofibers/ultrastructure , Polyvinyl Alcohol/chemistry , Skin Care , Chemical Phenomena , Chitosan/isolation & purification , Microscopy, Atomic Force , Nanotechnology , Regenerative Medicine , Spectrum Analysis , Theranostic NanomedicineABSTRACT
OBJECTIVES: Bioglass composites and polymers are materials of great interest for the medical and dental areas due to their properties, combining the bioactivity of ceramic materials and the mechanical properties of polymers. The purpose of the present study was to develop and to characterize the physicochemical and morphological properties an experimental bioglass-based ternary composite composed associated with sodium carboxymethylcellulose (Na-CMC) and polyvinyl alcohol (PVA). The compatibility of functional groups with bioglass was previously evaluated. The composite was then synthesized and evaluated in terms of morphology, elemental composition, compressive strength, porosity, and bioactivity. MATERIALS AND METHODS: The bioglass was previously synthesized using a sol-gel route and characterized using FTIR analysis to identify the functional groups. The bone graft composite was then synthesized associating the bioglass with PVA, surfactant Triton X, and Na-CMC. The composite was then morphologically characterized using SEM/EDS. The porosity of the composite was analyzed using µCT, which also provided the composite compression strength. The composite was then evaluated in terms of its bioactivity using SEM/EDS analyses after immersion in SBF for 12, 24, 48, and 72 h. RESULTS: FTIR analysis confirmed, among other components, the presence of Si-O-Ca and Si-O-Si bonds, compatible with bioglass. SEM analysis exhibited a composite with a porous structure without spikes. The elemental mapping confirmed the presence of Si, Ca, and P in the composite. µCT analysis demonstrated a porous structure with 42.67% of open pores and an average compression strength of 124.7 MPa. It has also demonstrated ionic changes in the composite surface after immersion in SBF, with increasing detection of Ca and P as a function of time, highlighting its chemical bioactivity. CONCLUSIONS: It can be concluded that the proposed bioglass-based composite presents a three-dimensional, well-structured, chemically bioactive porous structure, mechanically resistant for being reinforced with polymeric phases, with promising results as a synthetic bone graft, which makes it suitable for guided bone regeneration.