Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.413
Filter
1.
Int J Mol Sci ; 25(19)2024 Oct 08.
Article in English | MEDLINE | ID: mdl-39409130

ABSTRACT

Thyroid hormone binds to specific nuclear receptors, regulating the expression of target genes, with major effects on cardiac function. Triiodothyronine (T3) increases the expression of key proteins related to calcium homeostasis, such as the sarcoplasmic reticulum calcium ATPase pump, but the detailed mechanism of gene regulation by T3 in cardiac voltage-gated calcium (Cav1.2) channels remains incompletely explored. Furthermore, the effects of T3 on Cav1.2 auxiliary subunits have not been investigated. We conducted quantitative reverse transcriptase polymerase chain reaction, Western blot, and immunofluorescence experiments in H9c2 cells derived from rat ventricular tissue, examining the effects of T3 on the expression of α1c, the principal subunit of Cav1.2 channels, and Cavß4, an auxiliary Cav1.2 subunit that regulates gene expression. The translocation of phosphorylated cyclic adenosine monophosphate response element-binding protein (pCREB) by T3 was also examined. We found that T3 has opposite effects on these channel proteins, upregulating α1c and downregulating Cavß4, and that it increases the nuclear translocation of pCREB while decreasing the translocation of Cavß4. Finally, we found that overexpression of Cavß4 represses the mRNA expression of α1c, suggesting that T3 upregulates the expression of the α1c subunit in response to a decrease in Cavß4 subunit expression.


Subject(s)
Calcium Channels, L-Type , Myocytes, Cardiac , Animals , Calcium Channels, L-Type/metabolism , Calcium Channels, L-Type/genetics , Rats , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/drug effects , Triiodothyronine/pharmacology , Triiodothyronine/metabolism , Down-Regulation/drug effects , Thyroid Hormones/metabolism , Cell Line , Up-Regulation/drug effects , Cyclic AMP Response Element-Binding Protein/metabolism , Gene Expression Regulation/drug effects , Protein Subunits/metabolism , Protein Subunits/genetics
2.
Clinics (Sao Paulo) ; 79: 100492, 2024.
Article in English | MEDLINE | ID: mdl-39293372

ABSTRACT

BACKGROUND: Circular RNAs (circRNAs) hold critical importance due to their notable function in developing Gastric Cancer (GC), which is a malignancy with the third most frequent occurrence worldwide. The aim of this study was to see if circRNA_0044516 would control GC cell proliferation and establish more effective therapeutic strategies. METHODS: In GC tissues or cells, quantitative Real­Time Polymerase Chain Reaction (qRT-PCR) was employed for the detection of the expression of circRNA_100349, Insulin-like Growth Factor II (IGF2), and miR-218-5p. CCK-8 assays were employed to gauge the proliferation of cells. A luciferase reporter was employed to establish the relationship of circRNA_100349 or IGF2 with miR-218-5p. RESULTS: CircRNA_100349 was observed to undergo upregulation in GC cell lines along with tissues. GC cell proliferation was prevented by downregulating circRNA_100349. MiR-149 was targeted by CircRNA_100349, and its downregulation increased the amount of miR-218-5p in GC cells. Simultaneously silencing circRNA_100349 decreased IGF2 expression via miR-218-5p, and thus suppressed GC cell proliferation. Furthermore, in nude mice, circRNA_100349 knockdown prevented the tumor development of GC cells. CONCLUSIONS: The findings furnished evidence of the critical involvement of circRNA_100349 in GC and that its downregulation impedes GC cell proliferation via the miR-218-5p/IGF2 axis.


Subject(s)
Cell Proliferation , Gene Expression Regulation, Neoplastic , Insulin-Like Growth Factor II , MicroRNAs , RNA, Circular , Stomach Neoplasms , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology , Stomach Neoplasms/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Circular/genetics , Cell Proliferation/genetics , Humans , Insulin-Like Growth Factor II/genetics , Insulin-Like Growth Factor II/metabolism , Cell Line, Tumor , Gene Expression Regulation, Neoplastic/genetics , Animals , Down-Regulation , Up-Regulation , Mice, Nude , Mice , Real-Time Polymerase Chain Reaction , Male
3.
Clinics (Sao Paulo) ; 79: 100496, 2024.
Article in English | MEDLINE | ID: mdl-39332150

ABSTRACT

OBJECTIVE: Qiliqiangxin Capsule (QL) was investigated for its possible role in cardiac hypertrophy in this study. METHODS: QL (0.5 mg/mL) was pre-treated in Neonatal Mouse Ventricular Cardiomyocytes (NMVCs) before induction of cardiomyocyte hypertrophy by Angiotensin II (Ang-II). Immunofluorescence staining for α-actinin was conducted to determine cell surface area. Atrial Natriuretic Peptide (ANP) and Brain Natriuretic Peptide (BNP) of hypertrophy markers were examined. Ang-II infusion was given to stimulate cardiac hypertrophy in mice. The cardiac function of mice was detected by echocardiography, and the pathological status of myocardial tissue was observed. RESULTS: The surface of cardiomyocytes was enlarged by Ang-II, and ANP and BNP levels were increased. QL processing could save these changes. miR-382-5p was upregulated in Ang-II-treated NMVCs, and reducing miR-382-5p could further enhance the therapeutic effect of QL while elevating miR-382-5p weakened the protective effect of QL. QL could inhibit miR-382-5p expression to negatively regulate Activated Transcription Factor 3 (ATF3) expression. Enhancing ATF3 expression rescued miR-382-5p upregulation-mediated role in NMVCs. In addition, QL alleviated Ang-II-stimulated cardiac hypertrophy and cardiac dysfunction in mice. CONCLUSION: QL may alleviate cardiac hypertrophy and cardiac dysfunction via the miR-382-5p/ATF3 axis.


Subject(s)
Activating Transcription Factor 3 , Angiotensin II , Cardiomegaly , Drugs, Chinese Herbal , MicroRNAs , Myocytes, Cardiac , Animals , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , MicroRNAs/metabolism , Cardiomegaly/drug therapy , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Activating Transcription Factor 3/metabolism , Angiotensin II/pharmacology , Atrial Natriuretic Factor , Male , Natriuretic Peptide, Brain/metabolism , Mice , Mice, Inbred C57BL , Echocardiography , Up-Regulation/drug effects , Disease Models, Animal
4.
Int J Mol Sci ; 25(18)2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39337535

ABSTRACT

The two-kidney, one-clip (2K1C) Goldblatt rodent model elicits a reduction in renal blood flow (RBF) in the clipped kidney (CK). The reduced RBF and oxygen bio-ability causes the accumulation of the tricarboxylic cycle intermediary, α-ketoglutarate, which activates the oxoglutarate receptor-1 (OXGR1). In the kidney, OXGR1 is abundantly expressed in intercalated cells (ICs) of the collecting duct (CD), thus contributing to sodium transport and electrolyte balance. The (pro)renin receptor (PRR), a member of the renin-angiotensin system (RAS), is a key regulator of sodium reabsorption and blood pressure (BP) that is expressed in ICs. The PRR is upregulated in 2K1C rats. Here, we tested the hypothesis that chronic reduction in RBF in the CK leads to OXGR1-dependent PRR upregulation in the CD and alters sodium balance and BP in 2K1C mice. To determine the role of OXGR1 in regulating the PRR in the CDs during renovascular hypertension, we performed 2K1C Goldblatt surgery (clip = 0.13 mm internal gap, 14 days) in two groups of male mice: (1) mice treated with Montelukast (OXGR1 antagonist; 5 mg/Kg/day); (2) OXGR1-/- knockout mice. Wild-type and sham-operated mice were used as controls. After 14 days, 2K1C mice showed increased systolic BP (SBP) (108 ± 11 vs. control 82 ± 5 mmHg, p < 0.01) and a lower natriuretic response after the saline challenge test. The CK group showed upregulation of erythropoietin, augmented α-ketoglutarate, and increased PRR expression in the renal medulla. The CK of OXGR1 knockout mice and mice subjected to the OXGR1 antagonist elicited impaired PRR upregulation, attenuated SBP, and better natriuretic responses. In 2K1C mice, the effect of reduced RBF on the OXGR1-dependent PRR upregulation in the CK may contribute to the anti-natriuretic and increased SBP responses.


Subject(s)
Kidney Tubules, Collecting , Receptors, Cell Surface , Sodium , Up-Regulation , Animals , Mice , Kidney Tubules, Collecting/metabolism , Receptors, Cell Surface/metabolism , Receptors, Cell Surface/genetics , Male , Sodium/metabolism , Hypertension, Renovascular/metabolism , Hypertension, Renovascular/genetics , Blood Pressure , Mice, Knockout , Prorenin Receptor , Kidney/metabolism , Disease Models, Animal , Renin-Angiotensin System , Mice, Inbred C57BL , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , Receptors, Purinergic P2
5.
Int J Mol Sci ; 25(15)2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39125591

ABSTRACT

Breast cancer (BC) is the most common cancer in women, with incidence rates increasing globally in recent years. Therefore, it is important to find new molecules with prognostic and therapeutic value to improve therapeutic response and quality of life. The polyunsaturated fatty acids (PUFAs) metabolic pathway participates in various physiological processes, as well as in the development of malignancies. Although aberrancies in the PUFAs metabolic pathway have been implicated in carcinogenesis, the functional and clinical relevance of this pathway has not been well explored in BC. To evaluate the clinical significance of soluble epoxide hydrolase (EPHX2) expression in Mexican patients with BC using tissue microarrays (TMAs) and digital pathology (DP). Immunohistochemical analyses were performed on 11 TMAs with 267 BC samples to quantify this enzyme. Using DP, EPHX2 protein expression was evaluated solely in tumor areas. The association of EPHX2 with overall survival (OS) was detected through bioinformatic analysis in public databases and confirmed in our cohort via Cox regression analysis. Clear nuclear expression of EPHX2 was identified. Receiver operating characteristics (ROC) curves revealed the optimal cutoff point at 2.847062 × 10-3 pixels, with sensitivity of 69.2% and specificity of 67%. Stratification based on this cutoff value showed elevated EPHX2 expression in multiple clinicopathological features, including older age and nuclear grade, human epidermal growth factor receptor 2 (HER2) and triple negative breast cancer (TNBC) subtypes, and recurrence. Kaplan-Meier curves demonstrated how higher nuclear expression of EPHX2 predicts shorter OS. Consistently, multivariate analysis confirmed EPHX2 as an independent predictor of OS, with a hazard ratio (HR) of 3.483 and a 95% confidence interval of 1.804-6.724 (p < 0.001). Our study demonstrates for the first time that nuclear overexpression of EPHX2 is a predictor of poor prognosis in BC patients. The DP approach was instrumental in identifying this significant association. Our study provides valuable insights into the potential clinical utility of EPHX2 as a prognostic biomarker and therapeutic target in BC.


Subject(s)
Biomarkers, Tumor , Breast Neoplasms , Epoxide Hydrolases , Humans , Epoxide Hydrolases/metabolism , Epoxide Hydrolases/genetics , Female , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Breast Neoplasms/mortality , Breast Neoplasms/genetics , Middle Aged , Prognosis , Biomarkers, Tumor/metabolism , Aged , Adult , Cell Nucleus/metabolism , Up-Regulation , Gene Expression Regulation, Neoplastic , ROC Curve , Aged, 80 and over , Kaplan-Meier Estimate
6.
PLoS One ; 19(8): e0308334, 2024.
Article in English | MEDLINE | ID: mdl-39133714

ABSTRACT

Environmental pollutants, including polychlorinated biphenyls (PCBs), act as endocrine disruptors and impair various physiological processes. PCB 126 is associated with steatohepatitis, fibrosis, cirrhosis, and other hepatic injuries. These disorders can be regulated by microRNAs (miRNAs). Therefore, this study aimed to investigate the role of miRNAs in non-alcoholic fatty liver disease associated with exposure to PCB 126. Adult male C57BL/6 mice were exposed to PCB 126 (5 µmol/kg of body weight) for 10 weeks. The PCB group showed lipid accumulation in the liver in the presence of macro- and microvesicular steatosis and fibrosis with increased inflammatory and profibrotic gene expression, consistent with non-alcoholic steatohepatitis (NASH). PCB exposure also upregulated miR-155 and miR-34a, which induce the expression of proinflammatory cytokines and inflammation in the liver and reduce the expression of peroxisome proliferator-activated receptor α, which, in turn, impairs lipid oxidation and hepatic steatosis. Therefore, the present study showed that PCB 126 induced NASH via potential mechanisms involving miR-155 and miR-34a, which may contribute to the development of new diagnostic markers and therapeutic strategies.


Subject(s)
Liver Cirrhosis , Mice, Inbred C57BL , MicroRNAs , Polychlorinated Biphenyls , Up-Regulation , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Polychlorinated Biphenyls/toxicity , Male , Mice , Liver Cirrhosis/chemically induced , Liver Cirrhosis/genetics , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Up-Regulation/drug effects , Liver/metabolism , Liver/drug effects , Liver/pathology , Non-alcoholic Fatty Liver Disease/chemically induced , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/pathology , Environmental Pollutants/toxicity , Lipid Metabolism/drug effects , Lipid Metabolism/genetics
7.
Clinics (Sao Paulo) ; 79: 100400, 2024.
Article in English | MEDLINE | ID: mdl-39089097

ABSTRACT

BACKGROUND: Aortic Dissection (AD) is a vascular disease with a high mortality rate and limited treatment strategies. The current research analyzed the function and regulatory mechanism of lncRNA HCG18 in AD. METHODS: HCG18, miR-103a-3p, and HMGA2 levels in the aortic tissue of AD patients were examined by RT-qPCR. After transfection with relevant plasmids, the proliferation of rat aortic Vascular Smoothing Muscle Cells (VSMCs) was detected by CCK-8 and colony formation assay, Bcl-2 and Bax was measured by Western blot, and apoptosis was checked by flow cytometry. Then, the targeting relationship between miR-103a-3p and HCG18 or HMGA2 was verified by bioinformation website analysis and dual luciferase reporter assay. Finally, the effect of HCG18 was verified in an AD rat model induced by ß-aminopropionitrile. RESULTS: HCG18 and HMGA2 were upregulated and miR-103a-3p was downregulated in the aortic tissues of AD patients. Downregulating HCG18 or upregulating miR-103a-3p enhanced the proliferation of VSMCs and limited cell apoptosis. HCG18 promoted HMGA2 expression by competing with miR-103a-3p and restoring HMGA2 could impair the effect of HCG18 downregulation or miR-103a-3p upregulation in mediating the proliferation and apoptosis of VSMCs. In addition, down-regulation of HCG18 could improve the pathological injury of the aorta in AD rats. CONCLUSION: HCG18 reduces proliferation and induces apoptosis of VSMCs through the miR-103a-3p/HMGA2 axis, thus aggravating AD.


Subject(s)
Aortic Dissection , Apoptosis , Cell Proliferation , MicroRNAs , RNA, Long Noncoding , MicroRNAs/genetics , MicroRNAs/metabolism , Apoptosis/genetics , Apoptosis/drug effects , Cell Proliferation/drug effects , Cell Proliferation/genetics , Animals , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Aortic Dissection/genetics , Aortic Dissection/metabolism , Humans , HMGA2 Protein/genetics , HMGA2 Protein/metabolism , Male , Rats , Muscle, Smooth, Vascular/metabolism , Down-Regulation , Rats, Sprague-Dawley , Up-Regulation , Middle Aged , Myocytes, Smooth Muscle/metabolism , Disease Models, Animal
8.
Rev Esc Enferm USP ; 58: e20230183, 2024.
Article in English | MEDLINE | ID: mdl-38985820

ABSTRACT

OBJECTIVE: To observe the therapeutic effect of gentiopicroside, as the main component of Gentianaceae, on wounds in pressure injury (PI) model rats and explore its mechanism. METHOD: Male Sprague Dawley rats were randomly divided into control group, model group and gentiopicroside groups (50, 100 and 200 mg·kg-1·d-1 for 9 consecutive days). The mice's skeletal muscle fibroblast line NOR-10 cells were collected after being treated with gentiopicroside (0.2~5.0 M) and basic fibroblast growth factor receptor 1 (bFGFR1) inhibitor (5.0 M SU5402) for 7 days. RESULTS: Compared to the model group, the gentiopicroside groups showed significantly increased wound healing rates, reduced inflammatory cells in the wound tissues, and significantly increased expression levels of proliferating cell nuclear antigen (PCNA) and bFGFR1, accompanied by increased proliferation of new myofibroblasts. Gentiopicroside upregulated the mRNA expression of bFGFR1 and PCNA in NOR-10 cells in a dose-dependent manner; however, SU5402 reversed the effect of gentiopicroside. CONCLUSION: Gentiopicroside may promote myofibroblast proliferation by upregulating the expression of bFGFR1 and PCNA and ultimately accelerating the healing of PI wounds.


Subject(s)
Iridoid Glucosides , Pressure Ulcer , Rats, Sprague-Dawley , Up-Regulation , Wound Healing , Animals , Iridoid Glucosides/pharmacology , Iridoid Glucosides/administration & dosage , Wound Healing/drug effects , Male , Rats , Pressure Ulcer/drug therapy , Mice , Disease Models, Animal , Dose-Response Relationship, Drug , Proliferating Cell Nuclear Antigen/metabolism , Random Allocation , Cell Proliferation/drug effects
9.
Clinics (Sao Paulo) ; 79: 100428, 2024.
Article in English | MEDLINE | ID: mdl-38972248

ABSTRACT

The use of stem cells capable of multilineage differentiation in treating Pelvic Floor Dysfunction (PFD) holds great promise since they are susceptible to entering connective tissue of various cell types and repairing damaged tissues. This research investigated the effect of microRNA-181a-5p (miR-181a-5p) on Bone Marrow Mesenchymal Stem Cells (BMSCs) in rats with PFD. BMSCs were transfected and analyzed for their fibroblast differentiation ability. miR-181a-5p, MFN1, and fibroblast-related genes were quantitatively analyzed. Whether MFN1 is a target gene of miR-181a-5p was predicted and confirmed. The efficacy of BMSCs in vivo rats with PFD was evaluated by measuring Leak Point Pressure (LPP), Conscious Cystometry (CMG), hematoxylin and eosin staining, and Masson staining. The present results discovered that miR-181a-5p was up-regulated and MFN1 was down-regulated during the differentiation of BMSCs into fibroblasts. Fibroblast differentiation of BMSCs was promoted after miR-181a-5p was induced or MFN1 was suppressed, but it was suppressed after miR-181a-5p was silenced. miR-181a-5p improved LPP and conscious CMG outcomes in PDF rats by targeting MFN1 expression, thereby accelerating fibroblast differentiation of BMSCs. In brief, miR-181a-5p induces fibroblast differentiation of BMSCs in PDF rats by MFN1, potentially targeting PDF therapeutics.


Subject(s)
Cell Differentiation , Fibroblasts , Mesenchymal Stem Cells , MicroRNAs , Animals , Mesenchymal Stem Cells/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Female , Rats, Sprague-Dawley , Pelvic Floor Disorders/genetics , Pelvic Floor Disorders/therapy , Rats , Up-Regulation , Disease Models, Animal , Down-Regulation , Cells, Cultured
10.
Arch Dermatol Res ; 316(6): 330, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38837051

ABSTRACT

Lichen planopilaris (LPP) and frontal fibrosing alopecia (FFA) are primary cicatricial alopecia that cause a major impact on quality of life due to irreversible hair loss and symptoms as itching, burning and pain. They are characterized by permanent loss of hair follicle stem cells (HFSCs) by pathomechanisms still poorly understood, resulting in poor efficacy of currently available treatments. Caveolae are flask-shaped lipid rafts invaginated within the plasma membrane of multiple cell types. Although their role in the HF physiology and pathophysiology is relatively unknown, we have previously demonstrated that the primary structural component of caveolae (caveolin-1 or Cav1) is upregulated in FFA. Thus, we propose to investigate the expression and localization of caveolae-associated structural proteins (Cav1, Cav2, and Cavin-1) and HFSCs (identified by K15) in both LPP and FFA. We analyzed 4 patients with LPP biopsied in affected and non-affected (NA) scalp, 4 patients with FFA biopsied in affected scalp and 4 healthy controls. Affected scalp of LPP and FFA demonstrated increased levels of Cav1 and Cavin-1 compared with HC and LPP-NA. Moreover, Cav1, Cav2 and Cavin1 all exhibit high colocalization with K15 and their expression appears to be negatively correlated, supporting the hypothesis that these proteins are important players in LPP/FFA and may serve as therapeutic targets in future treatments.


Subject(s)
Alopecia , Caveolae , Caveolin 1 , Hair Follicle , Lichen Planus , Up-Regulation , Humans , Alopecia/pathology , Alopecia/metabolism , Hair Follicle/pathology , Hair Follicle/metabolism , Lichen Planus/metabolism , Lichen Planus/pathology , Middle Aged , Female , Caveolin 1/metabolism , Male , Caveolae/metabolism , Scalp/pathology , Adult , Keratin-15/metabolism , Aged , Biopsy , Fibrosis , Stem Cells/metabolism , Stem Cells/pathology , RNA-Binding Proteins/metabolism
11.
Life Sci ; 351: 122800, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38880169

ABSTRACT

BACKGROUND: Aging increases the prevalence of prostate cancer. The circadian clock coordinates metabolism, cell cycle, and tumor suppressor p53. Although physical exercise has several effects on preventing prostate diseases, its effect on regulating genes and proteins of the circadian rhythm of the prostate needs to be better evaluated. The present study verified expression of REV-ERBα (Nr1d1), Bmal1, apoptosis, tumor suppressors, energetic metabolism markers, and androgen receptors in the prostatic microenvironment in 18-month-old mice submitted to combined physical training. METHODS: C57BL/6 J mice were divided into 2 groups: 6 months-old (n = 10) and 18 months-old, (n = 20). The 18-month-old animals were divided into 2 subgroups: sedentary (n = 10, 18 m Sed) and submitted to combined physical training (n = 10, 18 m TR). Combined physical training protocol was performed by running on the treadmill (40-60 % of incremental load test) and climbing strength training (40-50 % of maximum repetition test), consisting of 5×/week (3 days aerobic and 2 days strength) for 3 weeks. The prostate was prepared for Western blot and RT-qPCR analysis, and the plasm was prepared for the biochemistry analysis. RESULTS: Combined physical exercise during aging led to increased levels of Bmal1 and decreased levels of REV-ERBα in the prostate. These results were accompanied by a reduction in the AMPK/SIRT1/PGC-1α proteins and an increase in the PI3K/AKT and p53/PTEN/caspase 3 pathways, promoting apoptotic potential. CONCLUSION: These findings suggest that strength and aerobic physical exercise may be preventive in the development of preneoplastic molecular alterations and age-related features by re-synchronizes Bmal1 and REV-ERBα in prostatic tissues.


Subject(s)
ARNTL Transcription Factors , Aging , Apoptosis , Mice, Inbred C57BL , Nuclear Receptor Subfamily 1, Group D, Member 1 , Physical Conditioning, Animal , Prostate , Male , Animals , Nuclear Receptor Subfamily 1, Group D, Member 1/metabolism , Nuclear Receptor Subfamily 1, Group D, Member 1/genetics , ARNTL Transcription Factors/metabolism , ARNTL Transcription Factors/genetics , Mice , Physical Conditioning, Animal/physiology , Aging/metabolism , Prostate/metabolism , Prostate/pathology , Up-Regulation , Circadian Rhythm/physiology
12.
Clinics (Sao Paulo) ; 79: 100407, 2024.
Article in English | MEDLINE | ID: mdl-38889502

ABSTRACT

BACKGROUND: NSCLC is one of the most common causes of death. The hypoxia microenvironment contributes to cancer progression. The purpose was to explore the effects and mechanism of melittin on NSCLC cells in the hypoxic microenvironment. METHODS: NSCLC cell lines (A549 and H1299) were cultured in normoxia or hypoxia conditions with or without melittin treatment. The viability of the cells was detected via MTT assay and the proliferation ability was evaluated by EdU assay. QRT-PCR was performed to evaluate GLUT1, LDHA, HK2, VEGF and LATS2 mRNA levels. Glucose transport was assessed by the 2-NBDG uptake assay. The angiogenesis was determined by the tubule formation assay. The protein expressions of GLUT1, LDHA, HK2, VEGF, LATS2, YAP, p-YAP and HIF-1α were detected via western blotting assay. The tumor formation assay was conducted to examine the roles of melittin and LATS2 in vivo. RESULTS: Melittin inhibited hypoxia-induced cell viability, proliferation, glycolysis and angiogenesis as well as suppressed YAP binding to HIF-1α in NSCLC. Melittin inactivated the YAP/HIF-1α pathway via up-regulation of LATS2, ultimately inhibiting cancer progression of NSCLC. Moreover, melittin suppressed tumor growth via up-regulation of LATS2 in vivo. CONCLUSION: Melittin inactivated the YAP/HIF-1α pathway via up-regulation of LATS2 to contribute to the development of NSCLC. Therefore, melittin is expected to become a potential prognostic drug for the therapy of NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Cell Proliferation , Glycolysis , Hypoxia-Inducible Factor 1, alpha Subunit , Lung Neoplasms , Melitten , Neovascularization, Pathologic , Protein Serine-Threonine Kinases , Tumor Suppressor Proteins , Up-Regulation , YAP-Signaling Proteins , Humans , Protein Serine-Threonine Kinases/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/blood supply , Carcinoma, Non-Small-Cell Lung/pathology , Cell Proliferation/drug effects , Up-Regulation/drug effects , Glycolysis/drug effects , Tumor Suppressor Proteins/metabolism , Neovascularization, Pathologic/drug therapy , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , YAP-Signaling Proteins/metabolism , Melitten/pharmacology , Melitten/therapeutic use , Cell Line, Tumor , Transcription Factors/metabolism , Animals , Adaptor Proteins, Signal Transducing/metabolism , Signal Transduction/drug effects , Cell Survival/drug effects , Phosphoproteins/metabolism , Angiogenesis
13.
Clinics (Sao Paulo) ; 79: 100410, 2024.
Article in English | MEDLINE | ID: mdl-38901133

ABSTRACT

BACKGROUND: Cuproptosis is known to regulate diverse physiological functions in many diseases, but its role in regulating Myocardial Ischemia-Reperfusion Injury (MI/RI) remains unclear. METHODS: For this purpose, the MI/RI microarray datasets GSE61592 were downloaded from the Gene Expression Omnibus (GEO) database, and the Differently Expressed Genes (DEGs) in MI/RI were identified using R software. Moreover, the MI/RI mice model was established to confirm further the diagnostic value of Pyruvate Dehydrogenase B (Pdhb), Dihydrolipoamide S-acetyltransferase (Dlat), and Pyruvate dehydrogenase E1 subunit alpha 1 (Pdhα1). RESULTS: The analysis of microarray datasets GSE61592 revealed that 798 genes were upregulated and 768 were downregulated in the myocardial tissue of the ischemia-reperfusion injury mice. Furthermore, Dlat, Pdhb, Pdhα1, and cuproptosis-related genes belonged to the downregulated genes. The receiver operating characteristics curve analysis results indicated that the Dlat, Pdhb, and Pdhα1 levels were downregulated in MI/RI and were found to be potential biomarkers for MI/RI diagnosis and prognosis. Similarly, analysis of Dlat, Pdhb, and Pdhα1 levels in the MI/RI mice revealed Pdhb being the key diagnostic marker. CONCLUSIONS: This study demonstrated the prognostic value of cuproptosis-related genes (Dlat, Pdhb, and Pdhα1), especially Pdhb, MI/RI, providing new insight into the MI/RI treatment.


Subject(s)
Computational Biology , Myocardial Reperfusion Injury , Animals , Myocardial Reperfusion Injury/genetics , Mice , Down-Regulation/genetics , Male , Disease Models, Animal , Up-Regulation , Mice, Inbred C57BL , Gene Expression Profiling/methods , Pyruvate Dehydrogenase (Lipoamide)/genetics , Biomarkers/analysis , Acetyltransferases/genetics
14.
Clinics (Sao Paulo) ; 79: 100403, 2024.
Article in English | MEDLINE | ID: mdl-38878321

ABSTRACT

OBJECTIVES: This study aims to elucidate the role of circUSP9X (Circular RNA Ubiquitin Specific Peptidase 9 X-Linked) in the development of venous thrombosis in the lower extremities. METHODS: An animal model of Deep Vein Thrombosis (DVT) and a hypoxic model of Human Umbilical Vein Endothelial Cells (HUVECs) treated with Cobalt (II) Chloride (CoCl2) were developed. The expression levels of circUSP9X, microRNA-148b-3p (miR-148b-3p), and SRC Kinase Signaling Inhibitor 1 (SRCIN1) were quantified using quantitative reverse transcription Polymerase Chain Reaction and Western blot analysis. Cell cytotoxicity, viability, apoptosis, and inflammation in HUVECs were assessed via Lactate Dehydrogenase (LDH) assay, MTT assay, flow cytometry, Enzyme-Linked Immunosorbent Assay, and Western blot, respectively. Hematoxylin and Eosin staining were employed for histopathological examination of the venous tissues in the animal model. The interaction between circUSP9X, miR-148b-3p, and SRCIN1 was further explored through dual-luciferase reporter assays and RNA Immunoprecipitation experiments. RESULTS: The present findings reveal a significant upregulation of circUSP9X and SRCIN1 and a concurrent downregulation of miR-148b-3p in DVT cases. Knockdown of circUSP9X or overexpression of miR-148b-3p ameliorated CoCl2-induced apoptosis in HUVECs, reduced LDH release, enhanced cellular viability, and mitigated inflammation. Conversely, overexpression of circUSP9X intensified CoCl2's cytotoxic effects. The effects of manipulating circUSP9X expression were counteracted by the corresponding modulation of miR-148b-3p and SRCIN1 levels. Additionally, circUSP9X knockdown effectively inhibited the formation of DVT in the mouse model. A competitive binding mechanism of circUSP9X for miR-148b-3p, modulating SRCIN1 expression, was identified. CONCLUSION: circUSP9X promotes the formation of DVT through the regulation of the miR-148b-3p/SRCIN1 axis.


Subject(s)
Disease Models, Animal , Human Umbilical Vein Endothelial Cells , MicroRNAs , Up-Regulation , Venous Thrombosis , Animals , Humans , Male , Mice , Adaptor Proteins, Vesicular Transport/metabolism , Apoptosis/drug effects , Human Umbilical Vein Endothelial Cells/drug effects , MicroRNAs/metabolism , RNA, Circular/genetics , Up-Regulation/drug effects
15.
J Fish Dis ; 47(9): e13984, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38943549

ABSTRACT

A strategy for vaccine design involves identifying proteins that could be involved in pathogen-host interactions. The aim of this proteomic study was to determine how iron limitation affects the protein expression of Tenacibaculum dicentrarchi, with a primary focus on virulence factors and proteins associated with iron uptake. The proteomic analysis was carried out using two strains of T. dicentrarchi grown under normal (control) and iron-limited conditions, mimicking the host environment. Our findings revealed differences in the proteins expressed by the type strain CECT 7612T and the Chilean strain TdCh05 of T. dicentrarchi. Nonetheless, both share a common response to iron deprivation, with an increased expression of proteins associated with iron oxidation and reduction metabolism (e.g., SufA, YpmQ, SufD), siderophore transport (e.g., ExbD, TonB-dependent receptor, HbpA), heme compound biosynthesis, and iron transporters under iron limitation. Proteins involved in gliding motility, such as GldL and SprE, were also upregulated in both strains. A negative differential regulation of metabolic proteins, particularly those associated with amino acid biosynthesis, was observed under iron limitation, reflecting the impact of iron availability on bacterial metabolism. Additionally, the TdCh05 strain exhibited unique proteins associated with gliding motility machinery and phage infection control compared to the type strain. These groups of proteins have been identified as virulence factors within the Flavobacteriaceae family, including the genus Tenacibaculum. These results build upon our previous report on iron acquisition mechanisms and could lay the groundwork for future studies aimed at elucidating the role of some of the described proteins in the infectious process of tenacibaculosis, as well as in the development of potential vaccines.


Subject(s)
Bacterial Proteins , Fish Diseases , Flavobacteriaceae Infections , Iron , Oxidation-Reduction , Proteomics , Tenacibaculum , Up-Regulation , Iron/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Flavobacteriaceae Infections/veterinary , Flavobacteriaceae Infections/microbiology , Animals , Fish Diseases/microbiology , Tenacibaculum/genetics , Tenacibaculum/metabolism , Proteome , Virulence Factors/metabolism , Virulence Factors/genetics , Bass/microbiology
16.
J Hypertens ; 42(6): 984-999, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38690903

ABSTRACT

Nox1 signaling is a causal key element in arterial hypertension. Recently, we identified protein disulfide isomerase A1 (PDI) as a novel regulatory protein that regulates Nox1 signaling in VSMCs. Spontaneously hypertensive rats (SHR) have increased levels of PDI in mesenteric resistance arteries compared with Wistar controls; however, its consequences remain unclear. Herein, we investigated the role of PDI in mediating Nox1 transcriptional upregulation and its effects on vascular dysfunction in hypertension. We demonstrate that PDI contributes to the development of hypertension via enhanced transcriptional upregulation of Nox1 in vascular smooth muscle cells (VSMCs). We show for the first time that PDI sulfenylation by hydrogen peroxide contributes to EGFR activation in hypertension via increased shedding of epidermal growth factor-like ligands. PDI also increases intracellular calcium levels, and contractile responses induced by ANG II. PDI silencing or pharmacological inhibition in VSMCs significantly decreases EGFR activation and Nox1 transcription. Overexpression of PDI in VSMCs enhances ANG II-induced EGFR activation and ATF1 translocation to the nucleus. Mechanistically, PDI increases ATF1-induced Nox1 transcription and enhances the contractile responses to ANG II. Herein we show that ATF1 binding to Nox1 transcription putative regulatory regions is augmented by PDI. Altogether, we provide evidence that HB-EGF in SHR resistance vessels promotes the nuclear translocation of ATF1, under the control of PDI, and thereby induces Nox1 gene expression and increases vascular reactivity. Thus, PDI acts as a thiol redox-dependent enhancer of vascular dysfunction in hypertension and could represent a novel therapeutic target for the treatment of this disease.


Subject(s)
Hypertension , Muscle, Smooth, Vascular , NADPH Oxidase 1 , Protein Disulfide-Isomerases , Rats, Inbred SHR , Up-Regulation , Animals , Protein Disulfide-Isomerases/metabolism , Protein Disulfide-Isomerases/genetics , NADPH Oxidase 1/metabolism , NADPH Oxidase 1/genetics , Hypertension/physiopathology , Hypertension/genetics , Hypertension/metabolism , Rats , Muscle, Smooth, Vascular/metabolism , Male , Myocytes, Smooth Muscle/metabolism , ErbB Receptors/metabolism , ErbB Receptors/genetics , Rats, Wistar , Transcription, Genetic
17.
Clin Transl Oncol ; 26(10): 2665-2673, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38698279

ABSTRACT

BACKGROUND: The Niemann-Pick disease type C1 (NPC1) protein plays a pivotal role in lipid transport, particularly free cholesterol, within lysosomal/late endosomal membranes. Previous studies have highlighted NPC1 as a promising target for cholesterol trafficking and cancer therapy. Nevertheless, the expression of NPC1 in gastric cancer (GC) and its clinical implications remain unexplored. This study aims to investigate NPC1 expression in GC and its correlation with patient prognosis. METHODS: NPC1 expression levels in GC and normal tissues were assessed using the GEPIA database, and survival analysis was conducted via Kaplan‒Meier Plotter. Evaluation of potential biological effects of NPC1 in GC by protein-protein interaction network and GO, KEGG bioenrichment analysis. Immunohistochemistry was performed on surgical samples collected from 306 GC patients. Correlations between NPC1 expression, clinical characteristics, and patient prognosis were analyzed. RESULTS: NPC1 mRNA expression was elevated in GC tissues compared to normal tissues (P < 0.05) and significantly associated with poorer prognosis. In our cohort of 306 patients, NPC1 exhibited significant upregulation in GC versus adjacent normal tissues (P = 0.031). High NPC1 expression correlated with adverse clinical characteristics, including lymph node metastasis, distant metastasis, and advanced TNM stage (all P < 0.05). Patients with high NPC1 expression experienced notably shorter overall survival (P < 0.001), particularly in stages III and IV (P = 0.003). Multivariate Cox regression analysis identified high NPC1 expression as an independent prognostic factor for GC patients (HR 1.57, 95% CI 1.14-2.18, P = 0.006). Lastly, an optimized nomogram incorporating NPC1, tumor size, and TNM stage was constructed. CONCLUSIONS: NPC1 expression is upregulated in GC and serves as a pivotal prognostic factor for adverse outcomes in GC patients.


Subject(s)
Niemann-Pick C1 Protein , Stomach Neoplasms , Up-Regulation , Humans , Stomach Neoplasms/pathology , Stomach Neoplasms/metabolism , Stomach Neoplasms/mortality , Stomach Neoplasms/genetics , Male , Female , Prognosis , Middle Aged , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Kaplan-Meier Estimate , Lymphatic Metastasis , Aged , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Neoplasm Staging , RNA, Messenger/genetics , RNA, Messenger/metabolism , Survival Rate , Protein Interaction Maps
18.
Int J Mol Sci ; 25(9)2024 May 03.
Article in English | MEDLINE | ID: mdl-38732206

ABSTRACT

Breast cancer stands out as one of the most prevalent malignancies worldwide, necessitating a nuanced understanding of its molecular underpinnings for effective treatment. Hormone receptors in breast cancer cells substantially influence treatment strategies, dictating therapeutic approaches in clinical settings, serving as a guide for drug development, and aiming to enhance treatment specificity and efficacy. Natural compounds, such as curcumin, offer a diverse array of chemical structures with promising therapeutic potential. Despite curcumin's benefits, challenges like poor solubility and rapid metabolism have spurred the exploration of analogs. Here, we evaluated the efficacy of the curcumin analog NC2603 to induce cell cycle arrest in MCF-7 breast cancer cells and explored its molecular mechanisms. Our findings reveal potent inhibition of cell viability (IC50 = 5.6 µM) and greater specificity than doxorubicin toward MCF-7 vs. non-cancer HaCaT cells. Transcriptome analysis identified 12,055 modulated genes, most notably upregulation of GADD45A and downregulation of ESR1, implicating CDKN1A-mediated regulation of proliferation and cell cycle genes. We hypothesize that the curcumin analog by inducing GADD45A expression and repressing ESR1, triggers the expression of CDKN1A, which in turn downregulates the expression of many important genes of proliferation and the cell cycle. These insights advance our understanding of curcumin analogs' therapeutic potential, highlighting not just their role in treatment, but also the molecular pathways involved in their activity toward breast cancer cells.


Subject(s)
Breast Neoplasms , Cell Cycle Checkpoints , Curcumin , Cyclin-Dependent Kinase Inhibitor p21 , Gene Expression Regulation, Neoplastic , Humans , Curcumin/pharmacology , Curcumin/analogs & derivatives , Breast Neoplasms/metabolism , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , MCF-7 Cells , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Cyclin-Dependent Kinase Inhibitor p21/genetics , Cell Cycle Checkpoints/drug effects , Female , Gene Expression Regulation, Neoplastic/drug effects , Up-Regulation/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Estrogen Receptor alpha/metabolism , Estrogen Receptor alpha/genetics , Antineoplastic Agents/pharmacology , GADD45 Proteins
19.
Free Radic Biol Med ; 221: 181-187, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-38772511

ABSTRACT

Sulforaphane (SFN), found in cruciferous vegetables, is a known activator of NRF2 (master regulator of cellular antioxidant responses). Patients with chronic kidney disease (CKD) present an imbalance in the redox state, presenting reduced expression of NRF2 and increased expression of NF-κB. Therefore, this study aimed to evaluate the effects of SFN on the mRNA expression of NRF2, NF-κB and markers of oxidative stress in patients with CKD. Here, we observed a significant increase in the mRNA expression of NRF2 (p = 0.02) and NQO1 (p = 0.04) in the group that received 400 µg/day of SFN for 1 month. Furthermore, we observed an improvement in the levels of phosphate (p = 0.02), glucose (p = 0.05) and triglycerides (p = 0.02) also in this group. On the other hand, plasma levels of LDL-c (p = 0.04) and total cholesterol (p = 0.03) increased in the placebo group during the study period. In conclusion, 400 µg/day of SFN for one month improves the antioxidant system and serum glucose and phosphate levels in non-dialysis CKD patients.


Subject(s)
Isothiocyanates , NAD(P)H Dehydrogenase (Quinone) , NF-E2-Related Factor 2 , Oxidative Stress , RNA, Messenger , Renal Insufficiency, Chronic , Sulfoxides , Humans , Isothiocyanates/pharmacology , Isothiocyanates/therapeutic use , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , NAD(P)H Dehydrogenase (Quinone)/genetics , NAD(P)H Dehydrogenase (Quinone)/metabolism , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/genetics , Renal Insufficiency, Chronic/drug therapy , Renal Insufficiency, Chronic/pathology , Male , Middle Aged , Female , RNA, Messenger/genetics , RNA, Messenger/metabolism , Oxidative Stress/drug effects , Antioxidants/metabolism , Antioxidants/pharmacology , Triglycerides/blood , Triglycerides/metabolism , Blood Glucose/metabolism , Up-Regulation/drug effects , Adult , Aged , NF-kappa B/metabolism , NF-kappa B/genetics
20.
Clinics (Sao Paulo) ; 79: 100350, 2024.
Article in English | MEDLINE | ID: mdl-38636197

ABSTRACT

OBJECTIVE: The present study aimed to investigate FOXO3a deregulation in Uterine Smooth Muscle Tumors (USMT) and its potential association with cancer development and prognosis. METHODS: The authors analyzed gene and protein expression profiles of FOXO3a in 56 uterine Leiomyosarcomas (LMS), 119 leiomyomas (comprising conventional and unusual leiomyomas), and 20 Myometrium (MM) samples. The authors used techniques such as Immunohistochemistry (IHC), FISH/CISH, and qRT-PCR for the present analyses. Additionally, the authors conducted an in-silico analysis to understand the interaction network involving FOXO3a and its correlated genes. RESULTS: This investigation revealed distinct expression patterns of the FOXO3a gene and protein, including both normal and phosphorylated forms. Expression levels were notably elevated in LMS, and Unusual Leiomyomas (ULM) compared to conventional Leiomyomas (LM) and Myometrium (MM) samples. This upregulation was significantly associated with metastasis and Overall Survival (OS) in LMS patients. Intriguingly, FOXO3a deregulation did not seem to be influenced by EGF/HER-2 signaling, as there were minimal levels of EGF and VEGF expression detected, and HER-2 and EGFR were negative in the analyzed samples. In the examination of miRNAs, the authors observed upregulation of miR-96-5p and miR-155-5p, which are known negative regulators of FOXO3a, in LMS samples. Conversely, the tumor suppressor miR-let7c-5p was downregulated. CONCLUSIONS: In summary, the outcomes of the present study suggest that the imbalance in FOXO3a within Uterine Smooth Muscle Tumors might arise from both protein phosphorylation and miRNA activity. FOXO3a could emerge as a promising therapeutic target for individuals with Unusual Leiomyomas and Leiomyosarcomas (ULM and LMS), offering novel directions for treatment strategies.


Subject(s)
Forkhead Box Protein O3 , Leiomyoma , Uterine Neoplasms , Humans , Female , Forkhead Box Protein O3/metabolism , Forkhead Box Protein O3/genetics , Uterine Neoplasms/genetics , Uterine Neoplasms/pathology , Uterine Neoplasms/metabolism , Middle Aged , Leiomyoma/genetics , Leiomyoma/pathology , Leiomyoma/metabolism , Adult , Immunohistochemistry , Gene Expression Regulation, Neoplastic/genetics , Leiomyosarcoma/genetics , Leiomyosarcoma/pathology , Leiomyosarcoma/metabolism , Smooth Muscle Tumor/genetics , Smooth Muscle Tumor/pathology , Smooth Muscle Tumor/metabolism , Up-Regulation , MicroRNAs/genetics , MicroRNAs/metabolism , Prognosis , Aged , Myometrium/metabolism , Myometrium/pathology
SELECTION OF CITATIONS
SEARCH DETAIL