ABSTRACT
During virus infection, many host proteins are redirected from their normal cellular roles to restrict and terminate infection. Heterogeneous nuclear ribonucleoproteins (hnRNPs) are cellular RNA-binding proteins critical to host nucleic acid homeostasis, but can also be involved in the viral infection process, affecting virus replication, assembly and propagation. It has become evident that hnRNPs play important roles in modulation of host innate immunity, which provides critical initial protection against infection. These novel findings can potentially lead to the leveraging of hnRNPs in antiviral therapies. We review hnRNP involvement in antiviral innate immunity, in humans, mice and other animals, and discuss hnRNP targeting as a potential novel antiviral therapeutic.
Subject(s)
Heterogeneous-Nuclear Ribonucleoproteins , Immunity, Innate , Virus Diseases , Humans , Animals , Heterogeneous-Nuclear Ribonucleoproteins/metabolism , Virus Diseases/immunology , Virus Replication , Mice , Host-Pathogen Interactions/immunologyABSTRACT
Inflammation is a protective host response essential for controlling viral replication and promoting tissue repair [...].
Subject(s)
Inflammation , Virus Diseases , Inflammation/virology , Humans , Virus Diseases/immunology , Virus Diseases/virology , Animals , Viruses/immunology , Viruses/pathogenicity , Virus Replication , Host-Pathogen Interactions/immunologyABSTRACT
Eosinophils are cells of the innate immune system that orchestrate complex inflammatory responses. The study of the cell biology of eosinophils, particularly associated with cell activation, is of great interest to understand their immune responses. From a morphological perspective, activated eosinophils show ultrastructural signatures that have provided critical insights into the comprehension of their functional capabilities. Application of conventional transmission electron microscopy in combination with quantitative assessments (quantitative transmission electron microscopy), molecular imaging (immunoEM), and 3-dimensional electron tomography have generated important insights into mechanisms of eosinophil activation. This review explores a multitude of ultrastructural events taking place in eosinophils activated in vitro and in vivo as key players in allergic and inflammatory diseases, with an emphasis on viral infections. Recent progress in our understanding of biological processes underlying eosinophil activation, including in vivo mitochondrial remodeling, is discussed, and it can bring new thinking to the field.
Subject(s)
Eosinophils , Virus Diseases , Humans , Eosinophils/immunology , Eosinophils/ultrastructure , Virus Diseases/immunology , Virus Diseases/pathology , Animals , Mitochondria/ultrastructure , Mitochondria/immunologyABSTRACT
A specialized and fine-tuned immune response of bats upon infection with viruses is believed to provide the basis for a "friendly" coexistence with these pathogens, which are often lethal for humans and other mammals. First insights into the immunity of bats suggest that bats have evolved to possess their own strategies to cope with viral infections. Yet, the molecular details for this innocuous coexistence remain poorly described and bat infection models are the key to unveiling these secrets. In Jamaican fruit bats (Artibeus jamaicensis), a New World bat species, infection experiments with its (putative) natural viral pathogens Tacaribe virus (TCRV), rabies virus (RABV), and the bat influenza A virus (IAV) H18N11, have contributed to an accurate, though still incomplete, representation of the bat-imposed immunity. Surprisingly, though many aspects of their innate and adaptive immune responses differ from that of the human immune response, such as a contraction of the IFN locus and reduction in the number of immunoglobulin subclasses, variations could also be observed between Jamaican fruit bats and other bat species.
Subject(s)
Chiroptera/immunology , Chiroptera/virology , Virome , Virus Diseases/veterinary , Adaptive Immunity , Animals , Arenaviridae Infections/immunology , Arenaviridae Infections/veterinary , Arenaviridae Infections/virology , Arenaviruses, New World/isolation & purification , Immunity, Innate , Influenza A virus/isolation & purification , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/veterinary , Rabies/immunology , Rabies/veterinary , Rabies/virology , Rabies virus/isolation & purification , Virus Diseases/immunologyABSTRACT
Immunoglobulin yolk (IgY) is therapeutic antibodies presented in yolk eggs of birds, reptiles, and amphibians. These proteins produced by the immune system of the animal, are capable of neutralizing antigenic molecules, including viral antigens, fulfilling a role in the body defense. The specificity of these antibodies and the facility for their production, make these molecules capable of being used as tools for diagnosis and immunotherapy. Regarding this last aspect, it is common knowledge that the field of virology, is racing against time in the development of new drugs and vaccines to try to contain pandemics and local epidemics and, in counterproposal, avian antibodies are neutralizing molecules that can help in the control and spread of disease. These molecules have been explored for years and currently chicken eggs are produced in large quantities from the animal's immunization against a specific pathogen. Thus, on this subject, this review made a survey of these researches and presents a summary of all the successful cases and perspectives in the use of IgYs as tools for viral immunization.
Subject(s)
Antiviral Agents/pharmacology , Immunoglobulins/pharmacology , Animals , Humans , Immunization , Immunoglobulins/chemistry , Immunoglobulins/isolation & purification , Virus Diseases/immunology , Virus Diseases/therapy , Viruses/drug effects , Viruses/immunologyABSTRACT
Th17 cells are recognized as indispensable in inducing protective immunity against bacteria and fungi, as they promote the integrity of mucosal epithelial barriers. It is believed that Th17 cells also play a central role in the induction of autoimmune diseases. Recent advances have evaluated Th17 effector functions during viral infections, including their critical role in the production and induction of pro-inflammatory cytokines and in the recruitment and activation of other immune cells. Thus, Th17 is involved in the induction both of pathogenicity and immunoprotective mechanisms seen in the host's immune response against viruses. However, certain Th17 cells can also modulate immune responses, since they can secrete immunosuppressive factors, such as IL-10; these cells are called non-pathogenic Th17 cells. Here, we present a brief review of Th17 cells and highlight their involvement in some virus infections. We cover these notions by highlighting the role of Th17 cells in regulating the protective and pathogenic immune response in the context of viral infections. In addition, we will be describing myocarditis and multiple sclerosis as examples of immune diseases triggered by viral infections, in which we will discuss further the roles of Th17 cells in the induction of tissue damage.
Subject(s)
Myocarditis/immunology , Th17 Cells/metabolism , Virus Diseases/immunology , Adenoviridae , Animals , Autoimmune Diseases/immunology , Chikungunya virus , Cytokines/immunology , Dengue Virus , Humans , Immune System , Immunosuppressive Agents/pharmacology , Inflammation , Interleukin-10/biosynthesis , Lymphocytes/cytology , Multiple Sclerosis/immunology , Multiple Sclerosis/metabolism , Multiple Sclerosis/virology , Myocarditis/metabolism , Myocarditis/virology , Orthomyxoviridae , SARS-CoV-2 , Simplexvirus , Th1 Cells/cytology , Th2 Cells/cytology , Virus Diseases/drug therapy , Virus Diseases/metabolism , Zika VirusABSTRACT
Knowledge of glycogen synthase kinase 3ß (GSK3ß) activity and the molecules identified that regulate its function in infections caused by pathogenic microorganisms is crucial to understanding how the intensity of the inflammatory response can be controlled in the course of infections. In recent years many reports have described small molecular weight synthetic and natural compounds, proteins, and interference RNA with the potential to regulate the GSK3ß activity and reduce the deleterious effects of the inflammatory response. Our goal in this review is to summarize the most recent advances on the role of GSK3ß in the inflammatory response caused by bacteria, bacterial virulence factors (i.e. LPS and others), viruses, and parasites and how the regulation of its activity, mainly its inhibition by different type of molecules, modulates the inflammation.
Subject(s)
Bacterial Infections/immunology , Glycogen Synthase Kinase 3 beta/physiology , Inflammation/etiology , Parasitic Diseases/immunology , Virus Diseases/immunology , Animals , Glycogen Synthase Kinase 3 beta/antagonists & inhibitors , Humans , PhosphorylationABSTRACT
Chagas disease is a debilitating and neglected disease caused by the protozoan Trypanosoma cruzi. Soon after infection, interactions among T. cruzi and host innate immunity cells can drive/contribute to disease outcome. Dendritic cells (DCs), present in all tissues, are one of the first immune cells to interact with Trypanosoma cruzi metacyclic trypomastigotes. Elucidating the immunological events triggered immediately after parasite-human DCs encounter may aid in understanding the role of DCs in the establishment of infection and in the course of the disease. Therefore, we performed a transcriptomic analysis of a 12 h interaction between T. cruzi and MoDCs (monocyte-derived DCs) from three human donors. Enrichment analyses of the 468 differentially expressed genes (DEGs) revealed viral infection response as the most regulated pathway. Additionally, exogenous antigen processing and presentation through MHC-I, chemokine signaling, lymphocyte co-stimulation, metallothioneins, and inflammasome activation were found up-regulated. Notable, we were able to identify the increased gene expression of alternative inflammasome sensors such as AIM2, IFI16, and RIG-I for the first time in a T. cruzi infection. Both transcript and protein expression levels suggest proinflammatory cytokine production during early T. cruzi-DCs contact. Our transcriptome data unveil antiviral pathways as an unexplored process during T. cruzi-DC initial interaction, disclosing a new panorama for the study of Chagas disease outcomes.
Subject(s)
Chagas Disease/immunology , Dendritic Cells/immunology , T-Lymphocytes/immunology , Trypanosoma cruzi/immunology , Virus Diseases/immunology , Adult , Antigen Presentation/immunology , Cytokines/metabolism , DEAD Box Protein 58/metabolism , DNA-Binding Proteins/metabolism , Female , Gene Expression Profiling , Gene Expression Regulation/genetics , Gene Expression Regulation/immunology , Humans , Lymphocyte Activation/immunology , Male , Nuclear Proteins/metabolism , Phosphoproteins/metabolism , Receptors, Immunologic/metabolism , Transcriptome/genetics , Young AdultABSTRACT
Natural killer (NK) cell activation depends on the signaling balance of activating and inhibitory receptors. CD94 forms inhibitory receptors with NKG2A and activating receptors with NKG2E or NKG2C. We previously demonstrated that CD94-NKG2 on NK cells and its ligand Qa-1b are important for the resistance of C57BL/6 mice to lethal ectromelia virus (ECTV) infection. We now show that NKG2C or NKG2E deficiency does not increase susceptibility to lethal ECTV infection, but overexpression of Qa-1b in infected cells does. We also demonstrate that Qa-1b is down-regulated in infected and up-regulated in bystander inflammatory monocytes and B cells. Moreover, NK cells activated by ECTV infection kill Qa-1b-deficient cells in vitro and in vivo. Thus, during viral infection, recognition of Qa-1b by activating CD94/NKG2 receptors is not critical. Instead, the levels of Qa-1b expression are down-regulated in infected cells but increased in some bystander immune cells to respectively promote or inhibit their killing by activated NK cells.
Subject(s)
B-Lymphocytes/immunology , Cytotoxicity, Immunologic/immunology , Ectromelia virus/immunology , Histocompatibility Antigens Class I/immunology , Killer Cells, Natural/immunology , Virus Diseases/immunology , Animals , B-Lymphocytes/metabolism , B-Lymphocytes/virology , Bystander Effect/immunology , Cytotoxicity, Immunologic/genetics , Ectromelia virus/physiology , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/metabolism , Killer Cells, Natural/metabolism , Killer Cells, Natural/virology , Male , Mice, Inbred C57BL , Mice, Knockout , NK Cell Lectin-Like Receptor Subfamily C/genetics , NK Cell Lectin-Like Receptor Subfamily C/immunology , NK Cell Lectin-Like Receptor Subfamily C/metabolism , NK Cell Lectin-Like Receptor Subfamily D/genetics , NK Cell Lectin-Like Receptor Subfamily D/immunology , NK Cell Lectin-Like Receptor Subfamily D/metabolism , Virus Diseases/virologyABSTRACT
The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor, which interacts with a wide range of organic molecules of endogenous and exogenous origin, including environmental pollutants, tryptophan metabolites, and microbial metabolites. The activation of AHR by these agonists drives its translocation into the nucleus where it controls the expression of a large number of target genes that include the AHR repressor (AHRR), detoxifying monooxygenases (CYP1A1 and CYP1B1), and cytokines. Recent advances reveal that AHR signaling modulates aspects of the intrinsic, innate and adaptive immune response to diverse microorganisms. This review will focus on the increasing evidence supporting a role for AHR as a modulator of the host response to viral infection.
Subject(s)
Adaptive Immunity , Immunity, Innate , Receptors, Aryl Hydrocarbon/metabolism , Virus Diseases/virology , Viruses/immunology , Active Transport, Cell Nucleus , Animals , Gene Expression Regulation , Host-Pathogen Interactions , Humans , Ligands , Signal Transduction , Virus Diseases/genetics , Virus Diseases/immunology , Virus Diseases/metabolism , Viruses/genetics , Viruses/pathogenicityABSTRACT
Hypoxia-inducible factor 1 (HIF-1) is a transcription factor that plays critical roles during the cellular response to hypoxia. Under normoxic conditions, its function is tightly regulated by the degradation of its alpha subunit (HIF-1α), which impairs the formation of an active heterodimer in the nucleus that otherwise regulates the expression of numerous genes. Importantly, HIF-1 participates in both cancer and infectious diseases unveiling new therapeutic targets for those ailments. Here, we discuss aspects related to the activation of HIF-1, the effects of this transcription factor over immune system components, as well as the involvement of HIF-1 activity in response to viral infections in humans. Although HIF-1 is currently being assessed in numerous clinical settings as a potential therapy for different diseases, up to date, there are no clinical studies evaluating the pharmacological modulation of this transcription factor as a possible new antiviral treatment. However, based on the available evidence, clinical trials targeting this molecule are likely to occur soon. In this review we discuss the role of HIF-1 in viral immunity, the modulation of HIF-1 by different types of viruses, as well as the effects of HIF-1 over their life cycle and the potential use of HIF-1 as a new target for the treatment of viral infections.
Subject(s)
Hypoxia-Inducible Factor 1/genetics , Hypoxia , Virus Diseases/immunology , Virus Diseases/therapy , Cell Hypoxia/physiology , Gene Expression Regulation , Humans , Hypoxia-Inducible Factor 1/metabolism , Virus Diseases/physiopathologyABSTRACT
Dendritic cells (DCs) are a type of innate immune cells with major relevance in the establishment of an adaptive response, as they are responsible for the activation of lymphocytes. Since their discovery, several reports of their role during infectious diseases have been performed, highlighting their functions and their mechanisms of action. DCs can be categorized into different subsets, and each of these subsets expresses a wide arrange of receptors and molecules that aid them in the clearance of invading pathogens. Interferon (IFN) is a cytokine -a molecule of protein origin- strongly associated with antiviral immune responses. This cytokine is secreted by different cell types and is fundamental in the modulation of both innate and adaptive immune responses against viral infections. Particularly, DCs are one of the most important immune cells that produce IFN, with type I IFNs (α and ß) highlighting as the most important, as they are associated with viral clearance. Type I IFN secretion can be induced via different pathways, activated by various components of the virus, such as surface proteins or genetic material. These molecules can trigger the activation of the IFN pathway trough surface receptors, including IFNAR, TLR4, or some intracellular receptors, such as TLR7, TLR9, and TLR3. Here, we discuss various types of dendritic cells found in humans and mice; their contribution to the activation of the antiviral response triggered by the secretion of IFN, through different routes of the induction for this important antiviral cytokine; and as to how DCs are involved in human infections that are considered highly frequent nowadays.
Subject(s)
Dendritic Cells/immunology , Virus Diseases/immunology , Viruses/immunology , Animals , Humans , Immunity, Innate , Interferon Type I/metabolism , Prevalence , Signal Transduction , Toll-Like Receptors/metabolism , Virus Diseases/epidemiologySubject(s)
CD56 Antigen/analysis , COVID-19 Drug Treatment , COVID-19/therapy , Killer Cells, Natural/transplantation , SARS-CoV-2 , Adaptive Immunity , COVID-19/epidemiology , COVID-19/immunology , Cell Culture Techniques/methods , Cells, Cultured/transplantation , Coculture Techniques , GPI-Linked Proteins , Humans , Immunotherapy, Adoptive/methods , Killer Cells, Natural/chemistry , Leukemia, Myeloid, Acute/immunology , Leukemia, Myeloid, Acute/therapy , Pandemics , Pulmonary Alveoli/immunology , Receptors, IgG , Virus Diseases/immunology , Virus Diseases/therapySubject(s)
Cell Proliferation , Immunological Synapses/immunology , Lymphocyte Activation , Lymphocytes, Tumor-Infiltrating/immunology , Neoplasms/immunology , T-Lymphocytes/immunology , Animals , Humans , Immune Checkpoint Inhibitors/therapeutic use , Immunological Synapses/drug effects , Immunological Synapses/metabolism , Immunological Synapses/pathology , Lymphocytes, Tumor-Infiltrating/drug effects , Lymphocytes, Tumor-Infiltrating/metabolism , Lymphocytes, Tumor-Infiltrating/pathology , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/pathology , Signal Transduction , T-Lymphocytes/drug effects , T-Lymphocytes/metabolism , T-Lymphocytes/pathology , Virus Diseases/drug therapy , Virus Diseases/immunology , Virus Diseases/metabolism , Virus Diseases/pathologyABSTRACT
Type I interferons (IFN-I) are a group of related proteins that help regulate the activity of the immune system and play a key role in host defense against viral infections. Upon infection, the IFN-I are rapidly secreted and induce a wide range of effects that not only act upon innate immune cells but also modulate the adaptive immune system. While IFN-I and many IFN stimulated genes are well-known for their protective antiviral role, recent studies have associated them with potential pathogenic functions. In this review, we summarize the current knowledge regarding the complex effects of human IFN-I responses in respiratory as well as reemerging flavivirus infections of public health significance and the molecular mechanisms by which viral proteins antagonize the establishment of an antiviral host defense. Antiviral effects and immune modulation of IFN-stimulated genes is discussed in resisting and controlling pathogens. Understanding the mechanisms of these processes will be crucial in determining how viral replication can be effectively controlled and in developing safe and effective vaccines and novel therapeutic strategies.
Subject(s)
Antiviral Agents/metabolism , Flavivirus/physiology , Interferon Type I/metabolism , Respiratory Tract Infections/immunology , Viral Vaccines/immunology , Virus Diseases/immunology , Animals , Humans , Immunity, Innate , Public Health , Vaccination , Virus ReplicationABSTRACT
Previously, we evaluated the effect of the immunobiotic strain Lactobacillus rhamnosus CRL1505 on the transcriptomic response of porcine intestinal epithelial (PIE) cells triggered by the challenge with the Toll-like receptor 3 (TLR-3) agonist poly(I:C) and successfully identified a group of genes that can be used as prospective biomarkers for the screening of new antiviral immunobiotics. In this work, several strains of lactobacilli were evaluated according to their ability to modulate the expression of IFNα, IFNß, RIG1, TLR3, OAS1, RNASEL, MX2, A20, CXCL5, CCL4, IL-15, SELL, SELE, EPCAM, PTGS2, PTEGES, and PTGER4 in PIE cells after the stimulation with poly(I:C). Comparative analysis of transcripts variations revealed that one of the studied bacteria, Lactobacillus plantarum MPL16, clustered together with the CRL1505 strain, indicating a similar immunomodulatory potential. Two sets of in vivo experiments in Balb/c mice were performed to evaluate L. plantarum MPL16 immunomodulatory activities. Orally administered MPL16 prior intraperitoneal injection of poly(I:C) significantly reduced the levels of the proinflammatory mediators tumor necrosis factor α (TNF-α), interleukin 6 (IL-6), and IL-15 in the intestinal mucosa. In addition, orally administered L. plantarum MPL16 prior nasal stimulation with poly(I:C) or respiratory syncytial virus infection significantly decreased the levels of the biochemical markers of lung tissue damage. In addition, reduced levels of the proinflammatory mediators TNF-α, IL-6, and IL-8 were found in MPL16-treated mice. Improved levels of IFN-ß and IFN-γ in the respiratory mucosa were observed in mice treated with L. plantarum MPL16 when compared to control mice. The immunological changes induced by L. plantarum MPL16 were not different from those previously reported for the CRL1505 strain in in vitro and in vivo studies. The results of this work confirm that new immunobiotic strains with the ability of stimulating both local and distal antiviral immune responses can be efficiently selected by evaluating the expression of biomarkers in PIE cells.
Subject(s)
Antiviral Agents , Intestinal Mucosa/immunology , Intestinal Mucosa/microbiology , Lacticaseibacillus rhamnosus/immunology , Probiotics , Animals , Mice , Mice, Inbred BALB C , Poly I-C/pharmacology , Respiratory Mucosa/immunology , Respiratory Syncytial Virus Infections/immunology , Respiratory Tract Infections/immunology , Swine , Virus Diseases/immunologyABSTRACT
The triggering receptor expressed on myeloid cells 1 (TREM-1) is a receptor of the innate immune system, expressed mostly by myeloid cells and primarily associated with pro- inflammatory responses. Although the exact nature of its ligands has not yet been fully elucidated, many microorganisms or danger signals have been proposed as inducers of its activation or the secretion of sTREM-1, the soluble form with putative anti-inflammatory effects. In the course of the 20 years since its first description, several studies have investigated the involvement of TREM-1 in bacterial infections. However, the number of studies describing the role of TREM-1 in fungal, viral and parasite-associated infections has only increased in the last few years, showing a diverse contribution of the receptor in these scenarios, with beneficial or detrimental activities depending on the context. Therefore, this review aims to discuss how TREM-1 may influence viral, fungal and parasitic infection outcomes, highlighting its potential as a therapeutic target and biomarker for diagnosis and prognosis of non-bacterial infectious diseases.