Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 319
Filter
1.
Acta Cir Bras ; 39: e396524, 2024.
Article in English | MEDLINE | ID: mdl-39356933

ABSTRACT

PURPOSE: This work aimed to investigate the effects of Tanshinone IIA (Tan IIA) on myocardial cell (MC) apoptosis in a rat model of heart failure (HF). METHODS: Tan IIA was extracted from Salvia miltiorrhiza Bunge (SMB) using an ethanol reflux method. Fifty rats were randomly divided into five groups: sham (no treatment), mod (HF model establishment), low dose (LD: 0.1 mL/kg Tan IIA), medium dose (MD: 0.3 mL/kg Tan IIA), and high dose (HD: 0.5 mL/kg Tan IIA), with 10 rats in each group. The effects of different doses of Tan IIA on cardiac function, MC apoptosis, and the levels of proteins associated with the PI3K/Akt/mTOR signaling pathway were compared. RESULTS: Mod group showed a significant decrease in systolic arterial pressure, mean arterial pressure, heart rate, left ventricular systolic pressure, left ventricular ejection fraction, left ventricular fractional shortening, and the levels of p-PI3K, p-Akt, and p-mTOR proteins versus sham group (p < 0.05). Additionally, the left ventricular end-diastolic diameter (LVIDd), end-systolic diameter, diastolic pressure, and MC apoptosis were significantly increased (p < 0.05). LD, MD, and HD groups exhibited significant improvements across various indicators of cardiac function and MC apoptosis versus mod group (p < 0.05). CONCLUSIONS: Tan IIA may improve cardiac function and inhibit MC apoptosis in rats with HF by modulating the PI3K/Akt/mTOR signaling pathway.


Subject(s)
Abietanes , Apoptosis , Disease Models, Animal , Heart Failure , Myocytes, Cardiac , Salvia miltiorrhiza , Animals , Apoptosis/drug effects , Salvia miltiorrhiza/chemistry , Heart Failure/drug therapy , Heart Failure/physiopathology , Male , Abietanes/pharmacology , Abietanes/therapeutic use , Myocytes, Cardiac/drug effects , Random Allocation , Signal Transduction/drug effects , Rats, Sprague-Dawley , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/drug effects , Rats , TOR Serine-Threonine Kinases/metabolism , TOR Serine-Threonine Kinases/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Reproducibility of Results
2.
Cells ; 13(19)2024 Oct 03.
Article in English | MEDLINE | ID: mdl-39404412

ABSTRACT

LAH, an acetogenin from the Annonaceae family, has demonstrated antitumor activity in several cancer cell lines and in vivo models, where it reduced the tumor size and induced programmed cell death. We focused on the effects of LAH on mitochondrial dynamics, mTOR signaling, autophagy, and apoptosis in colorectal cancer (CRC) cells to explore its anticancer potential. METHODS: CRC cells were treated with LAH, and its effects on mitochondrial respiration and glycolysis were measured using Seahorse XF technology. The changes in mitochondrial dynamics were observed through fluorescent imaging, while Western blot analysis was used to examine key autophagy and apoptosis markers. RESULTS: LAH significantly inhibited mitochondrial complex I activity, inducing ATP depletion and a compensatory increase in glycolysis. This disruption caused mitochondrial fragmentation, a trigger for autophagy, as shown by increased LC3-II expression and mTOR suppression. Apoptosis was also confirmed through the cleavage of caspase-3, contributing to reduced cancer cell viability. CONCLUSIONS: LAH's anticancer effects in CRC cells are driven by its disruption of mitochondrial function, triggering both autophagy and apoptosis. These findings highlight its potential as a therapeutic compound for further exploration in cancer treatment.


Subject(s)
Apoptosis , Autophagy , Cell Proliferation , Colorectal Neoplasms , Mitochondria , Humans , Autophagy/drug effects , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/drug therapy , Mitochondria/metabolism , Mitochondria/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Apoptosis/drug effects , TOR Serine-Threonine Kinases/metabolism , Acetogenins/pharmacology , Signal Transduction/drug effects , Glycolysis/drug effects , Cell Survival/drug effects
3.
Mol Cell Endocrinol ; 592: 112348, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39218056

ABSTRACT

The developmental origins of healthy and disease (DOHaD) concept has demonstrated a higher rate of chronic diseases in the adult population of individuals whose mothers experienced severe maternal protein restriction (MPR). Using proteomic and in silico analyses, we investigated the lung proteomic profile of young and aged rats exposed to MPR during pregnancy and lactation. Our results demonstrated that MPR lead to structural and immune system pathways changes, and this outcome is coupled with a rise in the PI3k-AKT-mTOR signaling pathway, with increased MMP-2 activity, and CD8 expression in the early life, with long-term effects with aging. This led to the identification of commonly or inversely differentially expressed targets in early life and aging, revealing dysregulated pathways related to the immune system, stress, muscle contraction, tight junctions, and hemostasis. We identified three miRNAs (miR-378a-3p, miR-378a-5p, let-7a-5p) that regulate four proteins (ACTN4, PPIA, HSPA5, CALM1) as probable epigenetic lung marks generated by MPR. In conclusion, MPR impacts the lungs early in life, increasing the possibility of long-lasting negative outcomes for respiratory disorders in the offspring.


Subject(s)
Lung , MicroRNAs , Proteomics , Animals , Female , Lung/metabolism , Male , Proteomics/methods , Pregnancy , MicroRNAs/genetics , MicroRNAs/metabolism , Rats , Prenatal Exposure Delayed Effects/metabolism , Prenatal Exposure Delayed Effects/genetics , Diet, Protein-Restricted , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , TOR Serine-Threonine Kinases/genetics , Longevity/genetics , Rats, Wistar , Proto-Oncogene Proteins c-akt/metabolism , Proteome/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/genetics , Aging/metabolism , Aging/genetics , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 2/genetics
4.
Biomed Pharmacother ; 177: 117059, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38955086

ABSTRACT

Hepatic cancer is one of the main causes of cancer-related death worldwide. Cancer stem cells (CSCs) are a unique subset of cancer cells that promote tumour growth, maintenance, and therapeutic resistance, leading to recurrence. In the present work, the ability of a ruthenium complex containing 1,3-thiazolidine-2-thione (RCT), with the chemical formula [Ru(tzdt)(bipy)(dppb)]PF6, to inhibit hepatic CSCs was explored in human hepatocellular carcinoma HepG2 cells. RCT exhibited potent cytotoxicity to solid and haematological cancer cell lines and reduced the clonogenic potential, CD133+ and CD44high cell percentages and tumour spheroid growth of HepG2 cells. RCT also inhibited cell motility, as observed in the wound healing assay and transwell cell migration assay. RCT reduced the levels of Akt1, phospho-Akt (Ser473), phospho-Akt (Thr308), phospho-mTOR (Ser2448), and phospho-S6 (Ser235/Ser236) in HepG2 cells, indicating that interfering with Akt/mTOR signalling is a mechanism of action of RCT. The levels of active caspase-3 and cleaved PARP (Asp214) were increased in RCT-treated HepG2 cells, indicating the induction of apoptotic cell death. In addition, RCT modulated the autophagy markers LC3B and p62/SQSTM1 in HepG2 cells and increased mitophagy in a mt-Keima-transfected mouse embryonic fibroblast (MEF) cell model, and RCT-induced cytotoxicity was partially prevented by autophagy inhibitors. Furthermore, mutant Atg5-/- MEFs and PentaKO HeLa cells (human cervical adenocarcinoma with five autophagy receptor knockouts) were less sensitive to RCT cytotoxicity than their parental cell lines, indicating that RCT induces autophagy-mediated cell death. Taken together, these data indicate that RCT is a novel potential anti-liver cancer drug with a suppressive effect on CSCs.


Subject(s)
Apoptosis , Autophagic Cell Death , Liver Neoplasms , Neoplastic Stem Cells , Proto-Oncogene Proteins c-akt , Signal Transduction , TOR Serine-Threonine Kinases , Humans , Apoptosis/drug effects , Proto-Oncogene Proteins c-akt/metabolism , TOR Serine-Threonine Kinases/metabolism , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Signal Transduction/drug effects , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Hep G2 Cells , Autophagic Cell Death/drug effects , Thiazolidines/pharmacology , Animals , Mice , Cell Movement/drug effects , Antineoplastic Agents/pharmacology , Autophagy/drug effects , Coordination Complexes/pharmacology , Coordination Complexes/chemistry
5.
Rev Invest Clin ; 76(4): 173-184, 2024 07 24.
Article in English | MEDLINE | ID: mdl-39047236

ABSTRACT

Background: Hepatocellular carcinoma (HCC) is one of the most aggressive cancers worldwide. Curzerene is a sesquiterpene and component of Curcuma rhizomes and has anti-tumor and anti-inflammatory properties. Objective: The study aimed to investigate the effects of curzerene on the malignant phenotypes and tumor growth in HCC. Methods: Various concentrations of curzerene were used to treat human HCC cells (Huh7 and HCCLM3). Cell viability, apoptosis, cell cycle, invasion, and migration were detected by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, flow cytometry, Transwell, and wound healing assays. Cell cycle-, apoptosis-, and signaling pathway-related proteins were analyzed by Western blot analysis. A mouse xenograft model was established to analyze the anti-tumor effects of curzerene in vivo. Results: Curzerene repressed the proliferation, invasion, and migration of Huh7 and HCCLM3 cells. Curzerene also induced G2/M cycle arrest and cell apoptosis. Curzerene downregulated the CDK1, cyclin B1, PCNA, Bcl-2, matrix metallopeptidases (MMP)2, and MMP9 protein expression and upregulated the Bax, cleaved caspase3, and cleaved poly ADPribose polymerase protein expression in HCC cells. Curzerene restrained the phosphorylation of PI3K, AKT, and the Mammalian target of rapamycin (mTOR) in Huh7 and HCCLM3 cells. The in vivo data revealed that curzerene inhibited HCC tumor growth and decreased the expression of phosphorylated mTOR in xenograft mouse models. Conclusion: Curzerene inhibited cell malignancy in vitro and tumor growth in vivo in HCC, suggesting that curzerene may be a candidate agent for anti-HCC therapy.


Subject(s)
Apoptosis , Carcinoma, Hepatocellular , Liver Neoplasms , Phosphatidylinositol 3-Kinases , Signal Transduction , Animals , Humans , Male , Mice , Apoptosis/drug effects , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Disease Progression , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Mice, Inbred BALB C , Mice, Nude , Neoplasm Invasiveness , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Sesquiterpenes/pharmacology , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/metabolism , Xenograft Model Antitumor Assays
6.
Int J Mol Sci ; 25(12)2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38928483

ABSTRACT

Psoriasis is a chronic inflammatory condition affecting 2% of the Western population. It includes diverse manifestations influenced by genetic predisposition, environmental factors, and immune status. The sustained activation of mTOR is a key element in psoriasis pathogenesis, leading to an uncontrolled proliferation of cytokines. Furthermore, mTOR activation has been linked with the transition from psoriasis to non-skin manifestations such as psoriatic arthritis and cardiovascular events. While therapies targeting pro-inflammatory cytokines have shown efficacy, additional pathways may offer therapeutic potential. The PI3K/Akt/mTOR pathway, known for its role in cell growth, proliferation, and metabolism, has emerged as a potential therapeutic target in psoriasis. This review explores the relevance of mTOR in psoriasis pathophysiology, focusing on its involvement in cutaneous and atheromatous plaque proliferation, psoriatic arthritis, and cardiovascular disease. The activation of mTOR promotes keratinocyte and synovial cell proliferation, contributing to plaque formation and joint inflammation. Moreover, mTOR activation may exacerbate the cardiovascular risk by promoting pro-inflammatory cytokine production and dysregulation lipid and glucose metabolism. The inhibition of mTOR has shown promise in preclinical studies, reducing skin inflammation and plaque proliferation. Furthermore, mTOR inhibition may mitigate cardiovascular risk by modulating cholesterol metabolism and attenuating atherosclerosis progression. Understanding the role of mTOR in psoriasis, psoriatic arthritis, and cardiovascular disease provides insight into the potential treatment avenues and sheds light on the complex interplay of the immune and metabolic pathways in these conditions.


Subject(s)
Psoriasis , TOR Serine-Threonine Kinases , Humans , TOR Serine-Threonine Kinases/metabolism , Psoriasis/metabolism , Psoriasis/pathology , Animals , Signal Transduction , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/etiology , Cardiovascular Diseases/pathology , Arthritis, Psoriatic/metabolism
7.
Alzheimers Dement ; 20(8): 5398-5410, 2024 08.
Article in English | MEDLINE | ID: mdl-38934107

ABSTRACT

INTRODUCTION: Impaired brain protein synthesis, synaptic plasticity, and memory are major hallmarks of Alzheimer's disease (AD). The ketamine metabolite (2R,6R)-hydroxynorketamine (HNK) has been shown to modulate protein synthesis, but its effects on memory in AD models remain elusive. METHODS: We investigated the effects of HNK on hippocampal protein synthesis, long-term potentiation (LTP), and memory in AD mouse models. RESULTS: HNK activated extracellular signal-regulated kinase 1/2 (ERK1/2), mechanistic target of rapamycin (mTOR), and p70S6 kinase 1 (S6K1)/ribosomal protein S6 signaling pathways. Treatment with HNK rescued hippocampal LTP and memory deficits in amyloid-ß oligomers (AßO)-infused mice in an ERK1/2-dependent manner. Treatment with HNK further corrected aberrant transcription, LTP and memory in aged APP/PS1 mice. DISCUSSION: Our findings demonstrate that HNK induces signaling and transcriptional responses that correct synaptic and memory deficits in AD mice. These results raise the prospect that HNK could serve as a therapeutic approach in AD. HIGHLIGHTS: The ketamine metabolite HNK activates hippocampal ERK/mTOR/S6 signaling pathways. HNK corrects hippocampal synaptic and memory defects in two mouse models of AD. Rescue of synaptic and memory impairments by HNK depends on ERK signaling. HNK corrects aberrant transcriptional signatures in APP/PS1 mice.


Subject(s)
Alzheimer Disease , Disease Models, Animal , Hippocampus , Ketamine , Mice, Transgenic , Neuronal Plasticity , Animals , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Ketamine/analogs & derivatives , Ketamine/pharmacology , Hippocampus/drug effects , Hippocampus/metabolism , Neuronal Plasticity/drug effects , Mice , Long-Term Potentiation/drug effects , Amyloid beta-Peptides/metabolism , Protein Biosynthesis/drug effects , TOR Serine-Threonine Kinases/metabolism , RNA, Messenger/metabolism , Memory/drug effects , Male , Memory Disorders/drug therapy , Mice, Inbred C57BL , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Presenilin-1/genetics , Humans
8.
Braz J Med Biol Res ; 57: e13474, 2024.
Article in English | MEDLINE | ID: mdl-38716985

ABSTRACT

Coenzyme Q10 (CoQ10) is a potent antioxidant that is implicated in the inhibition of osteoclastogenesis, but the underlying mechanism has not been determined. We explored the underlying molecular mechanisms involved in this process. RAW264.7 cells received receptor activator of NF-κB ligand (RANKL) and CoQ10, after which the differentiation and viability of osteoclasts were assessed. After the cells were treated with CoQ10 and/or H2O2 and RANKL, the levels of reactive oxygen species (ROS) and proteins involved in the PI3K/AKT/mTOR and MAPK pathways and autophagy were tested. Moreover, after the cells were pretreated with or without inhibitors of the two pathways or with the mitophagy agonist, the levels of autophagy-related proteins and osteoclast markers were measured. CoQ10 significantly decreased the number of TRAP-positive cells and the level of ROS but had no significant impact on cell viability. The relative phosphorylation levels of PI3K, AKT, mTOR, ERK, and p38 were significantly reduced, but the levels of FOXO3/LC3/Beclin1 were significantly augmented. Moreover, the levels of FOXO3/LC3/Beclin1 were significantly increased by the inhibitors and mitophagy agonist, while the levels of osteoclast markers showed the opposite results. Our data showed that CoQ10 prevented RANKL-induced osteoclastogenesis by promoting autophagy via inactivation of the PI3K/AKT/mTOR and MAPK pathways in RAW264.7 cells.


Subject(s)
Autophagy , Osteoclasts , Osteogenesis , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , RANK Ligand , TOR Serine-Threonine Kinases , Ubiquinone , Animals , Mice , Autophagy/drug effects , Cell Differentiation/drug effects , Cell Survival/drug effects , MAP Kinase Signaling System/drug effects , MAP Kinase Signaling System/physiology , Osteoclasts/drug effects , Osteogenesis/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , RANK Ligand/metabolism , RAW 264.7 Cells , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/metabolism , Ubiquinone/analogs & derivatives , Ubiquinone/pharmacology
9.
Braz J Med Biol Res ; 57: e13379, 2024.
Article in English | MEDLINE | ID: mdl-38808888

ABSTRACT

Ulcerative colitis (UC) is a difficult intestinal disease characterized by inflammation, and its mechanism is complex and diverse. Angiopoietin-like protein 2 (ANGPT2) plays an important regulatory role in inflammatory diseases. However, the role of ANGPT2 in UC has not been reported so far. After exploring the expression level of ANGPT2 in serum of UC patients, the reaction mechanism of ANGPT2 was investigated in dextran sodium sulfate (DSS)-induced UC mice. After ANGPT2 expression was suppressed, the clinical symptoms and pathological changes of UC mice were detected. Colonic infiltration, oxidative stress, and colonic mucosal barrier in UC mice were evaluated utilizing immunohistochemistry, immunofluorescence, and related kits. Finally, western blot was applied for the estimation of mTOR signaling pathway and NLRP3 inflammasome-related proteins. ANGPT2 silencing improved clinical symptoms and pathological changes, alleviated colonic inflammatory infiltration and oxidative stress, and maintained the colonic mucosal barrier in DSS-induced UC mice. The regulatory effect of ANGPT2 on UC disease might occur by regulating the mTOR signaling pathway and thus affecting autophagy-mediated NLRP3 inflammasome inactivation. ANGPT2 silencing alleviated UC by regulating autophagy-mediated NLRP3 inflammasome inactivation via the mTOR signaling pathway.


Subject(s)
Autophagy , Colitis, Ulcerative , Disease Models, Animal , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Signal Transduction , TOR Serine-Threonine Kinases , Animals , Female , Humans , Male , Mice , Angiopoietin-2/metabolism , Angiopoietin-Like Protein 2 , Autophagy/physiology , Blotting, Western , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/pathology , Colitis, Ulcerative/metabolism , Dextran Sulfate , Immunohistochemistry , Inflammasomes/metabolism , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Oxidative Stress , TOR Serine-Threonine Kinases/metabolism
10.
Clinics (Sao Paulo) ; 79: 100393, 2024.
Article in English | MEDLINE | ID: mdl-38815540

