Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 138
Filter
1.
Int J Mol Sci ; 25(13)2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38999930

ABSTRACT

Although SARS-CoV-2 induces mucin hypersecretion in the respiratory tract, hyposalivation/xerostomia has been reported by COVID-19 patients. We evaluate the submandibular gland (SMGs) pathogenesis in SARS-CoV-2-infected K18-hACE2 mice, focusing on the impact of infection on the mucin production and structural integrity of acini, ductal system, myoepithelial cells (MECs) and telocytes. The spike protein, the nucleocapsid protein, hACE2, actin, EGF, TNF-α and IL-1ß were detected by immunofluorescence, and the Egfr and Muc5b expression was evaluated. In the infected animals, significant acinar hypertrophy was observed in contrast to ductal atrophy. Nucleocapsid proteins and/or viral particles were detected in the SMG cells, mainly in the nuclear membrane-derived vesicles, confirming the nuclear role in the viral formation. The acinar cells showed intense TNF-α and IL-1ß immunoexpression, and the EGF-EGFR signaling increased, together with Muc5b upregulation. This finding explains mucin hypersecretion and acinar hypertrophy, which compress the ducts. Dying MECs and actin reduction were also observed, indicating failure of contraction and acinar support, favoring acinar hypertrophy. Viral assembly was found in the dying telocytes, pointing to these intercommunicating cells as viral transmitters in SMGs. Therefore, EGF-EGFR-induced mucin hypersecretion was triggered by SARS-CoV-2 in acinar cells, likely mediated by cytokines. The damage to telocytes and MECs may have favored the acinar hypertrophy, leading to ductal obstruction, explaining xerostomia in COVID-19 patients. Thus, acinar cells, telocytes and MECs may be viral targets, which favor replication and cell-to-cell viral transmission in the SMG, corroborating the high viral load in saliva of infected individuals.


Subject(s)
COVID-19 , ErbB Receptors , SARS-CoV-2 , Submandibular Gland , Xerostomia , COVID-19/pathology , COVID-19/virology , COVID-19/metabolism , Animals , Submandibular Gland/virology , Submandibular Gland/pathology , Submandibular Gland/metabolism , SARS-CoV-2/physiology , Mice , Xerostomia/etiology , Xerostomia/pathology , Xerostomia/virology , Xerostomia/metabolism , ErbB Receptors/metabolism , Humans , Angiotensin-Converting Enzyme 2/metabolism , Mucin-5B/metabolism , Acinar Cells/pathology , Acinar Cells/metabolism , Acinar Cells/virology , Interleukin-1beta/metabolism , Tumor Necrosis Factor-alpha/metabolism , Disease Models, Animal
2.
Am J Physiol Cell Physiol ; 326(3): C742-C748, 2024 03 01.
Article in English | MEDLINE | ID: mdl-38284125

ABSTRACT

The key role of CFTR in secretory epithelia has been extensively documented. Additionally, CFTR plays a significant role in ion absorption in exocrine glands, including salivary and sweat glands. Most of the knowledge about CFTR expression comes from animal models such as the mouse or the rat, but there is limited information about CFTR expression in human tissues. In the present study, we assessed the expression of CFTR in human submandibular and parotid glands. Consistent with findings in rodent salivary glands, our immunolocalization studies show that CFTR is expressed in duct cells. However, CFTR expression in human salivary glands differs from that in rodents, as immunolocalization and single-cell RNA sequencing analysis from a previous study performed in the human parotid gland revealed the presence of CFTR protein and transcripts within a distinct cell cluster. Based on cell marker expression, this cluster corresponds to acinar cells. To obtain functional evidence supporting CFTR expression, we isolated human parotid acinar cells through collagenase digestion. Acinar cells displayed an anion conductance that was activated in response to cAMP-increasing agents and was effectively blocked by CFTRInh172, a known CFTR blocker. This study provides novel evidence of CFTR expression within acinar cells of human salivary glands. This finding challenges the established model positioning CFTR exclusively in duct cells from exocrine glands.NEW & NOTEWORTHY This study addresses the uncertainty about the impact of CFTR on human salivary gland function. We found CFTR transcripts in a subset of duct cells known as ionocytes, as well as in acinar cells. Isolated human parotid acinar cells exhibited Cl- conductance consistent with CFTR activity. This marks the first documented evidence of functional CFTR expression in human salivary gland acinar cells.


Subject(s)
Acinar Cells , Cystic Fibrosis Transmembrane Conductance Regulator , Humans , Rats , Mice , Animals , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Salivary Glands/metabolism , Submandibular Gland/metabolism , Parotid Gland/metabolism
3.
Arch Oral Biol ; 155: 105805, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37741048

ABSTRACT

OBJECTIVE: To investigate the effects of the anticonvulsant valproic acid (VPA) on salivary glands in male rat using biochemical, functional, histomorphometric, and redox state parameters. MATERIALS AND METHODS: Twenty-four male Wistar rats were randomly distributed into three groups (n = 8 per group): Control (0.9% saline solution), VPA100 (100 mg/kg), and VPA400 (400 mg/kg). After 21 consecutive days of treatment with by intragastric gavage. Pilocarpine-induced saliva was collected to determine salivary flow rate, pH, buffering capacity, and biochemical composition. Analyses of histomorphometric parameters and redox balance markers were performed on the parotid and submandibular glands. RESULTS: Salivary flow rate, pH, buffering capacity, total protein, potassium, sodium, and chloride were similar between groups. However, phosphate and calcium were reduced in VPA400, while amylase was increased in both VPA100 and VPA400. We did not detect significant differences in the areas of acini, ducts, and connective tissue in the salivary glands between the groups. There were no significant changes in the redox status of the submandibular glands. In turn, in the parotid glands we detected reduced total oxidizing capacity and lipid peroxidation, measured as thiobarbituric acid reactive substances (TBARs) and higher uric acid concentration in both the VPA100 and VPA400 groups, and increased superoxide dismutase (SOD) in the VPA400 group. CONCLUSION: Chronic treatment with VPA modified the salivary biochemical composition and caused disruption in the redox state of the parotid gland in rats.


