ABSTRACT
AIMS: This study aimed to assess metabolic responses and senescent cell burden in young female mice induced to estropause and treated with senolytic drugs. MAIN METHODS: Estropause was induced by 4-vinylcyclohexene diepoxide (VCD) injection in two-month-old mice. The senolytics dasatinib and quercetin (D + Q) or fisetin were given by oral gavage once a month from five to 11 months of age. KEY FINDINGS: VCD-induced estropause led to increased body mass and reduced albumin concentrations compared to untreated cyclic mice, without affecting insulin sensitivity, lipid profile, liver enzymes, or total proteins. Estropause decreased catalase activity in adipose tissue but had no significant effect on other redox parameters in adipose and hepatic tissues. Fisetin treatment reduced ROS levels in the hepatic tissue of estropause mice. Estropause did not influence senescence-associated beta-galactosidase activity in adipose and hepatic tissues but increased senescent cell markers and fibrosis in ovaries. Senolytic treatment did not decrease ovarian cellular senescence induced by estropause. SIGNIFICANCE: Overall, the findings suggest that estropause leads to minor metabolic changes in young females, and the senolytics D + Q and fisetin had no protective effects despite increased ovarian senescence.
Subject(s)
Cellular Senescence , Dasatinib , Flavonols , Quercetin , Animals , Female , Mice , Quercetin/pharmacology , Flavonols/pharmacology , Dasatinib/pharmacology , Cellular Senescence/drug effects , Senotherapeutics/pharmacology , Vinyl Compounds/pharmacology , Liver/drug effects , Liver/metabolism , Liver/pathology , Flavonoids/pharmacology , Ovary/drug effects , Ovary/metabolism , Ovary/pathology , Adipose Tissue/drug effects , Adipose Tissue/metabolism , CyclohexenesABSTRACT
SUMMARY: Resveratrol (RES) and quercetine (QRC), is a promising agent relevant for both cancer chemoprevention and treatment via several signaling pathways, involved in their anticancer activity related to its chemotherapeutic potential, associated with the induction of ROS generation in cancer cells, leading to apoptosis. In our study, we have summarized the mechanisms of action of RES and QRC, and their pharmacological implications and potential therapeutic applications in cancer therapy. After treatment of Hep 2 cells with QRC or RES, the death pathways such as the cytochrome c release, ERK1/2 and IRS-1 pathways were upregulated, while cell survival pathway, including PI3K/AKT were downregulated. The RES and QRC caused oncosis, cells hypertrophy, hypercondensatin of chromatin, rupture of the plasma membrane and nuclear membrane, and formation of apoptotic bodies. Morphometric measurements of some cellular and nuclear parameters showed that RES and QRC induced an increase in cells and nuclear size, the nucleocytoplasmic ratio remained below 1 (N-Cyt R < 1), sign of low nuclear activity. The RES and QRC induced apoptosis of Hep2 cells by increasing of oxidative stress markers, MDA, and by modulating detoxifying enzymes, CAT and SOD. Our study results prove antiproliferative and proapoptotic properties of quercetin and resveratrol with regard to larynx cancer.
Resveratrol (RES) y quercetina (QRC), es un agente prometedor y relevante tanto para la quimioprevención como para el tratamiento del cáncer a través de varias vías de señalización, involucrado en su actividad anticancerígena relacionada con su potencial quimioterapéutico, asociado con la inducción de la generación de especies reactivas del oxígeno (ROS) en células cancerosas, lo que lleva a apoptosis. En nuestro estudio, hemos resumido los mecanismos de acción de RES y QRC, y sus implicaciones farmacológicas y posibles aplicaciones terapéuticas en la terapia del cáncer. Después del tratamiento de las células Hep 2 con QRC o RES, las vías de muerte, tal como la liberación de citocromo c, las vías ERK1/2 e IRS-1, se regulaban positivamente, mientras que la vía de supervivencia celular, incluida PI3K/AKT, se regulaba negativamente. El RES y el QRC provocaron oncosis, hipertrofia celular, hipercondensación de la cromatina, rotura de la membrana plasmática y nuclear y formación de cuerpos apoptóticos. Las mediciones morfométricas de algunos parámetros celulares y nucleares mostraron que RES y QRC indujeron un aumento en las células y el tamaño nuclear, la proporción nucleocitoplasmática se mantuvo por debajo de 1 (N- Cyt R <1), signo de baja actividad nuclear. RES y QRC indujeron la apoptosis de las células Hep2 aumentando los marcadores de estrés oxidativo, MDA, y modulando las enzimas desintoxicantes, CAT y SOD. Los resultados de nuestro estudio demuestran las propiedades antiproliferativas y proapoptóticas de la quercetina y el resveratrol con respecto al cáncer de laringe.