ABSTRACT

OBJECTIVES: This study was directed towards exploring the impacts of lncRNA HOXA11-AS-mediated microRNA (miR)-506-3p on chondrocytes proliferation and apoptosis in osteoarthritis (OA). METHODS: The articular cartilages were provided by OA patients who received total knee arthroplasty, and Human Chondrocyte (HC)-OA (HCOA) was also attained. The miR-506-3p and HOXA11-AS expressions in articular cartilages from OA patients and HCOA cells were analyzed via qPCR. After gain- and loss-of-function assays in HCOA cells, MTT assay and flow cytometry (FC) were used for assessing cell viability and apoptosis, accordingly. The levels of PIK3CA, AKT, and mTOR as well as AKT and mTOR phosphorylation levels assessed using western blotting (WB). The targeting correlation of HOXA11-AS and miR-506-3p as well as miR-506-3p and PIK3CA was assessed through Dual-Luciferase Reporter gene Assay (DLRA). RESULT: The articular cartilages from OA patients and Human Chondrocyte (HC)-OA (HCOA) cells showed increased HOXA11-AS and decreased miR-506-3p. Mechanistically, HOXA11-AS was capable of binding to miR-506-3p to increase PIK3CA, the target gene of miR-506-3p. miR-506-3p suppression facilitated HCOA cell proliferation and reduced their apoptosis, which was nullified by further silencing HOXA11-AS or silencing PIK3CA. The down-regulation of HOXA11-AS disrupted the PI3K/AKT/mTOR pathway, which was counteracted by further miR-506-3p inhibition. CONCLUSION: The silencing of HOXA11-AS might block the PI3K/AKT/mTOR pathway through miR-506-3p up-regulation, thereby restricting HCOA cell proliferation and provoking apoptosis.


Subject(s)
Apoptosis , Cell Proliferation , Chondrocytes , Down-Regulation , MicroRNAs , RNA, Long Noncoding , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Chondrocytes/metabolism , Apoptosis/genetics , Cell Proliferation/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Osteoarthritis/genetics , Osteoarthritis/metabolism , Osteoarthritis/pathology , TOR Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Cartilage, Articular/metabolism , Middle Aged , Male , Female , Cells, Cultured
11.
Clin Immunol ; 263: 110203, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38575046

ABSTRACT

Langerhans cell histiocytosis (LCH) is characterized by an expansion and accumulation of pathological histiocytes expressing langerin (CD207) and CD1a in different organs under an inflammatory milieu. The origin of pathognomonic precursors of LCH is widely debated, but monocytes and pre-dendritic cells (pre-DC) play a significant role. Remarkably, we found an expansion of AXLhigh cells in the CD11c+ subset of patients with active LCH, which also express the pathognomonic CD207 and CD1a. Moreover, we obtained a monocyte-derived LC-like (mo-LC-like) expressing high levels of AXL when treated with inflammatory cytokine, or plasma of patients with active disease. Intriguingly, inhibiting the mTOR pathway at the initial stages of monocyte differentiation to LC-like fosters the pathognomonic LCH program, highly increasing CD207 levels, together with NOTCH1 induction. We define here that AXLhigh could also be taken as a strong pathognomonic marker for LCH, and the release of Langerin and NOTCH1 expression depends on the inhibition of the mTOR pathway.


Subject(s)
Antigens, CD , Axl Receptor Tyrosine Kinase , Histiocytosis, Langerhans-Cell , Lectins, C-Type , Mannose-Binding Lectins , Proto-Oncogene Proteins , Receptor Protein-Tyrosine Kinases , TOR Serine-Threonine Kinases , Female , Humans , Male , Antigens, CD/metabolism , Antigens, CD1/metabolism , Biomarkers , Cell Differentiation , Histiocytosis, Langerhans-Cell/metabolism , Lectins, C-Type/metabolism , Mannose-Binding Lectins/metabolism , Monocytes/metabolism , Monocytes/immunology , Myeloid Cells/metabolism , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins/genetics , Receptor Protein-Tyrosine Kinases/metabolism , Receptor, Notch1/metabolism , Signal Transduction , TOR Serine-Threonine Kinases/antagonists & inhibitors , TOR Serine-Threonine Kinases/metabolism
13.
Nutr Res ; 125: 1-15, 2024 May.
Article in English | MEDLINE | ID: mdl-38428258

ABSTRACT

Açaí seed extract (ASE) is obtained from Euterpe oleracea Mart. (açaí) plant (Amazon region) has high nutritional and functional value. ASE is rich in polyphenolic compounds, mainly proanthocyanidins. Proanthocyanidins can modulate the immune system and oxidative stress by inhibiting the toll-like receptor-4 (TLR-4)/myeloid differentiation primary response 88 (MyD88)/nuclear factor-κB (NF-κB) pathway. A great deal of evidence suggests that inflammatory cytokines and oxidative stress contribute to the pathogenesis of intestinal mucositis, and these events can lead to intestinal dysmotility. We hypothesized that ASE acts as an anti-inflammatory and antioxidant compound in intestinal mucositis induced by 5-fluorouracil (5-FU) through modulation of the TLR-4/MyD88/phosphatidylinositol-3-kinase α/mechanistic target of rapamycin/NF-κBp65 pathway. The animals were divided into linear 5-FU (450 mg/kg) and 5-FU + ASE (10, 30, and 100 mg/kg) groups. The weight loss of the animals was evaluated daily. Samples from duodenum, jejunum, and ileum were obtained for histopathological, biochemical, and functional analyses. ASE reduced weight loss, inflammatory parameters (interleukin-1ß; tumor necrosis factor-α; myeloperoxidase activity) and the gene expression of mediators involved in the TLR-2/MyD88/NF-κB pathway. ASE prevented histopathological changes with beneficial effects on gastrointestinal transit delay, gastric emptying, and intestinal absorption/permeability. In conclusion, ASE protects the integrity of the intestinal epithelial barrier by inhibiting the TLR/MyD88/PI3K/mechanistic target of rapamycin/NF-κBp65 pathway.