Subject(s)
Anticonvulsants , Valproic Acid , Rats , Male , Animals , Anticonvulsants/pharmacology , Valproic Acid/pharmacology , Valproic Acid/analysis , Valproic Acid/metabolism , Rats, Wistar , Salivary Glands/metabolism , Saliva/chemistry , Parotid Gland/metabolism , Submandibular Gland/metabolism , Oxidation-Reduction
4.
Arch Oral Biol ; 154: 105764, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37454526

ABSTRACT

OBJECTIVE: We evaluated the effects of eugenol on histological, enzymatic, and oxidative parameters in the pancreas, parotid, submandibular, and sublingual glands of healthy male rats. DESIGN: Twenty-four adult Wistar rats were assigned into four groups (n = 6/group). Control rats received 2% Tween-20 (eugenol vehicle), whereas the other animals received 10, 20, and 40 mg kg-1 eugenol through gavage daily for 60 d. Major salivary and pancreatic glands were weighed and preserved fixed for microscopic analysis and frozen for in vitro assays. RESULTS: Eugenol did not alter glands' weight and serum amylase activity regardless of the concentration. The highest dose of eugenol caused an increase in pancreatic amylase activity and a reduction of lipase activity from serum and pancreas. Eugenol at 40 mg kg-1 diminished the activity of SOD and FRAP in the submandibular gland and CAT and FRAP in the sublingual gland. However, it did not exert any effect on GST regardless of the gland. Additionally, 40 mg kg-1 eugenol increased MDA levels in pancreatic, parotid, and submandibular glands and NO levels in the sublingual. The concentrations of eugenol induced distinct responses in the glands regarding the activity of Na+/K+, Mg2+, and total ATPase activity. They also affected histomorphometrical and histochemistrical parameters in the submandibular gland only. CONCLUSIONS: Results indicated that 40 mg kg-1 eugenol altered most of the biochemical and oxidatived parameters of digestive glands. Only submandibular glands presented histological changes after eugenol exposure suggesting potential implications for its function.


Subject(s)
Eugenol , Salivary Glands , Rats , Male , Animals , Rats, Wistar , Eugenol/pharmacology , Eugenol/metabolism , Salivary Glands/metabolism , Parotid Gland/metabolism , Submandibular Gland/metabolism , Sublingual Gland , Pancreas/metabolism , Amylases/metabolism , Oxidative Stress
5.
Int J Mol Sci ; 23(13)2022 Jun 29.
Article in English | MEDLINE | ID: mdl-35806221

ABSTRACT

There is currently a controversial and heated debate about the safety and ethical aspects of fluoride (F) used for human consumption. Thus, this study assessed the effects of prenatal and postnatal F exposure of rats on the salivary glands of their offspring. Pregnant rats were exposed to 0, 10, or 50 mg F/L from the drinking water, from the first day of gestation until offspring weaning (42 days). The offspring rats were euthanized for the collection of the parotid (PA) and submandibular (SM) glands, to assess the oxidative biochemistry and to perform morphometric and immunohistochemical analyses. F exposure was associated with a decrease in the antioxidant competence of PA in the 10 mg F/L group, contrasting with the increase observed in the 50 mg F/L group. On the other hand, the antioxidant competence of the SM glands was decreased at both concentrations. Moreover, both 10 and 50 mg F/L groups showed lower anti-α-smooth muscle actin immunostaining area in SM, while exposure to 50 mg F/L was associated with changes in gland morphometry by increasing the duct area in both glands. These findings demonstrate a greater susceptibility of the SM glands of the offspring to F at high concentration in comparison to PA, reinforcing the need to adhere to the optimum F levels recommended by the regulatory agencies. Such findings must be interpreted with caution, especially considering their translational meaning.


Subject(s)
Fluorides , Maternal Exposure , Parotid Gland , Submandibular Gland , Animals , Animals, Newborn , Cell Size/drug effects , Female , Fluorides/toxicity , Immunohistochemistry , Keratin-18/metabolism , Lactation , Male , Oxidative Stress/drug effects , Parotid Gland/drug effects , Parotid Gland/metabolism , Parotid Gland/pathology , Pregnancy , Rats , Rats, Wistar , Submandibular Gland/drug effects , Submandibular Gland/metabolism , Submandibular Gland/pathology
6.
Odontology ; 110(2): 278-286, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34536167

ABSTRACT

The aim of this study was to evaluate if paradoxical sleep deprivation is able to induce tissue degeneration, inflammatory activity and apoptosis in the submandibular gland of rats. A total of 24 male Wistar rats were distributed into the following groups: group 1-control (CTRL; n = 8): the animals were not submitted to any procedures; group 2-sleep deprivation (PS; n = 8): the animals were submitted to paradoxical sleep deprivation for 96 h and group 3-recovery (R; n = 8): the animals were submitted to sleep deprivation for 96 h, followed by a period of 96 h without any intervention. The following parameters were evaluated: histopathological analysis, immunohistochemistry for Ki-67, COX-2 and cleaved caspase-3 and gene expression of TNF-α, Interleukin 6 (IL-6), Interleukin 10 (IL-10) and cytochrome C by real-time PCR. The results pointed out cytoplasmic vacuoles and congested vessels in the parenchyma of submandibular gland the in PS and R groups. The expression of interleukins 6, 10 and TNF-ɑ was differentially expressed in the PS and R groups. Apoptosis was also triggered by means of increasing cleaved caspase-3 and cytochrome c expression. The cellular proliferation (Ki-67 index) was also positive in the R group. Taken together, our results demonstrate that sleep deprivation is capable of promoting tissue degeneration in the submandibular gland, as a result of inflammatory response and cellular death in rats.


Subject(s)
Sleep Deprivation , Sleep, REM , Animals , Apoptosis , Male , Rats , Rats, Wistar , Sleep Deprivation/complications , Sleep Deprivation/metabolism , Sleep, REM/physiology , Submandibular Gland/metabolism
7.
Int. j. morphol ; 39(5): 1302-1310, oct. 2021. ilus
Article in English | LILACS | ID: biblio-1385477

ABSTRACT

SUMMARY: Considering that the submandibular gland (SMG) of postnatal mice performs active cell proliferation, apoptosis and differentiation which are regulated by proto-oncogene products in cancerous cells, the expression and localization of a proto-oncogene product HER (human epidermal growth factor receptor)-2 was examined in SMG of postnatal mice. In Western blot analysis, the expression for HER-2 was high until pre-puberty, and it decreased from puberty to young adult stages with male SMG more dominant. In immunohistochemistry, the immunoreactivity was positive in acinar and ductal cells of newborn SMG with distinct localization at the intercellular apposition sites. The immunoreactivity in acinar cells progressively decreased to negligible levels by pre-pubertal stage, while it remained positive in most ductal cells throughout the postnatal time-course. The immunoreactivity in cells of terminal tubules and intercalated ducts, both of which have a high potential to produce cells, were seen at levels similar to those of more proximal ducts, while the immunoreactivity in ductal basal cells was significantly high, but the granular convoluted tubule cells were seen at negligible levels in male and at faint levels in female. In immuno-electron microscopy of excretory ducts, the immunoreactivity was dominantly localized on the basal infolding membranes as well as vesicles and vacuoles of various sizes, but rarely in Golgi apparatus and mitochondria. The immunoreactivity without association to any membranous structures were also seen, though not numerous. The relation of expression levels of HER-2 in various portions of normal SMG to those in their cancerous ones is briefly discussed.


RESUMEN: Considerando que la glándula submandibular (GSM) de ratones postnatales realiza la proliferación celular activa, apoptosis y diferenciación que están reguladas por productos protooncogénicos en células cancerosas, la expresión y localización de un producto protooncogénico HER (receptor del factor de crecimiento epidérmico humano) - 2 se examinó en GSM de estos ratones. En el análisis de Western blot, la expresión de HER-2 fue alta hasta la prepubertad, y disminuyó desde la pubertad hasta las etapas de adultos jóvenes con GSM macho más dominante. En inmunohistoquímica, la inmunorreactividad fue positiva en las células acinares y ductales de GSM de recién nacido con una localización distinta en los sitios de aposición intercelular. La inmunorreactividad en las células acinares disminuyó progresivamente a niveles insignificantes en la etapa prepuberal, mientras que permaneció positiva en la mayoría de las células ductales durante el transcurso del tiempo posnatal. La inmunorreactividad en las células de los túbulos terminales y los conductos intercalados, los cuales tienen un alto potencial para producir células, se obser- vó a niveles similares a los de los conductos más proximales, mientras que la inmunorreactividad en las células basales ductales fue significativamente alta, pero en el túbulo contorneado granular las células se observaron en niveles insignificantes en los machos y en niveles débiles en las hembras. En la microscopía inmunoelectrónica de los conductos excretores, la inmunorreactividad se localizó de manera predominante en las membranas de pliegues basales, así como en vesículas y vacuolas de varios tamaños, pero raramente en el aparato de Golgi y en las mitocondrias. También se observó la inmunorreactividad sin asociación a ninguna estructura membranosa, aunque no numerosa. Se discute brevemente la relación de los niveles de expresión de HER-2 en varias porciones de GSM normal con aquellos en sus cancerosos.


Subject(s)
Animals , Male , Female , Submandibular Gland/growth & development , Submandibular Gland/metabolism , Sex Characteristics , Receptor, ErbB-2/metabolism , Submandibular Gland/ultrastructure , Testosterone , Immunohistochemistry , Blotting, Western , Microscopy, Immunoelectron
8.
J Anat ; 239(1): 136-150, 2021 07.
Article in English | MEDLINE | ID: mdl-33713423

ABSTRACT

Submandibular gland (SMG) is responsive to androgens via androgen receptor (AR). We verified whether cimetidine induces androgenic dysfunction in SMG, and evaluated the structural integrity, cell death and immunoexpression of actin, EGF and V-ATPase in androgen-deficient SMG. Male rats received cimetidine (CMTG) and control animals (CG) received saline. Granular convoluted tubules (GCTs) diameter and number of acinar cell nuclei were evaluated. TUNEL and immunofluorescence reactions for detection of AR, testosterone, actin, EGF and V-ATPase were quantitatively analysed. In CG, testosterone immunolabelling was detected in acinar and ductal cells cytoplasm. AR-immunolabelled nuclei were observed in acinar cells whereas ductal cells showed AR-immunostained cytoplasm, indicating a non-genomic AR action. In CMTG, the weak testosterone and AR immunoexpression confirmed cimetidine-induced androgenic failure. A high cell death index was correlated with decreased number of acinar cells, GCTs diameter and EGF immunoexpression under androgenic dysfunction. Actin immunofluorescence decreased in the SMG cells, but an increased and diffuse cytoplasmic V-ATPase immunolabelling was observed in striated ducts, suggesting a disruption in the actin-dependent V-ATPase recycling due to androgenic failure. Our findings reinforce the androgenic role in the maintenance of SMG histophysiology, and point to a potential clinical use of cimetidine against androgen-dependent glandular tumour cells.


Subject(s)
Cimetidine/therapeutic use , Cytochrome P-450 CYP1A2 Inhibitors/therapeutic use , Receptors, Androgen/metabolism , Submandibular Gland/drug effects , Actins/metabolism , Animals , Cimetidine/pharmacology , Cytochrome P-450 CYP1A2 Inhibitors/pharmacology , Drug Evaluation, Preclinical , Epidermal Growth Factor/metabolism , Male , Rats, Sprague-Dawley , Submandibular Gland/metabolism , Testosterone/metabolism , Vacuolar Proton-Translocating ATPases/metabolism
9.
Biomed Pharmacother ; 133: 110979, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33190033

ABSTRACT

OBJECTIVES: To investigate the biochemical and morphological effects of ethanol (EtOH) binge drinking during pregnancy on parotid glands (PG), submandibular glands (SMG), and saliva of offspring rats. METHODS: Pregnant Wistar rats (n = 8) were exposed to EtOH consumption (3 g/kg/day - 20 % w/v) for three consecutive days. The saliva of 40-day-old offspring rats was collected to determine amylase activity and total protein concentration. PG and SMG were collected to performe oxidative biochemistry, morphometric and immunohistochemistry analyses (Student's t-test, p < .05). RESULTS: EtOH consumption during pregnancy significantly decreased the total protein concentration and decreased amylase activity. In the PG, the EtOH group showed increased lipid peroxidation and decreased antioxidant capacity against peroxyl. In the SMG, the EtOH group showed increased lipid peroxidation and NOx metabolite levels. PG exposed to EtOH showed a decrease of acini, ducts, and total parenchymal area. SMG exposed to EtOH showed an increase in the total stromal area. The expression of CK-19 and Vimentin were found not different between groups. CONCLUSIONS: For the first time, a three-day EtOH binge-drinking protocol during pregnancy is associated with oxidative stress and morphometric alterations in the salivary glands of offspring rats and with the functional reduction of the main salivary enzyme (amylase). CLINICAL RELEVANCE: EtOH consumption during pregnancy altered the morphology and physiology of the salivary glands of offspring rats.


Subject(s)
Binge Drinking , Ethanol/toxicity , Oxidative Stress/drug effects , Parotid Gland/drug effects , Prenatal Exposure Delayed Effects , Salivation/drug effects , Submandibular Gland/drug effects , Amylases/metabolism , Animals , Female , Lipid Peroxidation/drug effects , Parotid Gland/metabolism , Parotid Gland/pathology , Parotid Gland/physiopathology , Pregnancy , Rats , Reactive Nitrogen Species/metabolism , Reactive Oxygen Species/metabolism , Submandibular Gland/metabolism , Submandibular Gland/pathology , Submandibular Gland/physiopathology
10.
Biol Trace Elem Res ; 198(2): 575-582, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32162179

ABSTRACT

Several studies indicate aluminum (Al) as a potent toxicant, mainly related to central nervous system disorders. However, investigations about the Al effects over salivary glands are still scarce. In this way, the present study aimed to investigate whether the Al chloride (AlCl3) is able of triggering oxidative stress in parotid and submandibular glands of mice and also, if any morphological impairment is observed. For this, twenty mice were divided into two groups: Exposed group (EG), which received 18.5 mg/kg of AlCl3 by intragastric gavage for 60 days and control group (CG), which received distilled water by intragastric gavage during the same period of time. After that, levels of reduced glutathione (GSH) and malonaldehyde (MDA) were analyzed and we performed morphological analyses by evaluating the area of parenchyma, stroma, acini, and ducts in both glands. Statistical analyses were performed by Student's t test and two-way ANOVA, adopting p < 0.05. No abnormal body weight was observed and data indicates that although both major salivary glands are susceptible to Al-induced oxidative stress, by increasing MDA and reducing GSH, only submandibular glands decreased the parenchyma and increased stroma area. Moreover, the submandibular glands showed smaller total area of acini and higher total area of ducts, in comparison with the control group. Notably, AlCl3 induces oxidative stress in both glands, however, submandibular glands showed to be more susceptible to Al effects than parotid glands. Our study gives evidences about Al toxicity in parotid and submandibular glands and claims for new investigations to understand more mechanisms of Al-induced toxicity.


Subject(s)
Aluminum , Salivary Glands , Aluminum/metabolism , Aluminum/toxicity , Animals , Mice , Oxidation-Reduction , Parotid Gland/metabolism , Rats , Rats, Wistar , Salivary Glands/metabolism , Submandibular Gland/metabolism
11.
Rheumatology (Oxford) ; 59(4): 742-753, 2020 04 01.
Article in English | MEDLINE | ID: mdl-31377809

ABSTRACT

OBJECTIVES: Xerostomia in SS patients has been associated with low quality and quantity of salivary mucins, which are fundamental for the hydration and protection of the oral mucosa. The aim of this study was to evaluate if cytokines induce aberrant mucin expression and whether tauroursodeoxycholic acid (TUDCA) is able to counteract such an anomaly. METHODS: Labial salivary glands from 16 SS patients and 15 control subjects, as well as 3D acini or human submandibular gland cells stimulated with TNF-α or IFN-γ and co-incubated with TUDCA, were analysed. mRNA and protein levels of Mucin 1 (MUC1) and MUC7 were determined by RT-qPCR and western blot, respectively. Co-immunoprecipitation and immunofluorescence assays for mucins and GRP78 [an endoplasmic reticulum (ER)-resident protein] were also performed. mRNA levels of RelA/p65 (nuclear factor-κB subunit), TNF-α, IL-1ß, IL-6, SEL1L and EDEM1 were determined by RT-qPCR, and RelA/p65 localization was evaluated by immunofluorescence. RESULTS: MUC1 is overexpressed and accumulated in the ER of labial salivary gland from SS patients, while MUC7 accumulates throughout the cytoplasm of acinar cells; however, MUC1, but not MUC7, co-precipitated with GRP78. TUDCA diminished the overexpression and aberrant accumulation of MUC1 induced by TNF-α and IFN-γ, as well as the nuclear translocation of RelA/p65, together with the expression of inflammatory and ER stress markers in 3D acini. CONCLUSION: Chronic inflammation alters the secretory process of MUC1, inducing ER stress and affecting the quality of saliva in SS patients. TUDCA showed anti-inflammatory properties decreasing aberrant MUC1 accumulation. Further studies are necessary to evaluate the potential therapeutic effect of TUDCA in restoring glandular homeostasis in SS patients.


Subject(s)
Acinar Cells/drug effects , Endoplasmic Reticulum Stress/drug effects , Mucin-1/drug effects , Salivary Glands, Minor/drug effects , Sjogren's Syndrome/metabolism , Submandibular Gland/drug effects , Taurochenodeoxycholic Acid/pharmacology , Xerostomia/metabolism , Acinar Cells/metabolism , Adult , Aged , Case-Control Studies , Cells, Cultured , Endoplasmic Reticulum Chaperone BiP , Endoplasmic Reticulum Stress/genetics , Female , Heat-Shock Proteins/drug effects , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Humans , Immunoprecipitation , In Vitro Techniques , Interferon-gamma/pharmacology , Interleukin-1beta/drug effects , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Interleukin-6/genetics , Interleukin-6/metabolism , Male , Membrane Proteins/drug effects , Membrane Proteins/genetics , Membrane Proteins/metabolism , Middle Aged , Mucin-1/genetics , Mucin-1/metabolism , Mucins/drug effects , Mucins/genetics , Mucins/metabolism , Proteins/drug effects , Proteins/genetics , Proteins/metabolism , RNA, Messenger/drug effects , RNA, Messenger/metabolism , Salivary Glands, Minor/metabolism , Salivary Proteins and Peptides/drug effects , Salivary Proteins and Peptides/genetics , Salivary Proteins and Peptides/metabolism , Sjogren's Syndrome/genetics , Submandibular Gland/cytology , Submandibular Gland/metabolism , Transcription Factor RelA/drug effects , Transcription Factor RelA/genetics , Transcription Factor RelA/metabolism , Tumor Necrosis Factor-alpha/drug effects , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/pharmacology , Xerostomia/genetics
12.
J Nanosci Nanotechnol ; 20(3): 1454-1462, 2020 03 01.
Article in English | MEDLINE | ID: mdl-31492307

ABSTRACT

Even though nanotechnology has revolutionized the biomedical research, a plethora of studies debate the nanoparticles safety. In order to contribute to these studies, we evaluated the cytotoxic and epigenetic effects of maghemite nanoparticles covered with citric acid on human submandibular gland cells. Objective: This work objective was to evaluate the cytotoxic effects and epigenetic alterations induced in human salivary gland cells after treatment with maghemite nanoparticles covered with citric acid. Methods: For that, human submandibular gland cells were cultured and treated with nanoparticles for 24 or 48 hours. To assess cytotoxicity we used lactate dehydrogenase, a general oxidative stress indicator assay and microscopy. Epigenetic status was detected by colorimetric assays and the results were confirmed by quantitative polymerase chain reaction. Results: No cytotoxic effects were detected on cells exposed to up 3.0 mgFemL-1 for 48 hours, although cytoplasmic vacuoles formation was detected by light microscopy analyses. An increased generation of reactive oxygen species in cells exposed to nanoparticles was evidenced and iron clusters accumulated in the cytoplasm of treated cells. Global DNA methylation and histones H3 and H4 acetylation were also altered in response to nanoparticles exposure, thus suggesting a reprogramming of the epigenome. Transcripts accumulation analyses showed that genes related to iron metabolism and oxidative stress were upregulated, while the gene related to epigenetic reprogramming presented reduced transcript accumulation after treatment. Conclusion: We concluded that maghemite nanoparticles covered with citric acid exposure provoked several biological responses without impairment of human submandibular gland cells viability. This is the first report on the epigenetic effects of maghemite nanoparticles on this cell lineage.


Subject(s)
Magnetic Iron Oxide Nanoparticles , Nanoparticles , Epigenesis, Genetic , Humans , Nanoparticles/toxicity , Oxidative Stress/genetics , Reactive Oxygen Species/metabolism , Submandibular Gland/metabolism
13.
PLoS One ; 14(10): e0224147, 2019.
Article in English | MEDLINE | ID: mdl-31648256

ABSTRACT

Physical exercise is known to activate the sympathetic nervous system, which influences the production of saliva from salivary glands. Our examination of saliva collected from highly trained athletes before and after a number of physical competititions showed an increase in the secretion of S-type cystatins and cystatin C as a subacute response to aerobic and anaerobic exercise. The elevation in salivary cystatins was transient and the recovery time course differed from that of amylase and other salivary proteins. An in vitro assay was developed based on a cell line from a human submandibular gland (HSG) that differentiated into acinus-like structures. Treatments with the ß-adrenergic agonist isoproterenol caused a shift in the intracellular distribution of S-type cystatins and cystatin C, promoting their accumulation at the outer regions of the acinus prior to release and suggesting the activation of a directional transport involving co-migration of both molecules. In another treatment using non-differentiated HSG cells, it was evident that both expression and secretion of cystatin C increased upon addition of the ß-adrenergic agonist, and these effects were essentially eliminated by the antagonist propranolol. The HSG cell line appears to have potential as a model for exploring the mechanism of cystatin secretion, particularly the S-type cystatins that originate primarily in the submandibular glands.


Subject(s)
Exercise , Salivary Cystatins/metabolism , Submandibular Gland/metabolism , Adrenergic beta-Agonists/pharmacology , Adrenergic beta-Antagonists/pharmacology , Adult , Cells, Cultured , Humans , Male , Submandibular Gland/cytology , Submandibular Gland/drug effects
14.
Tissue Cell ; 53: 104-110, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30060820

ABSTRACT

Head and neck cancers are common in several regions of the world and the treatment usually includes radiotherapy. This treatment can generate adverse effects to the salivary flow, with a relationship between the dose and the damage caused. Salivary gland cells are highly permeable to water and therefore, they express aquaporins (AQPs). This study analyzed changes in the expression and location of these proteins and identified morphological changes induced by low radiation in rat submandibular gland. Female rats were divided into control and irradiated groups. Immunohistochemistry analysis allowed confirming the presence of AQP1 in the blood vessel endothelium. Intense and steady labelling granules were also observed in the cytoplasm of submandibular gland ductal cells. In addition, there was AQP5 positive labelling in ductal cells delimiting the lumen of intercalated duct, in the cytoplasm and membrane of acinar cells. Finally, the decrease of AQP labelling in irradiated animal glands validated their radiosensitivity. Thus, the decrease in AQP1 protein levels in the endothelium and AQP5 in gland ductal cells of irradiated animals may have hindered the removal of water from the lumen of ductal cells, inducing a delay in water absorption and triggering a slight lumen increase.


Subject(s)
Acinar Cells/metabolism , Aquaporin 1/biosynthesis , Aquaporin 5/biosynthesis , Gamma Rays/adverse effects , Gene Expression Regulation/radiation effects , Submandibular Gland/metabolism , Acinar Cells/pathology , Animals , Dose-Response Relationship, Radiation , Female , Rats , Rats, Wistar , Submandibular Gland/pathology
15.
Int J Rheum Dis ; 21(6): 1293-1300, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29624878

ABSTRACT

AIM: To evaluate the stiffness of parotid and submandibular glands using elastography ultrasound and to correlate it with B-mode ultrasonographical, clinical and serological features, salivary profibrotic and inflammatory chemokines, and salivary gland fibrosis. METHODS: We performed B-mode and elastography ultrasound of major salivary glands of 26 patients with primary Sjögren's syndrome. We registered the shear wave velocity (SWV) and correlated it with the morphologic ultrasonographic changes assessed by the Hocevar scale. We assessed the European League Against Rheumatism (EULAR) Sjögren's Syndrome Disease Activity Index (ESSDAI), EULAR Sjögren's Syndrome Patient Reported Index (ESSPRI), non-stimulated whole salivary flow rate (NSWSF), C3 and C4 levels, anti-Ro/La antibodies, salivary inflammatory (C-X-C motif ligand 13 [CXCL13], CXCL10, CXCL8, C-C motif ligand 2 [CCL2], interleukin 10 [IL-10] and IL-6) and pro-fibrotic (CXCL14, CCL28, tumor necrosis factor-related apoptosis-inducing ligand and transforming growth factor ß) chemokines and cytokines and evaluated the presence of fibrosis in the minor salivary gland. RESULTS: Ninety-two percent of patients were women; mean age was 51.1 ± 11 years; median disease duration was 6.1 years; 92.3% had oral symptoms and 26.9% fibrosis. The median B-mode score was 22.2 points and the median SWV 2.5 m/s (τ = 0.53, P = 0.001). The SWV correlated with the NSWSF (τ = -0.53, P = 0.001), ESSDAI (τ = 0.31, P = 0.03), glandular ESDDAI domain (τ = 0.36, P = 0.02), C4 levels (τ = -0.32, P = 0.04), salivary CXCL13 (τ = 0.29, P = 0.03) and CXCL10 (τ = 0.30, P = 0.003), but not with age and fibrosis. CONCLUSION: WV correlated with the B-mode ultrasound score, systemic and glandular activity and in a large degree with CXCL10, an inflammatory chemokine, but not with fibrosis. An increased SWV might represent chronic glandular inflammation rather than fibrotic changes in these patients.


Subject(s)
Elasticity Imaging Techniques , Parotid Gland/diagnostic imaging , Sjogren's Syndrome/diagnostic imaging , Submandibular Gland/diagnostic imaging , Adult , Biomarkers/blood , Biopsy , Case-Control Studies , Chemokine CXCL10/blood , Cross-Sectional Studies , Cytokines/blood , Female , Fibrosis , Humans , Male , Middle Aged , Parotid Gland/metabolism , Parotid Gland/pathology , Predictive Value of Tests , Serologic Tests , Severity of Illness Index , Sjogren's Syndrome/blood , Sjogren's Syndrome/pathology , Submandibular Gland/metabolism , Submandibular Gland/pathology , Ultrasonography, Doppler, Color
16.
Mediators Inflamm ; 2018: 6794508, 2018.
Article in English | MEDLINE | ID: mdl-30622434

ABSTRACT

The exposition to hypoxia is a stressful stimulus, and the organism develops acclimation mechanisms to ensure homeostasis, but if this fails, it leads to the development of pathological processes. Considering the large number of people under hypoxic conditions, it is of utmost importance to study the mechanisms implicated in hypoxic acclimation in oral tissues and the possible alteration of some important inflammatory markers that regulate salivary and periodontal function. It is the aim of the present study to analyze submandibular (SMG) and periodontal status of animals chronically exposed to continuous (CCH) or intermittent (CIH) hypoxia in order to elucidate the underlying molecular mechanisms that may lead to hypoxic acclimation. Adult Wistar rats were exposed to CCH or CIH simulating 4200 meters of altitude during 90 days. Salivary secretion was decreased in animals exposed to hypoxia, being lower in CIH, together with increased prostaglandin E2 (PGE2) content, TBARS concentration, and the presence of apoptotic nuclei and irregular secretion granules in SMG. AQP-5 mRNA levels decreased in both hypoxic groups. Only the CCH group showed higher HIF-1α staining, while CIH alone exhibited interradicular bone loss and increased concentration of the bone resorption marker CTX-I. In summary, animals exposed to CIH show a worse salivary secretion rate, which related with higher levels of PGE2, suggesting a negative role of this inflammatory mediator during hypoxia acclimation. We link the weak immunorreactivity of HIF-1α in CIH with improper hypoxia acclimation, which is necessary to sustaining SMG physiology under this environmental condition. The alveolar bone loss observed in CIH rats could be due mainly to a direct effect of PGE2, as suggested by its higher content in gingival tissue, but also to the indirect effect of hyposalivation. This study may eventually contribute to finding therapeutics to treat the decreased salivary flow, improving in that way oral health.


Subject(s)
Biomarkers/metabolism , Hypoxia/metabolism , Submandibular Gland/metabolism , Animals , Disease Models, Animal , Female , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , RNA, Messenger/genetics , Radioimmunoassay , Rats , Rats, Wistar
17.
Oxid Med Cell Longev ; 2016: 7323627, 2016.
Article in English | MEDLINE | ID: mdl-27579155

ABSTRACT

This study investigates morphological and biochemistry effects of binge ethanol consumption in parotid (PG) and submandibular (SG) salivary glands of rats from adolescence to adulthood. Female Wistar rats (n = 26) received ethanol at 3 g/kg/day (20% w/v) for 3 consecutive days/week from the 35th until the 62nd day of life. Animals were treated in two periods: 1 week (G1) and 4 weeks (G2), with a control (treated with distilled water) and an ethanol group to each period. In morphological analysis, morphometric and immunohistochemistry evaluation for smooth muscle actin (αSMA), cytokeratin-18 (CK-18), and vimentin (VIM) were made. Biochemical changes were analyzed by concentration of nitrites and levels of malondialdehyde (MDA). The difference between groups in each analysis was evaluated by Mann-Whitney U test or Student's t-test (p ≤ 0.05). PG showed, at one week of ethanol exposure, lower CK-18 and α-SMA expression, as well as MDA levels. After four weeks, lower CK-18 and higher MDA levels were observed in PG exposed to ethanol, in comparison to control group. SG showed lower α-SMA expression after 1 and 4 weeks of ethanol exposure as well as higher MDA levels after 1 week. Ethanol binge consumption during adolescence promotes tissue and biochemical changes with only one-week binge in acinar and myoepithelial PG cells.


Subject(s)
Binge Drinking/complications , Ethanol/toxicity , Oxidative Stress/drug effects , Parotid Gland/drug effects , Submandibular Gland/drug effects , Underage Drinking , Actins/metabolism , Age Factors , Animals , Binge Drinking/metabolism , Binge Drinking/pathology , Biomarkers/metabolism , Blood Alcohol Content , Female , Keratin-18/metabolism , Malondialdehyde/metabolism , Models, Animal , Nitrites/metabolism , Parotid Gland/metabolism , Parotid Gland/pathology , Rats, Wistar , Submandibular Gland/metabolism , Submandibular Gland/pathology , Vimentin/metabolism
18.
Biol Trace Elem Res ; 169(2): 271-8, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26155966

ABSTRACT

Lithium is administered for the treatment of mood and bipolar disorder. The aim of this study was to verify whether treatment with different concentrations of lithium may affect the glycogen metabolism in the salivary glands of the rats when compared with the liver. Mobilization of glycogen in salivary glands is important for the process of secretion. Two sets of experiments were carried out, that is, in the first, the rats received drinking water supplemented with LiCl (38,25 and 12 mM of LiCl for 15 days) and the second experiment was carried out by intraperitoneal injection of LiCl solution (12 mg/kg and 45 mg LiCl/kg body weight) for 3 days. The active form of glycogen phosphorylase was not affected by treatment with LiCl considering the two experiments. The active form of glycogen synthase presented higher activity in the submandibular glands of rats treated with 25 and 38 mM LiCl and in the liver, with 25 mM LiCl. Glycogen level was higher than that of control in the submandibular glands of rats receiving 38 and 12 mM LiCl, in the parotid of rats receiving 25 and 38 mM, and in the liver of rats receiving 12 mM LiCl. The absolute value of glycogen for the submandibular treated with 25 mM LiCl, and the liver treated with 38 mM LiCl, was higher than the control value, although not statistically significant for these tissues. No statistically significant difference was found in the submandibular and parotid salivary glands for protein concentration when comparing experimental and control groups. We concluded that LiCl administered to rats influences the metabolism of glycogen in salivary glands.


Subject(s)
Antimanic Agents/pharmacology , Glycogen/metabolism , Lithium Chloride/pharmacology , Parotid Gland/drug effects , Submandibular Gland/drug effects , Administration, Oral , Animals , Antimanic Agents/administration & dosage , Dose-Response Relationship, Drug , Glycogen Phosphorylase/metabolism , Glycogen Synthase/metabolism , Injections, Intraperitoneal , Lithium Chloride/administration & dosage , Liver/drug effects , Liver/metabolism , Male , Parotid Gland/metabolism , Rats, Wistar , Submandibular Gland/metabolism
19.
J Toxicol Environ Health A ; 77(21): 1304-10, 2014.
Article in English | MEDLINE | ID: mdl-25268557

ABSTRACT

We have reported that chronic lead intoxication under hypoxic environment induces alveolar bone loss that can lead to periodontal damage with the subsequent loss of teeth. The aim of the present study was to assess the modification of oral inflammatory parameters involved in the pathogenesis of periodontitis in the same experimental model. In gingival tissue, hypoxia increased inducible nitric oxid synthase (iNOS) activity (p < .01) and meanwhile lead decreased prostaglandin E2 (PGE2) content (p < .05). In submandibular gland (SMG), iNOS activity was enhanced by lead and PGE2 content was increased by both lead and hypoxia (p < .01) and even more by combined treatments (p < .001). In the SMG, hypoxia stimulated angiogenesis (p < .01) with blood extravasation. Adrenal glands were 22% bigger in those animals exposed to lead under hypoxic conditions. Results suggest a wide participation of inflammatory markers that mediate alveolar bone loss induced by these environmental conditions. The lack of information regarding oral health in lead-contaminated populations that coexist with hypoxia induced us to evaluate the alteration of inflammatory parameters in rat oral tissues to elucidate the link between periodontal damage and these environmental conditions.


Subject(s)
Hypoxia/pathology , Lead/toxicity , Oral Health , Periodontitis/pathology , Alveolar Bone Loss/chemically induced , Alveolar Bone Loss/pathology , Animals , Biomarkers/metabolism , Dinoprostone/metabolism , Female , Gingiva/pathology , Hypoxia/complications , Nitric Oxide Synthase Type II/metabolism , Periodontitis/chemically induced , Rats , Rats, Wistar , Submandibular Gland/drug effects , Submandibular Gland/metabolism
20.
Int J Exp Pathol ; 95(5): 351-63, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25186305

ABSTRACT

Glucocorticoids (GCs) induce insulin resistance (IR), a condition known to alter oral homeostasis. This study investigated the effects of long-term dexamethasone administration on morphofunctional aspects of salivary glands. Male Wistar rats received daily injections of dexamethasone [0.1 mg/kg body weight (b.w.), intraperitoneally] for 10 days (DEX), whereas control rats received saline. Subsequently, glycaemia, insulinaemia, insulin secretion and salivary flow were analysed. The parotid and submandibular glands were collected for histomorphometric evaluation and Western blot experiments. The DEX rats were found to be normoglycaemic, hyperinsulinaemic, insulin resistant and glucose intolerant (P < 0.05). DEX rat islets secreted more insulin in response to glucose (P < 0.05). DEX rats had significant reductions in the masses of the parotid (29%) and submandibular (16%) glands (P < 0.05) that was associated with reduced salivary flux rate. The hypotrophy in both glands observed in the DEX group was associated with marked reduction in the volume of the acinar cells in these glands of 50% and 26% respectively (P < 0.05). The total number of acinar cells was increased in the submandibular glands of the DEX rats (P < 0.05) but not in the parotid glands. The levels of proteins related to insulin and survival signalling in both glands did not differ between the groups. In conclusion, the long-term administration of dexamethasone caused IR, which was associated with significant reductions in both mass and flux rate of the salivary glands. The parotid and submandibular glands exhibited reduced acinar cell volume; however, the submandibular glands displayed acinar hyperplasia, indicating a gland-specific response to GCs. Our data emphasize that GC-based therapies and insulin-resistant states have a negative impact on salivary gland homeostasis.


Subject(s)
Acinar Cells/cytology , Dexamethasone/pharmacology , Parotid Gland/drug effects , Salivary Glands/drug effects , Submandibular Gland/pathology , Acinar Cells/drug effects , Animals , Blood Glucose/metabolism , Cell Shape , Glucocorticoids/metabolism , Insulin/metabolism , Male , Parotid Gland/metabolism , Rats , Rats, Wistar , Salivary Glands/metabolism , Submandibular Gland/metabolism , Time
SELECTION OF CITATIONS
SEARCH DETAIL