Subject(s)
Humans , Quercetin/pharmacology , Cell Line, Tumor/drug effects , Resveratrol/pharmacology , Cell Survival , Cell Death , Apoptosis , Oxidative Stress , Cell Proliferation/drug effectsABSTRACT
This study aimed to investigate the antioxidant and anti-inflammatory properties of quercetin on the cellular components of the Enteric Nervous System in the ileum of rats with arthritis. Rats were distributed into five groups: control (C), arthritic (AIA), arthritic treated with ibuprofen (AI), arthritic treated with quercetin (AQ) and arthritic treated with both ibuprofen and quercetin (AIQ). The ileum was processed for immunohistochemical techniques for HuC/D, calcitonin gene-related peptide, and vasoactive intestinal polypeptide. Measurements in histological sections, chemiluminescence assays, and total antioxidant capacity were also performed. Rheumatoid arthritis resulted in a decrease in neuronal density, yet neuroplasticity mechanisms were evident through observed changes in varicosities size and neuronal area compared to the control group. Reduced paw edema and neuroprotective effects were predominantly noted in both plexuses, as evidenced by the increased density preservation of HuC/D-IR neurons in the AIQ group. The increase of lipoperoxidation levels and paw edema volume in the AQ group was observed compared to the arthritic, whereas the AIQ group mainly showed similar results to those observed in the control. The enteropathy associated with arthritis proved to be significant in the field of gastroenterology, and the combination of quercetin and ibuprofen demonstrated promising anti-inflammatory and neuroprotective effects.
Subject(s)
Anti-Inflammatory Agents , Antioxidants , Ibuprofen , Quercetin , Rats, Wistar , Animals , Quercetin/pharmacology , Quercetin/therapeutic use , Ibuprofen/pharmacology , Ibuprofen/therapeutic use , Rats , Male , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Antioxidants/pharmacology , Antioxidants/therapeutic use , Neurons/drug effects , Neurons/pathology , Arthritis, Experimental/drug therapy , Arthritis, Experimental/pathology , Enteric Nervous System/drug effects , Enteric Nervous System/pathology , Immunohistochemistry , Ileum/drug effects , Ileum/pathologyABSTRACT
This review highlights the nutritional content, phytochemical compounds, and biological properties of three unconventional food plants consumed in the Amazon: ora-pro-nóbis (Pereskia aculeata Mill.), taioba (Xanthosoma sagittifolium), and vitória-régia (Victoria amazonica). These plants show significant nutritional, functional, and economic potential, which can enhance the intake of daily nutrients, energy, and bioactive compounds. Ora-pro-nóbis is a rich source of caftaric acid, quercetin, and isorhamnetin; taioba contains syringic acid, caffeic acid, and quercetin; and vitória-régia shows cinnamic acid, caffeic acid, and sinapic acid in its composition. These compounds confer antioxidant, anticancer, antimicrobial, anti-inflammatory, analgesic, and antiproliferative properties on these plants. These unconventional plants can be exploited by the food industry as food and supplements and therapeutic plants to develop valuable products for food, cosmetics, pharmaceutical, and medical applications.
Subject(s)
Antioxidants , Nutritive Value , Phenols , Plants, Edible , Plants, Edible/chemistry , Antioxidants/pharmacology , Antioxidants/analysis , Phenols/analysis , Plant Extracts/pharmacology , Quercetin/pharmacology , Quercetin/analysis , Quercetin/analogs & derivatives , Coumaric Acids/analysis , Caffeic Acids/pharmacology , Humans , Cinnamates/analysis , Cinnamates/pharmacology , Phytochemicals/analysis , Phytochemicals/pharmacology , Animals , Anti-Infective Agents/pharmacology , Anti-Inflammatory Agents/pharmacology , Gallic Acid/analogs & derivativesABSTRACT
The Pelargonium genus encompasses around 280 species, most of which are used for medicinal purposes. While P. graveolens, P. odoratissimum, and P. zonale are known to exhibit antimicrobial activity, there is an evident absence of studies evaluating all three species to understand their chemical differences and biological effects. Through the analysis of the hydroalcoholic extracts of P. graveolens, P. odoratissimum, and P. zonale, using HPLC-DAD-MS/MS, quercetin and kaempferol derivatives were identified in these three species. Conversely, gallotannins and anthocyanins were uniquely detected in P. zonale. P. graveolens stood out due to the various types of myricetin derivatives that were not detected in P. odoratissimum and P. zonale extracts. Evaluation of their biological activities revealed that P. zonale displayed superior antibacterial and antibiofilm activities in comparison to the other two species. The antibacterial efficacy of P. zonale was observed towards the clinically relevant strains of Staphylococcus aureus ATCC 25923, Methicillin-resistant Staphylococcus aureus (MRSA) 333, Enterococcus faecalis ATCC 29212, and the Vancomycin-resistant E. faecalis INSPI 032. Fractionation analysis of P. zonale suggested that the antibacterial activity attributed to this plant is due to the presence of quercetin derivatives and kaempferol and its derivatives, alongside their synergistic interaction with gallotannins and anthocyanins. Lastly, the three Pelargonium species exhibited notable antioxidant activity, which may be attributed to their high content of total phenolic compounds.
Subject(s)
Anti-Bacterial Agents , Drug Resistance, Multiple, Bacterial , Pelargonium , Plant Extracts , Pelargonium/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Drug Resistance, Multiple, Bacterial/drug effects , Microbial Sensitivity Tests , Chromatography, High Pressure Liquid , Gram-Positive Bacteria/drug effects , Tandem Mass Spectrometry , Biofilms/drug effects , Kaempferols/pharmacology , Kaempferols/chemistry , Kaempferols/metabolism , Quercetin/pharmacology , Quercetin/metabolism , Antioxidants/pharmacology , Antioxidants/chemistryABSTRACT
Gastric cancer (GC) remains a significant global health challenge, with high mortality rates, especially in developing countries. Current treatments are invasive and have considerable risks, necessitating the exploration of safer alternatives. Quercetin (QRC), a flavonoid present in various plants and foods, has demonstrated multiple health benefits, including anticancer properties. This study investigated the therapeutic potential of QRC in the treatment of GC. We utilized advanced molecular techniques to assess the impact of QRC on GC cells, examining its effects on cellular pathways and gene expression. Our findings indicate that QRC significantly inhibits GC cell proliferation and induces apoptosis, suggesting its potential as a safer therapeutic option for GC treatment. Further research is required to validate these results and explore the clinical applications of QRC in cancer therapy.
Subject(s)
Apoptosis , Cell Proliferation , Computational Biology , Quercetin , Stomach Neoplasms , Quercetin/pharmacology , Stomach Neoplasms/drug therapy , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , Stomach Neoplasms/pathology , Humans , Cell Proliferation/drug effects , Cell Line, Tumor , Apoptosis/drug effects , Computational Biology/methods , Gene Expression Regulation, Neoplastic/drug effectsABSTRACT
Senescent cells have been linked to the pathogenesis of metabolic dysfunction-associated steatotic liver disease (MASLD). However, the effectiveness of senolytic drugs in reducing liver damage in mice with MASLD is not clear. Additionally, MASLD has been reported to adversely affect male reproductive function. Therefore, this study aimed to evaluate the protective effect of senolytic drugs on liver damage and fertility in male mice with MASLD. Three-month-old male mice were fed a standard diet (SD) or a choline-deficient western diet (WD) until 9 months of age. At 6 months of age mice were randomized within dietary treatment groups into senolytic (dasatinib + quercetin [D + Q]; fisetin [FIS]) or vehicle control treatment groups. We found that mice fed choline-deficient WD had liver damage characteristic of MASLD, with increased liver size, triglycerides accumulation, fibrosis, along increased liver cellular senescence and liver and systemic inflammation. Senolytics were not able to reduce liver damage, senescence and systemic inflammation, suggesting limited efficacy in controlling WD-induced liver damage. Sperm quality and fertility remained unchanged in mice developing MASLD or receiving senolytics. Our data suggest that liver damage and senescence in mice developing MASLD is not reversible by the use of senolytics. Additionally, neither MASLD nor senolytics affected fertility in male mice.
Subject(s)
Fertility , Flavonols , Quercetin , Senotherapeutics , Animals , Male , Mice , Fertility/drug effects , Quercetin/pharmacology , Senotherapeutics/pharmacology , Flavonols/pharmacology , Liver/metabolism , Liver/drug effects , Liver/pathology , Cellular Senescence/drug effects , Fatty Liver/drug therapy , Fatty Liver/metabolism , Fatty Liver/pathology , Diet, Western/adverse effects , Disease Progression , Choline Deficiency/complications , Mice, Inbred C57BL , Disease Models, AnimalABSTRACT
The Cupressaceae family includes species considered to be medicinal. Their essential oil is used for headaches, colds, cough, and bronchitis. Cedar trees like Chamaecyparis lawsoniana (C. lawsoniana) are commonly found in urban areas. We investigated whether C. lawsoniana exerts some of its effects by modifying airway smooth muscle (ASM) contractility. The leaves of C. lawsoniana (363 g) were pulverized mechanically, and extracts were obtained by successive maceration 1:10 (w:w) with methanol/CHCl3. Guinea pig tracheal rings were contracted with KCl, tetraethylammonium (TEA), histamine (HIS), or carbachol (Cch) in organ baths. In the Cch experiments, tissues were pre-incubated with D-600, an antagonist of L-type voltage-dependent Ca2+ channels (L-VDCC) before the addition of C. lawsoniana. Interestingly, at different concentrations, C. lawsoniana diminished the tracheal contractions induced by KCl, TEA, HIS, and Cch. In ASM cells, C. lawsoniana significantly diminished L-type Ca2+ currents. ASM cells stimulated with Cch produced a transient Ca2+ peak followed by a sustained plateau maintained by L-VDCC and store-operated Ca2+ channels (SOCC). C. lawsoniana almost abolished this last response. These results show that C. lawsoniana, and its active metabolite quercetin, relax the ASM by inhibiting the L-VDCC and SOCC; further studies must be performed to obtain the complete set of metabolites of the extract and study at length their pharmacological properties.
Subject(s)
Calcium , Chamaecyparis , Muscle Contraction , Muscle, Smooth , Plant Extracts , Quercetin , Trachea , Animals , Guinea Pigs , Muscle, Smooth/drug effects , Muscle, Smooth/metabolism , Muscle Contraction/drug effects , Quercetin/pharmacology , Quercetin/chemistry , Trachea/drug effects , Trachea/metabolism , Plant Extracts/pharmacology , Plant Extracts/chemistry , Chamaecyparis/chemistry , Calcium/metabolism , Male , Calcium Channel Blockers/pharmacology , Histamine/metabolism , Calcium Channels, L-Type/metabolism , Plant Leaves/chemistryABSTRACT
One of the most frequent causes of respiratory infections are viruses. Viruses reaching the airways can be absorbed by the human body through the respiratory mucosa and mainly infect lung cells. Several viral infections are not yet curable, such as coronavirus-2 (SARS-CoV-2). Furthermore, the side effect of synthetic antiviral drugs and reduced efficacy against resistant variants have reinforced the search for alternative and effective treatment options, such as plant-derived antiviral molecules. Curcumin (CUR) and quercetin (QUE) are two natural compounds that have been widely studied for their health benefits, such as antiviral and anti-inflammatory activity. However, poor oral bioavailability limits the clinical applications of these natural compounds. In this work, nanoemulsions (NE) co-encapsulating CUR and QUE designed for nasal administration were developed as promising prophylactic and therapeutic treatments for viral respiratory infections. The NEs were prepared by high-pressure homogenization combined with the phase inversion temperature technique and evaluated for their physical and chemical characteristics. In vitro assays were performed to evaluate the nanoemulsion retention into the porcine nasal mucosa. In addition, the CUR and QUE-loaded NE antiviral activity was tested against a murine ß-COV, namely MHV-3. The results evidenced that CUR and QUE loaded NE had a particle size of 400 nm and retention in the porcine nasal mucosa. The antiviral activity of the NEs showed a percentage of inhibition of around 99 %, indicating that the developed NEs has interesting properties as a therapeutic and prophylactic treatment against viral respiratory infections.
Subject(s)
Administration, Intranasal , Antiviral Agents , Curcumin , Emulsions , Quercetin , Curcumin/administration & dosage , Curcumin/pharmacology , Curcumin/chemistry , Quercetin/administration & dosage , Quercetin/pharmacology , Quercetin/chemistry , Animals , Antiviral Agents/administration & dosage , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Mice , Nanoparticles/administration & dosage , Nanoparticles/chemistry , Swine , Respiratory Tract Infections/drug therapy , Respiratory Tract Infections/virology , Respiratory Tract Infections/prevention & control , Nasal Mucosa/metabolism , Nasal Mucosa/drug effects , Nasal Mucosa/virology , SARS-CoV-2/drug effects , COVID-19 Drug Treatment , HumansABSTRACT
Leishmania braziliensis (L. braziliensis) causes cutaneous leishmaniasis (CL) in the New World. The costs and the side effects of current treatments render imperative the development of new therapies that are affordable and easy to administer. Topical treatment would be the ideal option for the treatment of CL. This underscores the urgent need for affordable and effective treatments, with natural compounds being explored as potential solutions. The alkaloid piperine (PIP), the polyphenol curcumin (CUR), and the flavonoid quercetin (QUE), known for their diverse biological properties, are promising candidates to address these parasitic diseases. Initially, the in vitro cytotoxicity activity of the compounds was evaluated using U-937 cells, followed by the assessment of the leishmanicidal activity of these compounds against amastigotes of L. braziliensis. Subsequently, a golden hamster model with stationary-phase L. braziliensis promastigote infections was employed. Once the ulcer appeared, hamsters were treated with QUE, PIP, or CUR formulations and compared to the control group treated with meglumine antimoniate administered intralesionally. We observed that the three organic compounds showed high in vitro leishmanicidal activity with effective concentrations of less than 50 mM, with PIP having the highest activity at a concentration of 8 mM. None of the compounds showed cytotoxic activity for U937 macrophages with values between 500 and 700 mM. In vivo, topical treatment with QUE daily for 15 days produced cured in 100% of hamsters while the effectiveness of CUR and PIP was 83% and 67%, respectively. No failures were observed with QUE. Collectively, our data suggest that topical formulations mainly for QUE but also for CUR and PIP could be a promising topical treatment for CL. Not only the ease of obtaining or synthesizing the organic compounds evaluated in this work but also their commercial availability eliminates one of the most important barriers or bottlenecks in drug development, thus facilitating the roadmap for the development of a topical drug for the management of CL caused by L. braziliensis.
Subject(s)
Alkaloids , Antiprotozoal Agents , Benzodioxoles , Curcumin , Leishmania braziliensis , Leishmaniasis, Cutaneous , Piperidines , Polyunsaturated Alkamides , Cricetinae , Animals , Quercetin/pharmacology , Quercetin/therapeutic use , Curcumin/pharmacology , Leishmaniasis, Cutaneous/parasitology , Alkaloids/pharmacology , Alkaloids/therapeutic use , Mesocricetus , Antiprotozoal Agents/pharmacologyABSTRACT
Parkinson's disease (PD) is a neurodegenerative disease that affects dopaminergic neurons, thus impairing dopaminergic signalling. Quercetin (QUE) has antioxidant and neuroprotective properties that are promising for the treatment of PD. This systematic review aimed to investigate the therapeutic effects of QUE against PD in preclinical models. The systematic search was performed in PubMed, Scopus and Web of Science. At the final screening stage, 26 articles were selected according to pre-established criteria. Selected studies used different methods for PD induction, as well as animal models. Most studies used rats (73.08%) and mice (23.08%), with 6-OHDA as the main strategy for PD induction (38.6%), followed by rotenone (30.8%). QUE was tested immersed in oil, nanosystems or in free formulations, in varied routes of administration and doses, ranging from 10 to 400 mg/kg and from 5 to 200 mg/kg in oral and intraperitoneal administrations, respectively. Overall, evidence from published data suggests a potential use of QUE as a treatment for PD, mainly through the inhibition of oxidative stress, neuroinflammatory response and apoptotic pathways.
Subject(s)
Antioxidants , Disease Models, Animal , Neuroprotective Agents , Oxidative Stress , Quercetin , Animals , Humans , Mice , Rats , Antioxidants/pharmacology , Antioxidants/therapeutic use , Apoptosis/drug effects , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Oxidative Stress/drug effects , Oxidopamine , Parkinson Disease/drug therapy , Parkinsonian Disorders/drug therapy , Parkinsonian Disorders/chemically induced , Parkinsonian Disorders/physiopathology , Quercetin/pharmacology , RotenoneABSTRACT
Quercetin is a flavonoid with a low molecular weight that belongs to the human diet's phenolic phytochemicals and nonenergy constituents. Quercetin has a potent antioxidant capacity, being able to capture reactive oxygen species (ROS), reactive nitrogen species (RNS), and reactive chlorine species (ROC), which act as reducing agents by chelating transition-metal ions. Its structure has five functional hydroxyl groups, which work as electron donors and are responsible for capturing free radicals. In addition to its antioxidant capacity, different pharmacological properties of quercetin have been described, such as carcinostatic properties; antiviral, antihypertensive, and anti-inflammatory properties; the ability to protect low-density lipoprotein (LDL) oxidation, and the ability to inhibit angiogenesis; these are developed in this review.
Subject(s)
Flavonoids , Quercetin , Humans , Quercetin/pharmacology , Antioxidants/chemistry , Free Radicals/chemistry , Oxidation-Reduction , Reactive Oxygen SpeciesABSTRACT
PURPOSE: Considering that the combination of dasatinib and quercetin (D + Q) demonstrated a neuroprotective action, as well as that females experience a decline in hormonal levels during aging and this is linked to increased susceptibility to Alzheimer's disease, in this study we evaluated the effect of D + Q on inflammatory and oxidative stress markers and on acetylcholinesterase and Na+, K+-ATPase activities in brain of female mice. METHODS: Female C57BL/6 mice were divided in Control and D (5 mg/kg) + Q (50 mg/kg) treated. Treatment was administered via gavage for three consecutive days every two weeks starting at 30 days of age. The animals were euthanized at 6 months of age and at 14 months of age. RESULTS: Results indicate an increase in reactive species (RS), thiol content and lipid peroxidation followed by a reduction in nitrite levels and superoxide dismutase, catalase and glutathione S-transferase activity in the brain of control animals with age. D+Q protected against age-associated increase in RS and catalase activity reduction. Acetylcholinesterase activity was increased, while Na+, K+-ATPase activity was reduced at 14 months of age and D+Q prevented this reduction. CONCLUSION: These data demonstrate that D+Q can protect against age-associated neurochemical alterations in the female brain.
Subject(s)
Acetylcholinesterase , Senotherapeutics , Rats , Female , Mice , Animals , Catalase/metabolism , Acetylcholinesterase/metabolism , Rats, Wistar , Mice, Inbred C57BL , Antioxidants/pharmacology , Oxidative Stress , Quercetin/pharmacology , Brain/metabolism , Superoxide Dismutase/metabolism , Adenosine TriphosphatasesABSTRACT
Semen cryopreservation causes extensive chemical and physical damage to sperm structure, which generates premature aging and reduces viability and fertility of spermatozoa. The addition of antioxidants to freezing extenders can reduce the oxidative damage caused by excessive generation of reactive oxygen species (ROS), and the premature aging could be reduced by adding an enzyme inhibitor that prevents an anticipated capacitation. The aim of this study was to evaluate the in vitro effect of quercetin (Q), L-ergothioneine (E) and H89 addition to cryopreserved equine spermatozoa. Six experimental groups were stablished: control, Q, E, H89, H89Q and H89E. The analyzed parameters were sperm motility and kinematic using computer assisted sperm analysis (CASA), plasma membrane functionality with the hypoosmotic swelling test (HOST) and fertilizing capability with in vitro heterologous fertilization. Quercetin reduced curvilinear velocity (VCL) and increased beat-cross frequency (BCF), while its combination with H89 (H89Q) reduced total motility, progressive motility, VCL and hyperactive sperm (HA). Likewise, H89 and its combination with E (H89E) decreased VCL and amplitude of lateral head displacement (ALH). No significant differences were observed among treatments for membrane functionality and fertilizing capacity of sperm. In conclusion H89 in combination with Q and E reduced sperm motility or some kinematic parameters. However, they did not influence plasma membrane functionality and in vitro fertilizing capacity of frozen-thawed equine semen.
Subject(s)
Aging, Premature , Ergothioneine , Isoquinolines , Sulfonamides , Male , Animals , Horses , Semen , Ergothioneine/pharmacology , Sperm Motility , Quercetin/pharmacology , Biomechanical Phenomena , Aging, Premature/veterinary , Fertilization , Cryopreservation/veterinary , Cell MembraneABSTRACT
Cellular senescence is characteristic of the development and progression of multiple age-associated diseases. Accumulation of senescent cells in the heart contributes to various age-related pathologies. Several compounds called senolytics have been designed to eliminate these cells within the tissues. In recent years, the use and study of senolytics increased, representing a promising field for finding accessible and safe therapies for cardiovascular disease (CVD) treatment. This mini-review discusses the changes in the aging heart and the participation of senescent cells in CVD, as well as the use of senolytics to prevent the progression of myocardial damage, mainly the effect of dasatinib and quercetin. In particular, the mechanisms and physiological effects of senolytics therapies in the aged heart are discussed.
Subject(s)
Cardiovascular Diseases , Quercetin , Humans , Dasatinib/pharmacology , Quercetin/pharmacology , Senotherapeutics , Cardiovascular Diseases/drug therapy , Aging , Cellular Senescence/physiologyABSTRACT
Estrogen deficiency is a well-known hallmark of menopause and is associated with oxidative stress and metabolic dysfunction. Quercetin (Q), a flavonoid found in fruits and vegetables, has demonstrated anti-inflammatory effects in experimental models of metabolic disorders. In this study, we aimed to investigate the effects of quercetin on retroperitoneal white adipose tissue (rWAT) redox homeostasis and systemic metabolic parameters in ovariectomized (OVX) rats. Female Wistar rats at 3 months old were divided into the following experimental groups: sham-operated treated with vehicle (DMSO 10% + PBS - 1 mL/kg); OVX (vehicle treated) and OVX-Q (25 mg/kg) - via oral gavage, daily for 5 weeks. Q did not prevent weight gain but improved glucose tolerance and blood cholesterol profile, and attenuated uterine atrophy in OVX rats. Furthermore, Q had a protective effect on rWAT, once the OVX-Q group presented lower oxidative stress levels, and reduced levels of the pro-inflammatory cytokine tumor necrosis factor alpha, compared to the OVX group. Q improved antioxidant enzyme activities such as superoxide dismutase and catalase and decreased reactive oxygen species production, in OVX-Q rats. It was followed by increased levels of total thiol content and lower lipid peroxidation. Moreover, Q reduced senescent-related genes p16INK4a and p19ARF expression which were higher in the OVX group. In conclusion, quercetin supplementation improved redox homeostasis and reduced senescence-related markers, and inflammation in rWAT, which was reflected in preserved systemic metabolic health parameters in OVX rats. These findings suggest that quercetin may have therapeutic potential for the management of metabolic disorders associated with menopause-induced estrogen deficiency.
Subject(s)
Antioxidants , Quercetin , Rats , Female , Animals , Humans , Rats, Wistar , Quercetin/pharmacology , Antioxidants/pharmacology , Oxidation-Reduction , Estrogens , Adipose Tissue, White , Homeostasis , OvariectomyABSTRACT
Melanoma is a skin cancer with a high mortality rate due to its invasive characteristics. Currently, immunotherapy and targeted therapy increase patient survival but are ineffective in the advanced stages of the tumor. Quercetin (Que) is a natural compound that has demonstrated chemopreventive effects against different types of tumors. This review provides evidence for the therapeutic potential of Que in melanoma and identifies its main targets. The Scopus, Web of Science, and PubMed databases were searched, and studies that used free or encapsulated Que in melanoma models were included, excluding associations, analogs, and extracts. As a result, 73 articles were retrieved and their data extracted. Que has multiple cellular targets in melanoma models, and the main regulated pathways are cell death, redox metabolism, metastasis, and melanization. Que was also able to regulate important targets of signaling pathways, such as PKC, RIG-I, STAT, and P53. In murine models, treatment with Que reduced tumor growth and weight, and decreased metastatic nodules and angiogenic vasculature. Several studies have incorporated Que into carriers, demonstrating improved efficacy and delivery to tumors. Thus, Que is a promising therapeutic agent for the treatment of melanoma; however, further studies are needed to evaluate its effectiveness in clinical trials.
Subject(s)
Melanoma , Skin Neoplasms , Humans , Animals , Mice , Melanoma/drug therapy , Skin Neoplasms/drug therapy , Quercetin/pharmacology , Quercetin/therapeutic use , Antioxidants/pharmacology , Antioxidants/therapeutic use , Melanoma, Cutaneous MalignantABSTRACT
There is no specific chemotherapy approved for the treatment of pathogenic arenaviruses that cause severe hemorrhagic fever (HF) in the population of endemic regions in America and Africa. The present study reports the effects of the natural flavonoid quercetin (QUER) on the infection of A549 and Vero cells with Junín virus (JUNV), agent of the Argentine HF. By infectivity assays, a very effective dose-dependent reduction of JUNV multiplication was shown by cell pretreatment at 2-6 h prior to the infection at non-cytotoxic concentrations, with 50% effective concentration values in the range of 6.1-7.5 µg/mL. QUER was also active by post-infection treatment but with minor efficacy. Mechanistic studies indicated that QUER mainly affected the early steps of virus adsorption and internalization in the multiplication cycle of JUNV. Treatment with QUER blocked the phosphorylation of Akt without changes in the total protein expression, detected by Western blot, and the consequent perturbation of the PI3K/Akt pathway was also associated with the fluorescence redistribution from membrane to cytoplasm of TfR1, the cell receptor recognized by JUNV. Then, it appears that the cellular antiviral state, induced by QUER treatment, leads to the prevention of JUNV entry into the cell.
Subject(s)
Arenaviridae Infections , Arenavirus , Chlorocebus aethiops , Animals , Quercetin/pharmacology , Flavonoids , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Vero CellsABSTRACT
Systemic sclerosis (SSc) is an autoimmune disease characterized by microvascular compromise and fibrosis. Pulmonary fibrosis, a prominent pulmonary complication in SSc, results in impaired lung function due to excessive accumulation of extracellular matrix components. This study aimed to investigate the effects of coadministration of 3'5-dimaleamylbenzoic acid (AD) and quercetin (Q) on key events in the development and maintenance of pulmonary fibrosis in a bleomycin (BLM)-induced SSc mouse model. The model was induced in CD1 mice through BLM administration using osmotic mini pumps. Subsequently, mice were treated with AD (6 mg/kg) plus Q (10 mg/kg) and sacrificed at 21 and 28 days post BLM administration. Histopathological analysis was performed by hematoxylin and eosin staining and Masson's trichrome staining. Immunohistochemistry was used to determine the expression of proliferation, proinflammatory, profibrotic and oxidative stress markers. The coadministration of AD and Q during the fibrotic phase of the BLM-induced SSc model led to attenuated histological alterations and pulmonary fibrosis, reflected in the recovery of alveolar spaces (30 %, p < 0.01) and decreased collagen deposits (50 %, p < 0.001). This effect was achieved by decreasing the expression of the proliferative markers cyclin D1 (87 %, p < 0.0001) and PCNA (43 %, p < 0.0001), inflammatory markers COX-2 (71 %, p < 0.0001) and iNOS (84 %, p < 0.0001), profibrotic markers α-SMA (80 %, p < 0.0001) and TGF-ß (81 %, p < 0.0001) and the lipid peroxidation marker 4-HNE (43 %, p < 0.01). The antifibrotic effect of this combined therapy is associated with the regulation of proliferation, inflammation and oxidative stress, mechanisms involved in the development and progression of the fibrotic process. Our novel therapeutic strategy is the first approach to propose the use of the combination of prooxidant and antioxidant compounds as a potential strategy for SSc-associated pulmonary fibrosis.
Subject(s)
Pulmonary Fibrosis , Scleroderma, Systemic , Mice , Animals , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/metabolism , Quercetin/therapeutic use , Quercetin/pharmacology , Fibrosis , Collagen/metabolism , Bleomycin/adverse effects , Scleroderma, Systemic/metabolism , Disease Models, Animal , Lung/pathologyABSTRACT
Quercetin is a flavonol widely distributed in plants and has various described biological functions. Several studies have reported on its ability to restore neuronal function in a wide variety of disease models, including animal models of neurodegenerative disorders such as Parkinson's disease. Quercetin per se can act as a neuroprotector/neuromodulator, especially in diseases related to impaired dopaminergic neurotransmission. However, little is known about how quercetin interacts with the dopaminergic machinery. Here we employed the nematode Caenorhabditis elegans to study this putative interaction. After observing behavioral modulation, mutant analysis and gene expression in C. elegans upon exposure to quercetin at a concentration that does not protect against MPTP, we constructed a homology-based dopamine transporter protein model to conduct a docking study. This led to suggestive evidence on how quercetin may act as a dopaminergic modulator by interacting with C. elegans' dopamine transporter and alter the nematode's exploratory behavior. Consistent with this model, quercetin controls C. elegans behavior in a way dependent on the presence of both the dopamine transporter (dat-1), which is up-regulated upon quercetin exposure, and the dopamine receptor 2 (dop-2), which appears to be mandatory for dat-1 up-regulation. Our data propose an interaction with the dopaminergic machinery that may help to establish the effects of quercetin as a neuromodulator.