Subject(s)
Euterpe , Fluorouracil , Mucositis , Myeloid Differentiation Factor 88 , Plant Extracts , Polyphenols , Seeds , Signal Transduction , TOR Serine-Threonine Kinases , Toll-Like Receptor 4 , Animals , Toll-Like Receptor 4/metabolism , Mucositis/chemically induced , Mucositis/drug therapy , Mucositis/prevention & control , Mucositis/metabolism , Myeloid Differentiation Factor 88/metabolism , TOR Serine-Threonine Kinases/metabolism , Signal Transduction/drug effects , Plant Extracts/pharmacology , Seeds/chemistry , Polyphenols/pharmacology , Male , Euterpe/chemistry , Mice , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Transcription Factor RelA/metabolism , Antioxidants/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Oxidative Stress/drug effects , Anti-Inflammatory Agents/pharmacology , NF-kappa B/metabolism
14.
Clin Transl Oncol ; 26(9): 2250-2261, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38554191

ABSTRACT

BACKGROUND: The objective of this research was to investigate how the combination of semen coicis extract and PD-1 inhibitors can potentially work together to enhance the anti-tumor effects, with a focus on understanding the underlying mechanism. METHODS: We obtained the active components and specific targets of semen coicis in the treatment of NSCLC from various databases, namely TCMSP, GeneCard, and OMIM. By utilizing the STRING database and Cytoscape software, we established a protein interaction network (PPI) for the active ingredient of semen coicis and the target genes related to NSCLC. To explore the potential pathways involved, we conducted gene ontology (GO) and biological pathway (KEGG) enrichment analyses, which were further supported by molecular docking technology. Additionally, we conducted cyto-inhibition experiments to verify the inhibitory effects of semen coicis alone or in combination with a PD-1 inhibitor on A549 cells, along with examining the associated pathways. Furthermore, we investigated the synergistic mechanism of these two drugs through cytokine release experiments and the PD-L1 expression study on A549 cells. RESULTS: Semen coicis contains two main active components, Omaine and (S)-4-Nonanolide. Its primary targets include PIK3R1, PIK3CD, PIK3CA, AKT2, and mTOR. Molecular docking experiments confirmed that these ingredients and targets form stable bonds. In vitro experiments showed that semen coicis demonstrates inhibitory effects against A549 cells, and this effect was further enhanced when combined with PD-1 inhibitors. PCR and WB analysis confirmed that the inhibition of the PI3K-AKT-mTOR pathway may contribute to this effect. Additionally, semen coicis was observed to decrease the levels of IFN-γ, IL-6, and TNF-α, promoting the recovery of the human anti-tumor immune response. And semen coicis could inhibit the induced expression of PD­L1 of A549 cells stimulated by IFN­Î³ as well. CONCLUSION: Semen coicis not only has the ability to kill tumor cells directly but also alleviates the immunosuppression found in the tumor microenvironment. Additionally, it collaboratively enhances the effectiveness of PD-1 inhibitors against tumors by blocking the activation of PI3K-AKT-mTOR.


Subject(s)
Antineoplastic Agents , Coix , Lung Neoplasms , Programmed Cell Death 1 Receptor , Signal Transduction , Humans , A549 Cells , B7-H1 Antigen/metabolism , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Drug Synergism , Immune Checkpoint Inhibitors/pharmacology , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Molecular Docking Simulation , Phosphatidylinositol 3-Kinases/metabolism , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/metabolism , Protein Interaction Maps/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/metabolism , TOR Serine-Threonine Kinases/antagonists & inhibitors , Coix/chemistry , Antineoplastic Agents/pharmacology
15.
Biochem Biophys Res Commun ; 696: 149455, 2024 02 12.
Article in English | MEDLINE | ID: mdl-38176247

ABSTRACT

Macrophages switch among different activation phenotypes according to distinct environmental stimuli, varying from pro-inflammatory (M1) to alternative (also named resolutive; M2) activation forms. M1-and M2-activated macrophages represent the two extremes of the activation spectrum involving multiple species, which vary in terms of function and the cytokines secreted. The consensus is that molecular characterization of the distinct macrophage population and the signals driving their activation will help in explaining disease etiology and formulating therapies. For instance, myeloid cells residing in the tumor microenvironment are key players in tumor progression and usually display an M2-like phenotype, which help tumor cells to evade local inflammatory processes. Therefore, these specific cells have been proposed as targets for tumor therapies by changing their activation profile. Furthermore, M2 polarized macrophages are phagocytic cells promoting tissue repair and wound healing and are therefore potential targets to treat different diseases. We have already shown that clotrimazole (CTZ) decreases tumor cell viability and thus tumor growth. The mechanism by which CTZ exerts its effects remains to be determined, but this drug is an inhibitor of the PI3K/AKT/mTOR pathway. In this study, we show that CTZ downregulated M2-activation markers in macrophages polarized to the M2 profile. This effect occurred without interfering with the expression of M1-polarized markers or pro-inflammatory cytokines and signaling. Moreover, CTZ suppressed NFkB pathway intermediates and disrupted PI3K/AKT/mTOR signaling. We concluded that CTZ reverses macrophage M2 polarization by disrupting the PI3K/AKT/mTOR pathway, which results in the suppression of NFkB induction of M2 polarization. In addition, we find that CTZ represents a promising therapeutic tool as an antitumor agent.


Subject(s)
Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Clotrimazole/pharmacology , TOR Serine-Threonine Kinases/metabolism , Macrophages/metabolism , Cytokines/metabolism , NF-kappa B/metabolism , Macrophage Activation
16.
Nutrients ; 16(2)2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38276564

ABSTRACT

Epicatechin is a polyphenol compound that promotes skeletal muscle differentiation and counteracts the pathways that participate in the degradation of proteins. Several studies present contradictory results of treatment protocols and therapeutic effects. Therefore, the objective of this systematic review was to investigate the current literature showing the molecular mechanism and clinical protocol of epicatechin in muscle atrophy in humans, animals, and myoblast cell-line. The search was conducted in Embase, PubMed/MEDLINE, Cochrane Library, and Web of Science. The qualitative analysis demonstrated that there is a commonness of epicatechin inhibitory action in myostatin expression and atrogenes MAFbx, FOXO, and MuRF1. Epicatechin showed positive effects on follistatin and on the stimulation of factors related to the myogenic actions (MyoD, Myf5, and myogenin). Furthermore, the literature also showed that epicatechin can interfere with mitochondrias' biosynthesis in muscle fibers, stimulation of the signaling pathways of AKT/mTOR protein production, and amelioration of skeletal musculature performance, particularly when combined with physical exercise. Epicatechin can, for these reasons, exhibit clinical applicability due to the beneficial results under conditions that negatively affect the skeletal musculature. However, there is no protocol standardization or enough clinical evidence to draw more specific conclusions on its therapeutic implementation.


Subject(s)
Catechin , Animals , Humans , Catechin/pharmacology , Catechin/therapeutic use , Catechin/metabolism , Muscle Fibers, Skeletal , Muscle, Skeletal/metabolism , Muscular Atrophy/drug therapy , Muscular Atrophy/metabolism , MyoD Protein/metabolism , TOR Serine-Threonine Kinases/metabolism
17.
Clin Transl Oncol ; 26(4): 951-965, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37848695

ABSTRACT

BACKGROUND: Patients with pancreatic cancer have a dismal prognosis due to tumor cell infiltration and metastasis. Many reports have documented that EMT and PI3K-AKT-mTOR axis control pancreatic cancer cell infiltration and metastasis. Chloroxine is an artificially synthesized antibacterial compound that demonstrated anti-pancreatic cancer effects in our previous drug-screening trial. We have explored the impact of chloroxine on pancreatic cancer growth, infiltration, migration, and apoptosis. METHODS: The proliferation of pancreatic cancer cell lines (PCCs) treated with chloroxine was assessed through real-time cell analysis (RTCA), colony formation assay, CCK-8 assay, as well as immunofluorescence. Chloroxine effects on the infiltrative and migratory capacities of PCCs were assessed via Transwell invasion and scratch experiments. To assess the contents of EMT- and apoptosis-associated proteins in tumor cells, we adopted Western immunoblotting as well as immunofluorescence assays, and flow cytometry to determine chloroxine effects on PCCs apoptosis. The in vivo chloroxine antineoplastic effects were explored in nude mice xenografts. RESULTS: Chloroxine repressed pancreatic cancer cell growth, migration, and infiltration in vitro, as well as in vivo, and stimulated apoptosis of the PCCs. Chloroxine appeared to inhibit PCC growth by Ki67 downregulation; this targeted and inhibited aberrant stimulation of the PI3K-AKT-mTOR signaling cascade, triggered apoptosis in PCC via mitochondria-dependent apoptosis, and modulated the EMT to inhibit PCC infiltration and migration. CONCLUSIONS: Chloroxine targeted and inhibited the PI3K-AKT-mTOR cascade to repress PCCs growth, migration, as well as invasion, and triggered cellular apoptosis. Therefore, chloroxine may constitute a potential antineoplastic drug for the treatment of pancreatic cancer.


Subject(s)
Antineoplastic Agents , Chloroquinolinols , Pancreatic Neoplasms , Animals , Humans , Mice , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Cell Movement , Cell Proliferation , Chloroquinolinols/pharmacology , Chloroquinolinols/therapeutic use , Mice, Nude , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/pathology , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , TOR Serine-Threonine Kinases/metabolism
18.
Int J Mol Sci ; 24(19)2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37834295

ABSTRACT

Prostate cancer (PCa) has a high prevalence and represents an important health problem, with an increased risk of metastasis. With the advance of CRISPR-Cas9 genome editing, new possibilities have been created for investigating PCa. The technique is effective in knockout oncogenes, reducing tumor resistance. MMP9 and miR-21 target genes are associated with PCa progression; therefore, we evaluated the MMP-9 and miR-21 targets in PCa using the CRISPR-Cas9 system. Single guide RNAs (sgRNAs) of MMP9 and miR-21 sequences were inserted into a PX-330 plasmid, and transfected in DU145 and PC-3 PCa cell lines. MMP9 and RECK expression was assessed by qPCR, WB, and IF. The miR-21 targets, integrins, BAX and mTOR, were evaluated by qPCR. Flow cytometry was performed with Annexin5, 7-AAD and Ki67 markers. Invasion assays were performed with Matrigel. The miR-21 CRISPR-Cas9-edited cells upregulated RECK, MARCKS, BTG2, and PDCD4. CDH1, ITGB3 and ITGB1 were increased in MMP9 and miR-21 CRISPR-Cas9-edited cells. Increased BAX and decreased mTOR were observed in MMP9 and miR-21 CRISPR-Cas9-edited cells. Reduced cell proliferation, increased apoptosis and low invasion in MMP9 and miR-21 edited cells was observed, compared to Scramble. CRISPR-Cas9-edited cells of miR-21 and MMP9 attenuate cell proliferation, invasion and stimulate apoptosis, impeding PCa evolution.


Subject(s)
Immediate-Early Proteins , MicroRNAs , Prostatic Neoplasms , Male , Humans , Gene Editing , CRISPR-Cas Systems/genetics , Matrix Metalloproteinase 9/genetics , Matrix Metalloproteinase 9/metabolism , RNA, Guide, CRISPR-Cas Systems , bcl-2-Associated X Protein/metabolism , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , MicroRNAs/genetics , MicroRNAs/metabolism , TOR Serine-Threonine Kinases/metabolism , GPI-Linked Proteins/genetics , GPI-Linked Proteins/metabolism , Immediate-Early Proteins/genetics , Tumor Suppressor Proteins/genetics , RNA-Binding Proteins/metabolism
19.
Acta Cir Bras ; 38: e384623, 2023.
Article in English | MEDLINE | ID: mdl-37878984

ABSTRACT

PURPOSE: To investigate the Shikonin (SHI) induce autophagy of hypertrophic scar-derived fibroblasts (HSFs) and the mechanism of which in repairing hypertrophic scar. METHODS: This study showed that SHI induced autophagy from HSFs and repaired skin scars through the AMPK/mTOR pathway. Alamar Blue and Sirius red were used to identify cell activity and collagen. Electron microscopy, label-free quantitative proteomic analysis, fluorescence and other methods were used to identify autophagy. The differences in the expression of autophagy and AMPK/mTOR pathway-related proteins after SHI treatment were quantitatively analyzed by Western blots. A quantitative real-time polymerase chain reaction assay was used to detect the expression of LC3, AMPK and ULK after adding chloroquine (CQ) autophagy inhibitor. RESULTS: After treatment with SHI for 24 hours, it was found that the viability of HSFs was significantly reduced, the protein expression of LC3-II/LC3-I and Beclin1 increased, while the protein expression of P62 decreased. The expression of phosphorylated AMPK increased and expression of phosphorylated mTOR decreased. After the use of CQ, the cell autophagy caused by SHI was blocked. The key genes LC3 and P62 were then reexamined by immunohistochemistry using a porcine full-thickness burn hypertrophic scar model, and the results verified that SHI could induce autophagy in vivo. CONCLUSIONS: These findings suggested that SHI promoted autophagy of HSFs cells, and the potential mechanism may be related to the AMPK/mTOR signal pathway, which provided new insights for the treatment of hypertrophic scars.


Subject(s)
Cicatrix, Hypertrophic , Animals , Swine , Cicatrix, Hypertrophic/drug therapy , Cicatrix, Hypertrophic/metabolism , Cicatrix, Hypertrophic/pathology , AMP-Activated Protein Kinases , Proteomics , TOR Serine-Threonine Kinases/metabolism , Fibroblasts/pathology , Autophagy
20.
Int J Mol Sci ; 24(15)2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37569368

ABSTRACT

TOR proteins, also known as targets of rapamycin, are serine/threonine kinases involved in various signaling pathways that regulate cell growth. The protozoan parasite Giardia lamblia is the causative agent of giardiasis, a neglected infectious disease in humans. In this study, we used a bioinformatics approach to examine the structural features of GTOR, a G. lamblia TOR-like protein, and predict functional associations. Our findings confirmed that it shares significant similarities with functional TOR kinases, including a binding domain for the FKBP-rapamycin complex and a kinase domain resembling that of phosphatidylinositol 3-kinase-related kinases. In addition, it can form multiprotein complexes such as TORC1 and TORC2. These results provide valuable insights into the structure-function relationship of GTOR, highlighting its potential as a molecular target for controlling G. lamblia cell proliferation. Furthermore, our study represents a step toward rational drug design for specific anti-giardiasis therapeutic agents.


Subject(s)
Giardia lamblia , Giardiasis , Humans , Sirolimus/pharmacology , Giardia lamblia/metabolism , TOR Serine-Threonine Kinases/metabolism , Signal Transduction , Mechanistic Target of Rapamycin Complex 2/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL