Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.220
Filter
1.
World J Microbiol Biotechnol ; 40(11): 341, 2024 Oct 03.
Article in English | MEDLINE | ID: mdl-39358621

ABSTRACT

Drug-resistant bacteria such as Escherichia coli and Staphylococcus aureus represent a global health problem that requires priority attention. Due to the current situation, there is an urgent need to develop new, more effective and safe antimicrobial agents. Biotechnological approaches can provide a possible alternative control through the production of new generation antimicrobial agents, such as silver nanoparticles (AgNPs) and bacteriocins. AgNPs stand out for their antimicrobial potential by employing several mechanisms of action that can act simultaneously on the target cell such as the production of reactive oxygen species and cell wall rupture. On the other hand, bacteriocins are natural peptides synthesized ribosomally that have antimicrobial activity and are produced, among others, by lactic acid bacteria (LAB), whose main mechanism of action is to produce pores at the level of the cell membrane of bacterial cells. However, these agents have disadvantages. Nanoparticles also have limitations such as the tendency to form aggregates, which decreases their antibacterial activity and possible cytotoxic effects, and bacteriocins have a narrow spectrum of action, require high doses to be effective, and can be degraded by proteases. Given these limitations, nanoconjugates of these two agents have been developed that can act synergistically in the control of pathogenic bacteria resistant to antibiotics. This review focuses on knowing relevant aspects of the antibiotic resistance of E. coli and S. aureus, the characteristics of these new generation antibacterial agents, and their effect alone or forming nanoconjugates that are more effective against the multiresistant mentioned bacteria.


Subject(s)
Anti-Bacterial Agents , Bacteriocins , Drug Resistance, Multiple, Bacterial , Escherichia coli , Metal Nanoparticles , Nanocomposites , Silver , Staphylococcus aureus , Bacteriocins/pharmacology , Bacteriocins/chemistry , Silver/pharmacology , Silver/chemistry , Escherichia coli/drug effects , Metal Nanoparticles/chemistry , Staphylococcus aureus/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Drug Resistance, Multiple, Bacterial/drug effects , Nanocomposites/chemistry , Microbial Sensitivity Tests , Lactobacillales/metabolism , Lactobacillales/drug effects
2.
World J Microbiol Biotechnol ; 40(11): 343, 2024 Oct 08.
Article in English | MEDLINE | ID: mdl-39375274

ABSTRACT

Microalgae are susceptible to most pollutants in aquatic ecosystems and can be potentially damaged by silver nanoparticles (AgNPs). This study aims to clarify the potential consequences of Chlorella vulgaris internalizing AgNPs. The exposure of C. vulgaris to AgNPs stabilized with citrate led to the accumulation of NPs in the cell wall, increasing permeability, which allowed the entry of AgNPs and Ag + ions resulting from the dissolution of AgNPs. Ag + accumulated inside the cell could be converted into AgNPs (endogenous) due to the reducing potential of the cytoplasm. Both exogenous and endogenous AgNPs caused damage to all biological structures of the algae, as demonstrated by TEM images. This damage included the disorganization of chloroplasts, deposition of AgNPs on starch granules, and increased amounts of lipids, starch granules, exopolysaccharides, plastoglobuli, and cell diameters. These changes caused cell death by altering cell viability and interfering with organelle functions, possibly due to reactive oxygen species generated by nanoparticles, as shown in a lipid bilayer model. These findings highlight the importance of considering the exposure risks of AgNPs in a worldwide distributed chlorophyte.


Subject(s)
Chlorella vulgaris , Metal Nanoparticles , Microalgae , Reactive Oxygen Species , Silver , Silver/metabolism , Silver/pharmacology , Chlorella vulgaris/drug effects , Chlorella vulgaris/metabolism , Chlorella vulgaris/growth & development , Metal Nanoparticles/chemistry , Microalgae/metabolism , Microalgae/drug effects , Reactive Oxygen Species/metabolism , Microscopy, Electron, Transmission , Cell Wall/drug effects , Cell Wall/metabolism , Chloroplasts/metabolism , Chloroplasts/drug effects
3.
Molecules ; 29(18)2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39339417

ABSTRACT

This study evaluated push-out bond test (POBT), surface roughness, and antimicrobial properties against Enterococcus faecalis of bioceramic sealers supplemented with silver nanoparticles (AgNPs). The sealers tested were CeraSeal®, EndoSequence® BC SealerTM, and Bio-C® Sealer. The POBT was measured with a Universal Testing Machine, and the type of failure was evaluated with a stereomicroscope. The roughness average (Sa) and peak-valley height (Sy) values were evaluated by atomic force microscopy. The bacterial growth inhibition was evaluated using a disk diffusion test, and antimicrobial activity was determined with the plate microdilution method. The POBT showed no significant difference between sealers with and those without NPs in cervical and apical thirds (p > 0.05). In the middle third, the adhesion force was significant for Endosequence BC Sealer® (p < 0.05). The results showed that the Sa and Sy parameters, when AgNPs were added, did not show a statistically significant difference compared to the groups without nanoparticles (p > 0.05). All tested sealers showed bacterial growth inhibition, but no significant difference was found. Their efficacy, in descending order of antibacterial activity when AgNPs were added, is as follows: EndoSequence® BC SealerTM > Bio-C® Sealer > CeraSeal®. The incorporation of AgNPs into bioceramics improves antimicrobial activity without affecting mechanical properties.


Subject(s)
Enterococcus faecalis , Metal Nanoparticles , Root Canal Filling Materials , Silver , Surface Properties , Silver/chemistry , Silver/pharmacology , Metal Nanoparticles/chemistry , Root Canal Filling Materials/chemistry , Root Canal Filling Materials/pharmacology , Enterococcus faecalis/drug effects , Enterococcus faecalis/growth & development , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Materials Testing , Humans , Microbial Sensitivity Tests , Ceramics/chemistry , Ceramics/pharmacology , Microscopy, Atomic Force , Calcium Phosphates , Drug Combinations , Oxides , Silicates
4.
ACS Appl Bio Mater ; 7(10): 6908-6918, 2024 Oct 21.
Article in English | MEDLINE | ID: mdl-39316373

ABSTRACT

The incorporation of bactericidal properties into textiles is a widely sought-after aspect, and silver nanoparticles (AgNPs) can be used for this. Here, we evaluate a strategy for incorporating AgNPs into a cotton fabric. For this purpose, a bactericidal textile coating based on a composite of AgNPs and kappa-carrageenan (k-CA) was proposed. The composite was obtained by heating the silver precursor (AgNO3) directly in k-CA solution for green synthesis and in situ AgNPs stabilization. Cotton substrates were added to the heated composite solution for surface impregnation and hydrogel film formation after cooling. Direct synthesis of AgNPs on a fabric was also tested. The results showed that the application of a coating based on k-CA/AgNPs composite can achieve more than twice the silver loading on the fabric surface compared to the textile subjected to direct AgNPs incorporation. Furthermore, silver release tests in water showed that higher Ag+ levels were reached for k-CA/AgNPs-coated cotton. Therefore, inoculation tests with the bacteria Staphylococcus aureus (SA) using the agar diffusion method showed that samples covered with the composite resulted in significantly larger inhibition halos. This indicated that the use of the composite as a coating for cotton fabric improved its bactericidal activity against SA.


Subject(s)
Anti-Bacterial Agents , Carrageenan , Cotton Fiber , Materials Testing , Metal Nanoparticles , Microbial Sensitivity Tests , Particle Size , Silver , Staphylococcus aureus , Silver/chemistry , Silver/pharmacology , Carrageenan/chemistry , Carrageenan/pharmacology , Metal Nanoparticles/chemistry , Staphylococcus aureus/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Textiles , Surface Properties
5.
Bull Environ Contam Toxicol ; 113(4): 42, 2024 Sep 21.
Article in English | MEDLINE | ID: mdl-39306638

ABSTRACT

In the present paper, the assessment of vortex-assisted dispersive magnetic solid-phase extraction using amino-functionalized mesoporous combined with direct magnetic sorbent sampling (DMSS) in flame or furnace atomic absorption spectrometry (FAAS or FF-AAS) was demonstrated for highly sensitive silver determination in water samples. The developed method showed significant enrichment factors compared to conventional pneumatic nebulization by FAAS, 607 for DMSS-FF-AAS and 114 for DMSS-FAAS. The analytical curve showed linearity in the range from 5.0 to 70.0 µg L- 1 and 1.0 to 15.0 µg L- 1 and limits of detection of 0.59 and 0.09 µg L- 1 for DMSS-FAAS and DMSS-FF-AAS, respectively. The intra and inter-day precision evaluated as a percentage of the relative standard deviation (RSD,%) ranged from 1.89 to 4.71% for levels of 25.0 and 65.0 µg L- 1. The method was applied in different kinds of water samples without matrix effects, yielding recovery values from 90 to 110%.


Subject(s)
Silver , Solid Phase Extraction , Spectrophotometry, Atomic , Water Pollutants, Chemical , Solid Phase Extraction/methods , Silver/chemistry , Water Pollutants, Chemical/analysis , Environmental Monitoring/methods , Limit of Detection
6.
Chemosphere ; 364: 143080, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39146989

ABSTRACT

Nanotechnology has brought significant advancements to agriculture through the development of engineered nanomaterials (ENPs). Silver nanoparticles (AgNPs) capped with polysaccharides have been applied in agricultural diagnostics, crop pest management, and seed priming. Hyaluronic acid (HA), a natural polysaccharide with bactericidal properties, has been considered a growth regulator for plant tissues and an inducer of systemic resistance against plant diseases. Additionally, HA has been employed as a stabilizing agent for AgNPs. This study investigated the synthesis and effects of hyaluronic acid-stabilized silver nanoparticles (HA-AgNPs) as a seed priming agent on lettuce (Lactuca sativa L.) seed germination. HA-AgNPs were characterized using several techniques, exhibiting spherical morphology and good colloidal stability. Germination assays conducted with 0.1, 0.04, and 0.02 g/L of HA-AgNPs showed a concentration-dependent reduction in seed germination. Conversely, lower concentrations of HA-AgNPs significantly increased germination rates, survival, tolerance indices, and seed water absorption compared to silver ions (Ag+). SEM/EDS indicated more significant potential for HA-AgNPs internalization compared to Ag+. Therefore, these findings are innovative and open new avenues for understanding the impact of Ag+ and HA-AgNPs on seed germination.


Subject(s)
Germination , Hyaluronic Acid , Lactuca , Metal Nanoparticles , Seeds , Silver , Lactuca/drug effects , Lactuca/growth & development , Silver/chemistry , Silver/toxicity , Silver/pharmacology , Germination/drug effects , Metal Nanoparticles/toxicity , Metal Nanoparticles/chemistry , Seeds/drug effects , Seeds/growth & development , Hyaluronic Acid/chemistry , Hyaluronic Acid/pharmacology
7.
Pharmacol Rep ; 76(5): 1147-1159, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39150661

ABSTRACT

BACKGROUND: Currently, there is no antiviral licensed to treat chikungunya fever, a disease caused by the infection with Alphavirus chikungunya (CHIKV). Treatment is based on analgesic and anti-inflammatory drugs to relieve symptoms. Our study aimed to evaluate the antiviral activity of sulfadoxine (SFX), an FDA-approved drug, and its derivatives complexed with silver(I) (AgSFX), salicylaldehyde Schiff base (SFX-SL), and with both Ag and SL (AgSFX-SL) against CHIKV. METHODS: The anti-CHIKV activity of SFX and its derivatives was investigated using BHK-21 cells infected with CHIKV-nanoluc, a marker virus-carrying nanoluciferase reporter. Dose-response and time of drug-addition assays were performed in order to assess the antiviral effects of the compounds, as well as in silico data and ATR-FTIR analysis for insights on their mechanisms of action. RESULTS: The SFX inhibited 34% of CHIKV replication, while AgSFX, SFX-SL, and AgSFX-SL enhanced anti-CHIKV activity to 84%, 89%, and 95%, respectively. AgSFX, SFX-SL, and AgSFX-SL significantly decreased viral entry and post-entry to host cells, and the latter also protected cells against infection. Additionally, molecular docking calculations and ATR-FTIR analysis demonstrated interactions of SFX-SL, AgSFX, and AgSFX-SL with CHIKV. CONCLUSIONS: Collectively, our findings suggest that the addition of metal ions and/or Schiff base to SFX improved its antiviral activity against CHIKV.


Subject(s)
Antiviral Agents , Chikungunya Fever , Chikungunya virus , Sulfadoxine , Chikungunya virus/drug effects , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Animals , Cell Line , Sulfadoxine/pharmacology , Chikungunya Fever/drug therapy , Chikungunya Fever/virology , Cricetinae , Schiff Bases/pharmacology , Silver/pharmacology , Silver/chemistry , Virus Replication/drug effects , Molecular Docking Simulation , Dose-Response Relationship, Drug , Humans , Aldehydes
8.
Bull Environ Contam Toxicol ; 113(3): 32, 2024 Aug 25.
Article in English | MEDLINE | ID: mdl-39183240

ABSTRACT

Due to their broad-spectrum antimicrobial action and ease of synthesis, silver nanoparticles (AgNP) are one of the most widely used nanomaterials in different industrial and ecological areas. AgNP are released into marine ecosystems, nevertheless, their ecotoxicological effects have been overlooked. In this study, we evaluated the toxic effects of biogenic and synthesized AgNP (AgNPIBCLP11 and AgNPSINT) on sea urchin Echinometra lucunter embryos and compared them with the metal precursor silver nitrate (AgNO3). Fertilized eggs were exposed to five concentrations of the test compounds and a negative control for 48 h under controlled conditions. The IC50-48 h of AgNPIBCLP11, AgNPSINT and AgNO3 were 0.31, 4.095, and 0.01 µg L-1, evidencing that both AgNP are less toxic than AgNO3, and that AgNPSINT is less toxic than the AgNPIBCLP11. Toxicity to E. lucunter embryos could be explained by the fact that Ag affects DNA replication and induces the formation of pores in the cellular wall, leading to apoptosis.


Subject(s)
Embryo, Nonmammalian , Metal Nanoparticles , Sea Urchins , Silver , Water Pollutants, Chemical , Animals , Silver/toxicity , Metal Nanoparticles/toxicity , Sea Urchins/drug effects , Sea Urchins/embryology , Embryo, Nonmammalian/drug effects , Water Pollutants, Chemical/toxicity
9.
Inorg Chem ; 63(37): 17087-17099, 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39185932

ABSTRACT

To ascertain the bioinorganic chemistry of metals conjugated with quinones, the complexes [Ag(ATV)(PPh3)2] (1), [Au(ATV)(PPh3)]·2H2O (2), and [Cu(ATV)(PPh3)2] (3) were synthesized by the coordination of the antimalarial naphthoquinone atovaquone (ATV) to the starting materials [Ag(PPh3)2]NO3, [Au(PPh3)Cl], and [Cu(PPh3)2NO3], respectively. These complexes were characterized by analytical and spectroscopical techniques. X-ray diffraction of single crystals precisely confirmed the coordination mode of ATV to the metals, which was monodentate or bidentate, depending on the metal center. Both coordination modes showed high stability in the solid state and in solution. All three complexes showed negative log D values at pH 5, but at pH 7.4, while complex 2 continued to have a negative log D value, complexes 1 and 3 displayed positive values, indicating a more hydrophilic character. ATV and complexes 1-3 could bind to ferriprotoporphyrin IX (FePPIX); however, only complexes 1-3 could inhibit ß-hematin crystal formation. Phenotype-based activity revealed that all three metal complexes are able to inhibit the growth of P. falciparum with potency and selectivity comparable to those of ATV, while the starting materials lack this activity. The outcomes of this chemical design may provide significant insights into structure-activity relationships for the development of new antimalarial agents.


Subject(s)
Antimalarials , Atovaquone , Coordination Complexes , Heme , Plasmodium falciparum , Antimalarials/pharmacology , Antimalarials/chemistry , Antimalarials/chemical synthesis , Plasmodium falciparum/drug effects , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Heme/chemistry , Atovaquone/pharmacology , Atovaquone/chemistry , Atovaquone/chemical synthesis , Molecular Structure , Copper/chemistry , Copper/pharmacology , Silver/chemistry , Silver/pharmacology , Gold/chemistry , Gold/pharmacology , Phosphines/chemistry , Phosphines/pharmacology , Parasitic Sensitivity Tests , Structure-Activity Relationship , Models, Molecular , Humans
10.
Nanotechnology ; 35(46)2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39116890

ABSTRACT

The translation of silver-based nanotechnology 'from bench to bedside' requires a deep understanding of the molecular aspects of its biological action, which remains controversial at low concentrations and non-spherical morphologies. Here, we present a hemocompatibility approach based on the effect of the distinctive electronic charge distribution in silver nanoparticles (nanosilver) on blood components. According to spectroscopic, volumetric, microscopic, dynamic light scattering measurements, pro-coagulant activity tests, and cellular inspection, we determine that at extremely low nanosilver concentrations (0.125-2.5µg ml-1), there is a relevant interaction effect on the serum albumin and red blood cells (RBCs). This explanation has its origin in the surface charge distribution of nanosilver particles and their electron-mediated energy transfer mechanism. Prism-shaped nanoparticles, with anisotropic charge distributions, act at the surface level, generating a compaction of the native protein molecule. In contrast, the spherical nanosilver particle, by exhibiting isotropic surface charge, generates a polar environment comparable to the solvent. Both morphologies induce aggregation at NPs/bovine serum albumin ≈ 0.044 molar ratio values without altering the coagulation cascade tests; however, the spherical-shaped nanosilver exerts a negative impact on RBCs. Overall, our results suggest that the electron distributions of nanosilver particles, even at extremely low concentrations, are a critical factor influencing the molecular structure of blood proteins' and RBCs' membranes. Isotropic forms of nanosilver should be considered with caution, as they are not always the least harmful.


Subject(s)
Erythrocytes , Metal Nanoparticles , Serum Albumin, Bovine , Silver , Silver/chemistry , Metal Nanoparticles/chemistry , Erythrocytes/metabolism , Erythrocytes/chemistry , Humans , Serum Albumin, Bovine/chemistry , Serum Albumin, Bovine/metabolism , Surface Properties , Animals , Cattle , Blood Coagulation/drug effects , Blood Proteins/metabolism , Blood Proteins/chemistry , Materials Testing
11.
J Mater Chem B ; 12(36): 8993-9004, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39145426

ABSTRACT

Among external stimuli-responsive therapy approaches, those using near infrared (NIR) light irradiation have attracted significant attention to treat bone-related diseases and bone tissue regeneration. Therefore, the development of metallic biomaterials sensitive to NIR stimuli is an important area of research in orthopaedics. In this study, we have generated in situ prism-shaped silver nanoparticles (p-AgNPs) in a biomorphic nano-holed TiO2 coating on a Ti6Al4V alloy (a-Ti6Al4V). Insertion of p-AgNPs does not disturb the periodically arranged sub-wavelength-sized unit cell on the a-Ti6Al4V dielectric structure, while they exacerbate its peculiar optical response, which results in a higher NIR reflectivity and high efficiency of NIR photothermal energy conversion suitable to bacterial annihilation. Together, these results open a promising path toward strategic bone therapeutic procedures, providing novel insights into precision medicine.


Subject(s)
Alloys , Anti-Bacterial Agents , Infrared Rays , Metal Nanoparticles , Silver , Surface Properties , Titanium , Titanium/chemistry , Titanium/pharmacology , Alloys/chemistry , Alloys/pharmacology , Silver/chemistry , Silver/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Metal Nanoparticles/chemistry , Staphylococcus aureus/drug effects , Microbial Sensitivity Tests , Escherichia coli/drug effects , Particle Size
12.
Int J Mol Sci ; 25(16)2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39201681

ABSTRACT

In this study, the biosynthesis of polyhydroxyalkanoates (PHAs) was carried out using Pseudomonas putida and Pseudomonas aeruginosa. These PHAs were produced using reagent-grade glycerol and crude glycerol as the carbon sources. The objective was to compare the production of PHAs and to functionalize these polymers with silver nanoparticles to provide antibacterial properties for potential biomedical applications. The findings from the physical and chemical analyses confirmed the successful synthesis and extraction of PHAs, achieving comparable yields using both crude glycerol and reagent-grade glycerol as carbon sources across both strains. Approximately 16% higher PHAs production was obtained using Pseudomonas putida compared to Pseudomonas aeruginosa, and no significant difference was observed in the production rate of PHAs between the two carbon sources used, which means that crude glycerol could be utilized even though it has more impurities. Notably, PHAs functionalized with silver nanoparticles showed improved antibacterial effectiveness, especially those derived from reagent-grade glycerol and the Pseudomonas aeruginosa strain.


Subject(s)
Anti-Bacterial Agents , Glycerol , Metal Nanoparticles , Polyhydroxyalkanoates , Pseudomonas aeruginosa , Pseudomonas putida , Silver , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/metabolism , Pseudomonas putida/metabolism , Silver/chemistry , Silver/pharmacology , Polyhydroxyalkanoates/biosynthesis , Polyhydroxyalkanoates/chemistry , Metal Nanoparticles/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/biosynthesis , Glycerol/chemistry , Glycerol/metabolism , Microbial Sensitivity Tests
13.
ACS Appl Bio Mater ; 7(8): 5530-5540, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39093994

ABSTRACT

This study reports on the modification of bacterial cellulose (BC) membranes produced by static fermentation of Komagataeibacter xylinus bacterial strains with graphene oxide-silver nanoparticles (GO-Ag) to yield skin wound dressings with improved antibacterial properties. The GO-Ag sheets were synthesized through chemical reduction with sodium citrate and were utilized to functionalize the BC membranes (BC/GO-Ag). The BC/GO-Ag composites were characterized to determine their surface charge, morphology, exudate absorption, antimicrobial activity, and cytotoxicity by using fibroblast cells. The antimicrobial activity of the wound dressings was assessed against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. The results indicate that the BC/GO-Ag dressings can inhibit ∼70% of E. coli cells. Our findings also revealed that the porous BC/GO-Ag antimicrobial dressings can efficiently retain 94% of exudate absorption after exposure to simulated body fluid (SBF) for 24 h. These results suggest that the dressings could absorb excess exudate from the wound during clinical application, maintaining adequate moisture, and promoting the proliferation of epithelial cells. The BC/GO-Ag hybrid materials exhibited excellent mechanical flexibility and low cytotoxicity to fibroblast cells, making excellent wound dressings able to control bacterial infectious processes and promote the fast healing of dermal lesions.


Subject(s)
Anti-Bacterial Agents , Biocompatible Materials , Cellulose , Escherichia coli , Graphite , Materials Testing , Metal Nanoparticles , Microbial Sensitivity Tests , Silver , Staphylococcus aureus , Wound Healing , Graphite/chemistry , Graphite/pharmacology , Silver/chemistry , Silver/pharmacology , Wound Healing/drug effects , Cellulose/chemistry , Cellulose/pharmacology , Metal Nanoparticles/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Staphylococcus aureus/drug effects , Escherichia coli/drug effects , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Particle Size , Pseudomonas aeruginosa/drug effects , Gluconacetobacter xylinus/chemistry , Humans , Mice , Bandages , Animals
14.
Sensors (Basel) ; 24(15)2024 Aug 04.
Article in English | MEDLINE | ID: mdl-39124094

ABSTRACT

Graphene-based surface plasmon resonance (SPR) biosensors have emerged as a promising technology for the highly sensitive and accurate detection of biomolecules. This study presents a comprehensive theoretical analysis of graphene-based SPR biosensors, focusing on configurations with single and bimetallic metallic layers. In this study, we investigated the impact of various metallic substrates, including gold and silver, and the number of graphene layers on key performance metrics: sensitivity of detection, detection accuracy, and quality factor. Our findings reveal that configurations with graphene first supported on gold exhibit superior performance, with sensitivity of detection enhancements up to 30% for ten graphene layers. In contrast, silver-supported configurations, while demonstrating high sensitivity, face challenges in maintaining detection accuracy. Additionally, reducing the thickness of metallic layers by 30% optimizes light coupling and enhances sensor performance. These insights highlight the significant potential of graphene-based SPR biosensors in achieving high sensitivity of detection and reliability, paving the way for their application in diverse biosensing technologies. Our findings pretend to motivate future research focusing on optimizing metallic layer thickness, improving the stability of silver-supported configurations, and experimentally validating the theoretical findings to further advance the development of high-performance SPR biosensors.


Subject(s)
Biosensing Techniques , Gold , Graphite , Silver , Surface Plasmon Resonance , Graphite/chemistry , Surface Plasmon Resonance/methods , Silver/chemistry , Biosensing Techniques/methods , Biosensing Techniques/instrumentation , Gold/chemistry
15.
Braz J Biol ; 84: e280570, 2024.
Article in English | MEDLINE | ID: mdl-39109714

ABSTRACT

Anthocyanins are known as an antioxidant, and their water-soluble purple-colored pigments are very nutritive. Therefore, the present study investigated the antioxidant activity of black rice anthocyanins nano-composite against infertility induced by AlCl3 in rats. Anthocyanin silver nanoparticles (An-AgNPs) were prepared by reducing black rice anthocyanin with the metallic ions. Antioxidant activity (DPPH %) of anthocyanin was determined. Also, the morphology of (An-AgNPs) was examined by scanning electron microscopy (SEM). Albino rats were divided into five groups (negative control (NC): fed on basel diet, positive control (PC): treated with AlCl3 (34 mg/kg bw) for seventy days, and three other groups treated with AlCl3 (34 mg/kg bw) + An-AgNPs at 10, 15, and 20 mg/kg, b.w/ day, respectively for seventy days. Serum testosterone, LH, FSH, and estradiol were measured. Additionally, Sperm motility, Sperm count (Testicular and Epididymal), fructose in semen, and semen quality were determined. The values of the anthocyanin component and DPPH radical scavenging activity obtained were 3603.82±6.11 mg CCE/g and 84.62±1.98, respectively. An-AgNPs shows tend to agglomerate, particles are uniform in size and shape, and the diameter of the particles ranges between 70nm to 130nm. LH, estradiol and testosterone levels increased significantly in rats treated with An-AgNPs 10, 15, 20 mg/kg b.w+ AlCl3 (34 mg/kg bw) also exhibited significantly higher sperm motility, sperm count, and daily sperm production, and decreased sperm transit rate than G2. In comparison to G2, animals treated with AlCl3 (34 mg/kg bw) + An-AgNPs 10, 15, 20 mg/kg b.w(G3 to G5) had significantly higher semen and semen quality (P 0.05). We can conclude that the An-AgNPs showed a strong effect against infertility induced by AlCl3; this represents a suitable natural supply of biological substances for medicine and anthocyanins could be considered the ideal ingredients against oxidative stress-induced infertility.


Subject(s)
Aluminum Chloride , Aluminum Compounds , Anthocyanins , Antioxidants , Metal Nanoparticles , Oryza , Rats, Wistar , Silver , Animals , Anthocyanins/pharmacology , Anthocyanins/analysis , Male , Antioxidants/pharmacology , Oryza/chemistry , Silver/chemistry , Infertility, Male , Chlorides , Sperm Motility/drug effects , Nanocomposites/chemistry , Microscopy, Electron, Scanning , Rats , Testosterone/blood , Sperm Count , Semen Analysis
16.
Int J Mol Sci ; 25(15)2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39126001

ABSTRACT

Breast cancer is the most diagnosed type of cancer worldwide and the second cause of death in women. Triple-negative breast cancer (TNBC) is the most aggressive, and due to the lack of specific targets, it is considered the most challenging subtype to treat and the subtype with the worst prognosis. The present study aims to determine the antitumor effect of beta-D-glucose-reduced silver nanoparticles (AgNPs-G) in a murine model of TNBC, as well as to study its effect on the tumor microenvironment. In an airbag model with 4T1 tumor cell implantation, the administration of AgNPs-G or doxorubicin showed antitumoral activity. Using immunohistochemistry it was demonstrated that treatment with AgNPs-G decreased the expression of PCNA, IDO, and GAL-3 and increased the expression of Caspase-3. In the tumor microenvironment, the treatment increased the percentage of memory T cells and innate effector cells and decreased CD4+ cells and regulatory T cells. There was also an increase in the levels of TNF-α, IFN-γ, and IL-6, while TNF-α was increased in serum. In conclusion, we suggest that AgNPs-G treatment has an antitumor effect that is demonstrated by its ability to remodel the tumor microenvironment in mice with TNBC.


Subject(s)
Glucose , Metal Nanoparticles , Silver , Triple Negative Breast Neoplasms , Tumor Microenvironment , Animals , Tumor Microenvironment/drug effects , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/metabolism , Silver/chemistry , Metal Nanoparticles/chemistry , Female , Mice , Glucose/metabolism , Cell Line, Tumor , Disease Models, Animal , Mice, Inbred BALB C , Doxorubicin/pharmacology , Humans
17.
Braz J Microbiol ; 55(3): 2789-2796, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39023813

ABSTRACT

Acinetobacter baumannii is a bacteria associated with nosocomial infections and outbreaks, difficult to control due to its antibiotic resistance, ability to survive in adverse conditions, and biofilm formation adhering to biotic and abiotic surfaces. Therefore, this study aimed to evaluate the antibiofilm activity of biogenic silver nanoparticle (Bio-AgNP) and polymyxin B alone and combined in biofilms formed by isolates of carbapenem-resistant A. baumannii (CR-Ab). In the biofilm formation inhibition assay, CR-Ab strains were exposed to different concentrations of the treatments before inducing biofilm formation, to determine the ability to inhibit/prevent bacterial biofilm formation. While in the biofilm rupture assay, the bacterial biofilm formation step was previously carried out and the adhered cells were exposed to different concentrations of the treatments to evaluate their ability to destroy the bacterial biofilm formed. All CR-Ab isolates and ATCC® 19606™ used in this study are strong biofilm formers. The antibiofilm activity of Bio-AgNP and polymyxin B against CR-Ab and ATCC® 19606™ demonstrated inhibitory and biofilm-disrupting activity. When used in combination, Bio-AgNP and polymyxin B inhibited 4.9-100% of biofilm formation in the CR-Ab isolates and ATCC® 19606™. Meanwhile, when Bio-AgNP and polymyxin B were combined, disruption of 6.8-77.8% of biofilm formed was observed. Thus, antibiofilm activity against CR-Ab was demonstrated when Bio-AgNP was used alone or in combination with polymyxin B, emerging as an alternative in the control of CR-Ab strains.


Subject(s)
Acinetobacter baumannii , Anti-Bacterial Agents , Biofilms , Carbapenems , Metal Nanoparticles , Microbial Sensitivity Tests , Polymyxin B , Silver , Biofilms/drug effects , Acinetobacter baumannii/drug effects , Acinetobacter baumannii/physiology , Polymyxin B/pharmacology , Silver/pharmacology , Silver/chemistry , Anti-Bacterial Agents/pharmacology , Metal Nanoparticles/chemistry , Carbapenems/pharmacology , Acinetobacter Infections/microbiology , Acinetobacter Infections/drug therapy , Humans , Drug Synergism , Drug Resistance, Bacterial
18.
Biomolecules ; 14(7)2024 Jun 30.
Article in English | MEDLINE | ID: mdl-39062496

ABSTRACT

In this work, the hexane, chloroform, and methanol extracts from Kalanchoe fedtschenkoi were utilized to green-synthesize silver nanoparticles (Kf1-, Kf2-, and Kf3-AgNPs). The Kf1-, Kf2-, and Kf3-AgNPs were characterized by spectroscopy and microscopy techniques. The antibacterial activity of AgNPs was studied against bacteria strains, utilizing the microdilution assay. The DPPH and H2O2 assays were considered to assess the antioxidant activity of AgNPs. The results revealed that Kf1-, Kf2-, and Kf3-AgNPs exhibit an average diameter of 39.9, 111, and 42 nm, respectively. The calculated ζ-potential of Kf1-, Kf2-, and Kf3-AgNPs were -20.5, -10.6, and -7.9 mV, respectively. The UV-vis analysis of the three samples demonstrated characteristic absorption bands within the range of 350-450 nm, which confirmed the formation of AgNPs. The FTIR analysis of AgNPs exhibited a series of bands from 3500 to 750 cm-1, related to the presence of extracts on their surfaces. SEM observations unveiled that Kf1- and Kf2-AgNPs adopted structural arrangements related to nano-popcorns and nanoflowers, whereas Kf3-AgNPs were spherical in shape. It was determined that treatment with Kf1-, Kf2-, and Kf3-AgNPs was demonstrated to inhibit the growth of E. coli, S. aureus, and P. aeruginosa in a dose-dependent manner (50-300 µg/mL). Within the same range, treatment with Kf1-, Kf2-, and Kf3-AgNPs decreased the generation of DPPH (IC50 57.02-2.09 µg/mL) and H2O2 (IC50 3.15-3.45 µg/mL) radicals. This study highlights the importance of using inorganic nanomaterials to improve the biological performance of plant extracts as an efficient nanotechnological approach.


Subject(s)
Anti-Bacterial Agents , Antioxidants , Green Chemistry Technology , Kalanchoe , Metal Nanoparticles , Microbial Sensitivity Tests , Plant Extracts , Silver , Metal Nanoparticles/chemistry , Silver/chemistry , Silver/pharmacology , Plant Extracts/chemistry , Plant Extracts/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Kalanchoe/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/chemical synthesis , Biphenyl Compounds/antagonists & inhibitors , Biphenyl Compounds/chemistry , Picrates/antagonists & inhibitors , Picrates/chemistry , Escherichia coli/drug effects , Escherichia coli/growth & development , Hydrogen Peroxide
19.
Chemosphere ; 361: 142481, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38823428

ABSTRACT

The study presents the successful development of a new electrochemical sensor with low cost and disposability for application in nitrofurazone detection in environmental and pharmaceutical samples. The sensors were fabricated using materials obtained from local storage and conductive carbon ink. The modification of the screen-printed electrodes with the hybrid nanomaterial based on silver nanoparticles, carbon quantum dots, and carbon nanotubes showed synergistic contributions in the nitrofurazone electrooxidation, as observed in the wide linear range (0.008 at 15.051 µM), with a sensitivity of 0.650 µA/µM. The limit of detection obtained was 4.6 nM. Differential pulse voltammetry, cyclic voltammetry, X-ray photoelectron spectroscopy, X-ray diffraction analysis, and high-resolution transmission electron microscopy were used to evaluate the electrochemical and structural characteristics. Studies of possible interferences were considered with nitrofurazone in the presence of the ions and organic molecules. The results were satisfactory, with a variation of 93.3% ± 4.39% at 100% ± 2.40%. The low volume used in the analyses (50 µL), disposability, high sensibility, selectivity, and low limit of detection are advantages that make the proposed sensor an electrochemical tool of high viability for the NFZ detection in environmental matrices and pharmaceutical formulations.


Subject(s)
Anti-Bacterial Agents , Electrochemical Techniques , Metal Nanoparticles , Nanotubes, Carbon , Nitrofurazone , Nitrofurazone/analysis , Nitrofurazone/chemistry , Electrochemical Techniques/methods , Nanotubes, Carbon/chemistry , Metal Nanoparticles/chemistry , Anti-Bacterial Agents/analysis , Limit of Detection , Silver/chemistry , Electrodes , Quantum Dots/chemistry
20.
Toxicol In Vitro ; 99: 105869, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38848823

ABSTRACT

Silver nanoparticles (AgNPs) hold promise for cancer therapy. This study aimed to evaluate their impact on tumor and non-tumor cell number, viability, and morphology. Antitumor activity was tested on U-87MG (glioblastoma) and DU-145 (prostate cancer) cell lines. Treatment with AgNPs notably reached a reduction of U-87MG and DU-145 cell growth by 89.30% and 79.74%, respectively, resulting in slower growth rates. AgNPs induced DNA damage, evidenced by reduced nuclear area and DNA content via fluorescent image-based analyses. Conversely, HFF-1 non-tumor cells displayed no significant changes post-AgNPs exposure. Viability assays revealed substantial reductions in U-87MG and DU-145 cells (79% and 63% in MTT assays, 30% and 52.2% in high-content analyses), while HFF-1 cells exhibited lower sensitivity. Tumor cells had notably lower IC50 values than non-tumor cells, indicating selective susceptibility. Transmission electron microscopy (TEM) showed morphological changes post-AgNPs administration, including increased vacuoles, myelin figures, membrane ghosts, cellular extravasation, and membrane projections. The findings suggest the potential of AgNPs against glioblastoma and prostate cancer, necessitating further exploration across other cancer cell lines.


Subject(s)
Antineoplastic Agents , Cell Survival , Glioblastoma , Metal Nanoparticles , Prostatic Neoplasms , Silver , Humans , Metal Nanoparticles/toxicity , Male , Silver/toxicity , Glioblastoma/drug therapy , Glioblastoma/pathology , Cell Line, Tumor , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Cell Survival/drug effects , Antineoplastic Agents/pharmacology , Cell Count , DNA Damage/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL