Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 959
Filter
1.
Anal Chim Acta ; 1329: 343201, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-39396285

ABSTRACT

BACKGROUND: Remediation of heavy metal-contaminated water using phytoremediation with accumulator aquatic plants is a promising low-cost emerging technology that adapts very well to the surrounding ecosystem. For the system to work efficiently, metal-saturated plants must be replaced, producing a potentially toxic amount of biomass that is usually stored dry to reduce its volume. The speciation of the high metal content in this biomass is crucial to define its final destination. This work explores the application of synchrotron-based EDIXS (Energy Dispersive Inelastic X-ray Scattering) to monitor the speciation of copper in regional aquatic plants from a laboratory-scale phytoremediation system. RESULTS: The phytofiltration system utilized Lemna minor L. and Salvinia biloba Raddi species grown under controlled conditions of light and nutrient availability. Both species are known hyperaccumulators of copper and are prevalent in lakes and rivers across South America. The validation of EDIXS was previously carried out by comparing the results of copper standard samples with those obtained by XANES. The findings revealed that both plant species retained copper in chemical complexes exhibiting octahedral coordination with a Cu valence of 2. Notably, differences emerged between the leaves and roots of Lemna minor L., suggesting a more pronounced adsorption of copper in its leaves, a trend that intensified with exposure. In opposite, for Salvinia the differences between leaves and roots suggests the presence of specific protective mechanisms to cope the copper exposure. Surprisingly, no significant dependence on copper concentration of the aqueous media was observed for either species. SIGNIFICANCE AND NOVELTY: These promising results endorse the viability of the proposed methodology in identifying the most effective fate of biomass generated in phytoremediation systems. EDIXS provides a valid tool for performing local copper speciation in aquatic plants with sufficient selectivity to identify subtle differences in various biological tissues. The simplicity of this methodology renders it a valuable tool for advancing our comprehension of metal speciation within waste biomass, thereby holding significant implications for the development of environmental remediation strategies.


Subject(s)
Biodegradation, Environmental , Biomass , Copper , Copper/chemistry , Copper/metabolism , Copper/analysis , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/chemistry , Araceae/metabolism , Araceae/chemistry , Filtration
2.
Chemosphere ; 366: 143455, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39366489

ABSTRACT

This study presents the effect of natural zeolite (NZ) on a nitrifying sequencing batch reactor for removing ibuprofen (IBP) and diclofenac (DFC) in the long term, including kinetics and microbial community. The research was conducted in two 2 L liquid-volume bioreactors, one with 5 g/L of NZ. Nitrogen load rates ranging between 5.8 and 8.5 mg N/L h were studied. Bioreactors were operated for 217 days, with IBP and DFC concentrations ranging between 20 and 2000 µg/L. The results showed that using NZ in a nitrifying SBR only improves IBP removal at low concentrations (40 µg/L). IBP and DFC do not affect the nitrification efficiency or kinetic of ammonia removal. In the presence of IBP and DFC, NZ also favored a higher relative abundance in the genus Nitrosomonas and the Bradyrhizobiaceae family (responsible for nitrite-oxidizing activity), allowing higher IBP degradations at low IBP concentrations. Finally, IBP and DFC stimulated heterotrophic nitrification.


Subject(s)
Bioreactors , Diclofenac , Ibuprofen , Nitrification , Water Pollutants, Chemical , Zeolites , Bioreactors/microbiology , Ibuprofen/metabolism , Diclofenac/metabolism , Zeolites/chemistry , Kinetics , Water Pollutants, Chemical/metabolism , Microbiota/drug effects , Waste Disposal, Fluid/methods , Ammonia/metabolism
3.
Sci Total Environ ; 953: 176103, 2024 Nov 25.
Article in English | MEDLINE | ID: mdl-39245392

ABSTRACT

Exposure and resulting tissue concentrations of various elements from natural and anthropogenic sources are influenced by multiple factors, such as geographic location, age, diet, and metabolic rate, that can influence wildlife health. Essential and non-essential elements were assessed in lanugo and whole blood collected in 2019 from 102 Steller sea lion (Eumetopias jubatus) pups from two rookeries from the western and central Aleutian Islands: Agattu (WAI, n = 54) and Ulak Islands (CAI, n = 48). Rookery, sex, dorsal standard length, and trophic ecology (ẟ15N, ẟ13C values) effects on element concentration were evaluated. Significant differences in element concentrations of lanugo were exhibited across rookeries (p < 0.05), except for zinc (Zn). For example, higher mercury (Hg) and selenium (Se) concentrations were observed in WAI than CAI, while other elements were lower in WAI. Whole blood showed higher sulfur (S) and Se concentrations in CAI compared to WAI, while WAI had elevated strontium (Sr) and Hg concentrations relative to CAI. Trophic ecology significantly influenced most element concentrations, possibly due to regional variations in adult female feeding and food web dynamics. Interactions between elements were found in lanugo across both rookeries, with varying strengths. Whole blood displayed less pronounced yet consistent associations, with variable intensities. Essential elements sodium (Na), potassium (K), and calcium (Ca) formed a distinct group whose interaction is crucial for nervous system function and muscle contraction. Another group comprised zinc (Zn), iron (Fe), manganese (Mn), magnesium (Mg), phosphorous (P), S, and Se, which are known for indirectly interacting with enzyme function and metabolic pathways. Hg and Se formed a distinct group probably due to their known chemical interactions and physiological protective interactions.


Subject(s)
Sea Lions , Animals , Sea Lions/metabolism , Alaska , Female , Environmental Monitoring , Water Pollutants, Chemical/metabolism , Trace Elements/metabolism , Male , Food Chain , Selenium/metabolism , Selenium/blood
4.
Environ Pollut ; 361: 124804, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-39181301

ABSTRACT

Mercury, a toxic metal released by various human activities, exerts environmental stress through its bioaccumulation and biomagnification, particularly in marine habitats. South American fur seals (Arctocephalus australis) and sea lions (Otaria flavescens) reproduce on the Atlantic coast of Uruguay. As top predators, they can accumulate toxic levels of mercury and are often used as sentinel species for monitoring ecosystem health. Fur seals prey on pelagic species, such as fish and squid, while sea lions consume coastal-benthic prey. We analyzed the total mercury concentration (THg) in hair and the trophic habits (δ13C and δ15N) of females from both species. The average THg concentration in adult female sea lions (30.5 ± 9.3 µg/g dry weight) was significantly higher than in fur seals (6.3 ± 2.5 µg/g dry weight). Additionally, the mean δ15N and δ13C values were significantly higher in sea lion (δ15N: 19.2 ± 0.6‰, δ13C: -13.8 ± 0.2‰) compared to fur seals (δ15N: 16.5 ± 0.5‰, δ13C: -15.5 ± 0.6‰). Our results suggest that different trophic levels and feedings areas affect the THg concentration in Uruguayan Otariids. Notably, at the intraspecific level, the THg concentration in sea lions increased with δ13C values, suggesting a link to coastal feeding habits. This indicates that coastal feeding behaviors, compared to feeding in pelagic environments, enhance mercury bioaccumulation in Otariids along the Uruguayan coast, with the discharge of freshwater from the Río de la Plata (one of the largest estuaries in South America) basin identified as a potential mercury source. THg concentrations found in female sea lion hair are the highest reported in Otariids globally. Mercury levels exceeded toxic thresholds observed in other mammals and could pose significant health risks. Our findings may explain why sea lions were particularly affected by the avian influenza outbreak in Uruguay compared to fur seals. Monitoring the declining sea lion population is crucial, making our results significant for integrated conservation and management strategies.


Subject(s)
Bioaccumulation , Environmental Monitoring , Food Chain , Fur Seals , Hair , Mercury , Sea Lions , Water Pollutants, Chemical , Animals , Mercury/metabolism , Sea Lions/metabolism , Water Pollutants, Chemical/metabolism , Fur Seals/metabolism , Uruguay , Female , Hair/chemistry , Hair/metabolism , Ecosystem
5.
J Hazard Mater ; 478: 135425, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-39137543

ABSTRACT

In vitro plant cultures are able to remove and metabolise xenobiotics, making them promising tools for decontamination strategies. In this work, we evaluated Brassica napus hairy roots (HRs) to tolerate and remove high concentrations of the azo dye Naphthol Blue-Black (NBB). Experiments were performed using both growing and resting culture systems at different pHs. Reuse of HRs biomass was evaluated in successive decolourisation cycles. Proteomics was applied to understand the molecular responses likely to be involved in the tolerance and removal of NBB. The HRs tolerated up to 480 µg mL-1 NBB, and 100 % removal was achieved at 180 µg mL-1 NBB after 10 days using both culture systems. Interestingly, the HRs are robust enough to be reused, showing 55-60 % removal even after three reuse cycles. The highest dye removal rates were achieved during the first 2 days of incubation, as initial removal is mainly driven by passive processes. Active mechanisms are triggered later by regulating the expression of proteins with different biological functions, mainly those related to xenobiotic metabolism, such as hydrolytic and redox enzymes. These results suggest that B. napus HRs are a robust tool that could make a significant contribution to textile wastewater treatment.


Subject(s)
Biodegradation, Environmental , Brassica napus , Plant Roots , Proteomics , Brassica napus/metabolism , Plant Roots/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Coloring Agents/metabolism , Coloring Agents/chemistry , Azo Compounds/metabolism , Azo Compounds/chemistry , Water Pollutants, Chemical/metabolism
6.
Water Sci Technol ; 90(4): 1181-1197, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39215731

ABSTRACT

Groundwater and soil contamination by aromatic amines (AAs), used in the production of polymers, plastics, and pesticides, often results from improper waste disposal and accidental leaks. These compounds are resistant to anaerobic degradation; however, micro-aeration can enhance this process by promoting microbial interactions. In batch assays, anaerobic degradation of aniline (0.14 mM), a model AA, was tested under three micro-aeration conditions: T30, T15, and T10 (30, 15, and 10 min of micro-aeration every 2 h, respectively). Aniline degradation occurred in all conditions, producing both aerobic (catechol) and anaerobic (benzoic acid) byproducts. The main genera involved in T30 and T15 were Comamonas, Clostridium, Longilinea, Petrimonas, Phenylobacterium, Pseudoxanthomonas, and Thiobacillus. In contrast, in T10 were Pseudomonas, Delftia, Leucobacter, and Thermomonas. While T30 and T15 promoted microbial cooperation for anaerobic degradation and facultative respiration, T10 resulted in a competitive environment due to dominance and oxygen scarcity. Despite aniline degradation in 9.4 h under T10, this condition was toxic to Allium cepa seeds and exhibited cytogenotoxic effects. Therefore, T15 emerged as the optimal condition, effectively promoting anaerobic degradation without accumulating toxic byproducts. Intermittent micro-aeration emerges as a promising strategy for enhancing the anaerobic degradation of AA-contaminated effluents.


Subject(s)
Aniline Compounds , Biodegradation, Environmental , Aniline Compounds/toxicity , Aniline Compounds/metabolism , Anaerobiosis , Kinetics , Bacteria/metabolism , Bacteria/drug effects , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/toxicity
7.
Environ Res ; 261: 119672, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-39053760

ABSTRACT

Microalgae cultures have emerged as a promising strategy in diverse areas, ranging from wastewater treatment to biofuel production, thus contributing to the search for carbon neutrality. These photosynthetic organisms can utilize the resources present in wastewater and fix atmospheric CO2 to produce biomass with high energy potential. In this study, the removal efficiency of Polycyclic Aromatic Hydrocarbons (PAHs), CO2 fixation and lipid content in the biomass produced from microalgae grown in airlift photobioreactor were evaluated. Four mesoscale cultures were carried out: Control (Seawater + Conway medium), Treatment A (Oil Produced Water + Poultry Effluent Water), Treatment B (Poultry Effluent Water + Seawater) and Treatment C (Oil Produced Water, Seawater and nutrients). The impact of biostimulation, through the addition of nutrients, on PAHs removal efficiency (up to 90%), CO2 fixation rate (up to 0.20 g L-1 d-1) and the composition of the generated biomass was observed. Primarily, the addition of nitrates to the culture medium impacted CO2 fixation rate of the microalgae. In addition, a direct correlation was observed between PAHs removal and lipid accumulation in the biomass, up to 36% in dry weight, demonstrating microalgae's ability to take advantage of the organic carbon (PAHs) present in the culture medium to generate lipid-rich biomass. The concentration of polysaccharides in the biomass obtained did not exceed 12% on a dry weight basis, and the Higher Heating Value (HHV) ranged between 17 and 21 MJ kg-1. Finally, the potential of generating hydrogen through pyrolysis was highlighted, taking advantage of the characteristics of biomass as a conversion route to produce biofuels. These results show that microalgae are effective in wastewater treatment and have great potential in producing biofuels, thus contributing to the transition towards more sustainable energy sources and climate change mitigation.


Subject(s)
Biofuels , Carbon Dioxide , Microalgae , Photobioreactors , Polycyclic Aromatic Hydrocarbons , Wastewater , Microalgae/metabolism , Microalgae/growth & development , Biofuels/analysis , Carbon Dioxide/metabolism , Carbon Dioxide/analysis , Wastewater/chemistry , Wastewater/microbiology , Polycyclic Aromatic Hydrocarbons/metabolism , Polycyclic Aromatic Hydrocarbons/analysis , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/metabolism , Biomass , Waste Disposal, Fluid/methods
8.
Int J Phytoremediation ; 26(13): 2163-2174, 2024 Nov.
Article in English | MEDLINE | ID: mdl-38992938

ABSTRACT

Partially Saturated Vertical Constructed Wetlands (PSV-CWs) are novel wastewater treatment systems that work through aerobic and anaerobic conditions that favor the removal of pollutants found in high concentrations, such as rivers contaminated with domestic wastewater and landfill leachate. The objective of the study was to evaluate the efficiency of PSV-CWs using monocultures and polycultures of Typha latifolia and Heliconia psittacorum to treat river waters contaminated with leachates from open dumps and domestic wastewater. Six experimental units of PSV-CWs were used; two were planted with Typha latifolia monoculture, two with Heliconia psittacorum monoculture and two with polycultures of both plants. The results indicated better organic matter and nitrogen removal efficiencies (p < 0.05) in systems with polycultures (TSS:95%, BOD5:83%, COD:89%, TN:82% and NH4+:99%). In general, the whole system showed high average removal efficiencies (TSS:93%, BOD5:79%, COD:85%, TN:79%, NH4+:98% and TP:85%). Regarding vegetation, both species developed better in units with monocultures, being Typha latifolia the one that reached a more remarkable development. However, both species showed high resistance to the contaminated environment. These results showed higher removals than those reported in the literature with conventional Free Flow Vertical Constructed Wetlands (FFV-CWs), so PSV-CWs could be a suitable option to treat this type of effluent.


The research addresses the contamination of water resources in developing countries by landfill leachate and domestic wastewater discharges. It proposes treatment through Partially Saturated Vertical Constructed Wetlands (PSV-CWs), which, despite the limited information available, have been shown to be effective in removing pollutants in effluents with high concentrations. In addition to evaluating PSV-CWs, the study examines the impact of different types of vegetation on pollutant removal efficiency, concluding that PSV-CWs are a promising and viable option for the treatment of these effluents.


Subject(s)
Biodegradation, Environmental , Rivers , Typhaceae , Waste Disposal, Fluid , Wastewater , Water Pollutants, Chemical , Wetlands , Water Pollutants, Chemical/metabolism , Waste Disposal, Fluid/methods , Heliconiaceae , Nitrogen/metabolism
9.
J Photochem Photobiol B ; 257: 112965, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38955078

ABSTRACT

This research aimed to develop natural plant systems to serve as biological sentinels for the detection of organophosphate pesticides in the environment. The working hypothesis was that the presence of the pesticide in the environment caused changes in the content of pigments and in the photosynthetic functioning of the plant, which could be evaluated non-destructively through the analysis of reflected light and emitted fluorescence. The objective of the research was to furnish in vivo indicators derived from spectroscopic parameters, serving as early alert signals for the presence of organophosphates in the environment. In this context, the effects of two pesticides, Chlorpyrifos and Dimethoate, on the spectroscopic properties of aquatic plants (Vallisneria nana and Spathyfillum wallisii) were studied. Chlorophyll-a variable fluorescence allowed monitoring both pesticides' presence before any damage was observed at the naked eye, with the analysis of the fast transient (OJIP curve) proving more responsive than Kautsky kinetics, steady-state fluorescence, or reflectance measurements. Pesticides produced a decrease in the maximum quantum yield of PSII photochemistry, in the proportion of PSII photochemical deexcitation relative to PSII non photochemical decay and in the probability that trapped excitons moved electrons into the photosynthetic transport chain beyond QA-. Additionally, an increase in the proportion of absorbed energy being dissipated as heat rather than being utilized in the photosynthetic process, was notorious. The pesticides induced a higher deactivation of chlorophyll excited states by photophysical pathways (including fluorescence) with a decrease in the quantum yields of photosystem II and heat dissipation by non-photochemical quenching. The investigated aquatic plants served as sentinels for the presence of pesticides in the environment, with the alert signal starting within the first milliseconds of electronic transport in the photosynthetic chain. Organophosphates damage animals' central nervous systems similarly to certain compounds found in chemical weapons, thus raising the possibility that sentinel plants could potentially signal the presence of such weapons.


Subject(s)
Chlorophyll , Chlorpyrifos , Chlorophyll/metabolism , Chlorophyll/chemistry , Chlorpyrifos/metabolism , Chlorpyrifos/toxicity , Fluorescence , Pesticides/toxicity , Pesticides/metabolism , Photosynthesis/drug effects , Dimethoate/toxicity , Dimethoate/metabolism , Spectrometry, Fluorescence , Photosystem II Protein Complex/metabolism , Photosystem II Protein Complex/chemistry , Environmental Monitoring/methods , Chlorophyll A/metabolism , Chlorophyll A/chemistry , Kinetics , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/metabolism
10.
Environ Pollut ; 359: 124513, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39002751

ABSTRACT

Aquatic biota are exposed to toxic substances resulting from human activities, reducing environmental quality and can compromise the health of the organisms. This study aimed to employ Danio rerio as an environmental bioindicator, analyzing the effects of water from distinct urban aquatic environments. An active biomonitoring system was set up to compare the temporal dynamics of histological biomarkers for gill and liver and the patterns of non-protein thiols (NPSH) in muscle in specimens exposed for 3, 6, and 12 days. Three large urban basins in the city of Campo Grande (Midwest of Brazil) were selected. Two sites are in a very populous area (i.e Lagoa and Bandeira) and another on in an area with agricultural activities (i.e Anhanduí). All the streams displayed distinct qualitative characteristics. The presence of metals, including Mn, Zn, Fe, and Al, as well as pH, temperature, and dissolved oxygen, accounted for 38% of the variability (PC1), while total solids, conductivity, ammonia, nitrite, and explained 24 % (PC2). Degree tissue changes index (DTC) in gill and the concentration of NPSH increased in all streams during 3, 6 and 12 days of exposure. DTC in liver increases in all exposure times in most populous stream (i.e Lagoa and Bandeira). Histopathological evidence in the gill, including proliferation, desquamation, and necrosis of the primary lamellar epithelium; fusion and aneurysms in the secondary lamellar epithelium were observed after three days of exposure. Degenerative nuclear figures were noted in the liver after three days of exposure, followed by hepatocellular hypertrophy, lipidosis, and necrosis at twelve days. Our findings showing time-dependent effects of urban aquatic environments in histopathological (i.e DTC) and biochemical biomarkers in zebrafish. The biomonitoring model enabled a comparison of the temporal dynamics of various health markers, using zebrafish as bioindicator. Future studies might use this experimental model and biomarkers for environmental biomonitoring program.


Subject(s)
Biological Monitoring , Environmental Monitoring , Gills , Liver , Muscles , Rivers , Sulfhydryl Compounds , Water Pollutants, Chemical , Zebrafish , Animals , Gills/pathology , Gills/metabolism , Liver/metabolism , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/analysis , Environmental Monitoring/methods , Sulfhydryl Compounds/metabolism , Rivers/chemistry , Muscles/chemistry , Muscles/metabolism , Brazil , Biomarkers/metabolism
11.
Ecotoxicology ; 33(7): 762-771, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38985288

ABSTRACT

Reservoir construction promotes many environmental impacts, including the enhancement of mercury concentrations in fish. The processes that can influence mercury concentrations in fish in Amazonian reservoirs are still little explored in depth, especially when we consider the possible particularities of the ecosystems in question. This study aims to investigate how mercury concentrations in fish could be influenced by the Tucuruí dam, considering possible changes in their feeding and trophic position according to the dam position (up or downstream). Fish were sampled upstream and downstream of the Tucuruí reservoir, and total mercury (THg) and stable isotopes of carbon and nitrogen (δ15N and δ13C) were measured in muscles. We observed three different Hg bioaccumulation patterns influenced by the dam. These differences occurred due to species trophic niche changes corroborated by the isotope analysis. Higher THg concentrations downstream compared to those upstream ones were only observed for Geophagus proximus. On the contrary, Plagioscion squamosissimus, from downstream, presented lower concentrations than upstream ones. The isotopic niche of these two species presented different changes according to the sampled site. THg biomagnification was higher upstream compared to downstream, considering that the regression slope was approximately two times higher upstream versus downstream. THg concentrations in fish were explained by the differences in their feeding habits according to their location in relation to the dam. The difference in THg biomagnification was able to reflect differences in structure of the food web chain in ecosystems under the dam's influence.


Subject(s)
Carbon Isotopes , Environmental Monitoring , Fishes , Mercury , Nitrogen Isotopes , Water Pollutants, Chemical , Animals , Mercury/analysis , Mercury/metabolism , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/metabolism , Carbon Isotopes/analysis , Brazil , Fishes/metabolism , Nitrogen Isotopes/analysis , Food Chain , Rivers/chemistry
12.
J Hazard Mater ; 476: 135005, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38996684

ABSTRACT

Microbially induced carbonate precipitation (MICP) immobilizes toxic metals and reduces their bioavailability in aqueous systems. However, its application in the treatment of acid mine drainage (AMD) is poorly understood. In this study, the genomes of Sporosarcina sp. UB5 and UB10 were sequenced. Urease, carbonic anhydrases, and metal resistance genes were identified and enzymatic assays were performed for their validation. The geochemical mechanism of precipitation in AMD was elucidated through geo-mineralogical analysis. Sporosarcina sp. UB5 was shown to be a new genomospecies, with an average nucleotide identity < 95 % (ANI) and DNA-DNA hybridization < 70 % (DDH) whereas UB10 is close to S. pasteurii. UB5 contained two urease operons, whereas only one was identified in UB10. The ureolytic activities of UB5 and UB10 were 122.67 ± 15.74 and 131.70 ± 14.35 mM NH4+ min-1, respectively. Both strains feature several carbonic anhydrases of the α, ß, or γ families, which catalyzed the precipitation of CaCO3. Only Sporosarcina sp. UB5 was able to immobilize metals and neutralize AMD. Geo-mineralogical analyses revealed that UB5 directly immobilized Fe (1-23 %), Mn (0.65-1.33 %) and Zn (0.8-3 %) in AMD via MICP and indirectly through adsorption to calcite and binding to bacterial cell walls. The MICP-treated AMD exhibited high removal rates (>67 %) for Ag, Al, As, Ca, Cd, Co, Cu, Fe, Mn, Pb, and Zn, and a removal rate of 15 % for Mg. This study provides new insights into the MICP process and its applications to AMD treatment using autochthonous strains.


Subject(s)
Mining , Sporosarcina , Urease , Sporosarcina/genetics , Sporosarcina/metabolism , Urease/metabolism , Chemical Precipitation , Carbonates/chemistry , Carbonic Anhydrases/metabolism , Carbonic Anhydrases/genetics , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/chemistry
13.
Sci Total Environ ; 948: 174854, 2024 Oct 20.
Article in English | MEDLINE | ID: mdl-39032751

ABSTRACT

Coastal areas are affected by urban, industrial and agriculture pollutants runoff, wastewater and stormwater discharges, making this environment the final repository of chemical contaminants. These contaminants have the potential to spread out to the entire food chain, impacting marine life and the quality of their habitat. In this aspect, the concept of marine mammals as bioindicators provides an approach to the degree of contamination in the environment and to the identification and management of multiple sources of contaminants. The present study analyzed several elements like As, Ba, Cd, Cr, Cu, Hg, Mn, Mo, Ni, Pb, V and Zn in liver tissue from two dolphin species: Sotalia guianensis, a near-threatened species, and the vulnerable Pontoporia blainvillei. In the study, we also investigated if dolphins (population) recorded using the heaviest urban areas have higher concentrations of contaminants in their tissues. Dolphin samples (n = 40 S. guianensis; n = 97 P. blainvillei) were collected by daily monitoring carried out by Santos Basin Beach Monitoring Project (PMP-BS), from stranded individuals found in São Paulo state. The Spearman's rank correlation showed distinct correlations in the accumulation of trace elements by both species, indicating different sources of exposure to the elements studied or distinct biochemical processes between species. Interspecific and intraspecific variations were observed, possibly related to the individual distribution and feeding habits. Correlations were observed between age and concentrations of trace elements, positive for Cd, Hg and Mo. Finally, our findings indicate high levels of Cu, Zn, and concentrations of As, V and Hg in fetuses, in particular, an analysis was performed on a fetus found inside a stranded individual, indicating placental transfer as the first route of exposure for some elements.


Subject(s)
Bioaccumulation , Dolphins , Endangered Species , Environmental Monitoring , Trace Elements , Water Pollutants, Chemical , Animals , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/metabolism , Trace Elements/analysis , Trace Elements/metabolism , Dolphins/metabolism , Female , Brazil , Maternal-Fetal Exchange
14.
Sci Total Environ ; 948: 174947, 2024 Oct 20.
Article in English | MEDLINE | ID: mdl-39047826

ABSTRACT

Studies on the occurrence of POPs and other persistent compounds in pristine areas are extremely valuable, as they offer insights on the long-range transportation of POPs and the occurrence of natural compound producers' areas. In this regard, this study aimed to report data of both anthropogenic (polychlorinated biphenyls, PCBs, and polybrominated diphenyl ethers, PBDEs) and natural (methoxylated PBDEs, MeO-BDEs) compounds in tissues of the black triggerfish, Melichthys niger (Tetraodontiformes, Balistidae), specimens (n = 30) sampled in 2018 during a scientific expedition conducted at Trindade Island. Concentrations of ∑28PCBs ranged from 73 to 1052 ng g-1 lw in liver, 334 to 1981 ng g-1 lw in gonads, and 20 to 257 ng g-1 lw in muscle, with the predominance of PCB-180 in liver and PCB-52 in gonad and muscle. Concentrations of ∑7PBDEs ranged from

Subject(s)
Environmental Monitoring , Halogenated Diphenyl Ethers , Persistent Organic Pollutants , Polychlorinated Biphenyls , Water Pollutants, Chemical , Animals , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/metabolism , Brazil , Halogenated Diphenyl Ethers/metabolism , Halogenated Diphenyl Ethers/analysis , Polychlorinated Biphenyls/analysis , Polychlorinated Biphenyls/metabolism , Coral Reefs , Atlantic Ocean
15.
Braz J Microbiol ; 55(3): 2411-2422, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38837015

ABSTRACT

Microbial remediation plays a pivotal role in the elimination of petroleum pollutants, making it imperative to investigate the capabilities of microorganisms in degrading petroleum. The present study describes the isolation of a promising strain, Acinetobacter sp. HX09, from petroleum-contaminated water. GC-MS analysis revealed a remarkable removal efficiency for short and medium-chain alkanes, with a rate of approximately 64% after a 7-days incubation at 30 °C. Transcriptome analysis of HX09 exhibited a predominant upregulation in gene expression levels by the induce of crude oil. Notably, genes such as alkane 1-monooxygenase, dehydrogenases and fatty acid metabolic enzymes exhibited fold changes range from 3.16 to 1.3. Based on the alkB gene sequences in HX09, the Phyre2 algorithm generated a three-dimensional structure that exhibited similarity to segments of acyl coenzyme desaturases and acyl lipid desaturases. Furthermore, three biodegradation-related gene clusters were predicted in HX09 based on the reference genome sequence. These findings contribute to our understanding of the hydrocarbon-degrading mechanisms employed by Acinetobacter species and facilitate the development of effective remediation strategies for crude oil- polluted environments.


Subject(s)
Acinetobacter calcoaceticus , Biodegradation, Environmental , Gene Expression Profiling , Petroleum , Petroleum/metabolism , Acinetobacter calcoaceticus/genetics , Acinetobacter calcoaceticus/metabolism , Acinetobacter calcoaceticus/enzymology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Alkanes/metabolism , Water Pollutants, Chemical/metabolism , Phylogeny
16.
Environ Sci Pollut Res Int ; 31(31): 43561-43582, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38918295

ABSTRACT

The 2030 Agenda, established in 2015, contains seventeen Sustainable Development Goals (SDGs) aimed at addressing global challenges. SDG-06, focused on clean water, drives the increase in basic sanitation coverage, the management of wastewater discharges, and water quality. Wastewater treatment could contribute to achieving 11 of the 17 SDGs. For this purpose, phytoremediation is a low-cost and adaptable alternative to the reduction and control of aquatic pollutants. The objective of this study is to highlight the role of macrophytes in the removal and degradation of these compounds, focusing on Eichhornia crassipes (Mart.) Solms, commonly known as water hyacinth. The reported values indicate that this plant has a removal capacity of over 70% for metals such as copper, aluminum, lead, mercury, cadmium, and metalloids such as arsenic. Additionally, it significantly improves water quality parameters such as turbidity, suspended solids, pH, dissolved oxygen, and color. It also reduces the presence of phosphates, and nitrogen compounds to values below 50%. It also plays a significant role in the removal of organic contaminants such as pesticides, pharmaceuticals, and dyes. This study describes several valuable by-products from the biomass of the water hyacinth, including animal and fish feed, energy generation (such as briquettes), ethanol, biogas, and composting. According to the analysis carried out, E. crassipes has a great capacity for phytoremediation, which makes it a viable solution for wastewater management, with great potential for water ecosystem restoration.


Subject(s)
Biodegradation, Environmental , Eichhornia , Wastewater , Water Pollutants, Chemical , Eichhornia/metabolism , Wastewater/chemistry , Water Pollutants, Chemical/metabolism , Sustainable Development , Waste Disposal, Fluid/methods , Water Purification/methods , Water Quality
17.
Water Environ Res ; 96(6): e11065, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38895814

ABSTRACT

Wastewater containing tetrabromobisphenol A (TBBPA), a commonly used flame retardant found in wastewater, can present significant toxic effects on biota, yet its impact on tropical freshwater environments is not well understood. This study explores the effectiveness of two independent anaerobic treatment systems, the acidogenic reactor (AR) and the methanogenic reactor (MR), for the ecotoxicity reduction of TBBPA-rich wastewater in four tropical freshwater species. Despite presenting good physicochemical performance and reduced toxicity of the influent for most species, AR and MR treatments remain acute and chronic toxicity. Overall, MR exhibited greater efficacy in reducing influent toxicity compared with AR. TBBPA bioaccumulation was observed in Chironomus sancticaroli after short-term exposure to 100% MR effluent. Multigenerational exposures highlighted changes in the wing length of C. sancticaroli, showing decreases after influent and AR exposures and increases after MR exposures. These findings underscore the need for ecotoxicological tools in studies of new treatment technologies, combining the removal of emerging contaminants with safeguarding aquatic biota. PRACTITIONER POINTS: Acidogenic and methanogenic reactors reduced the acute and chronic toxicity of wastewater containing tetrabromobisphenol A. Both treatments still exhibit toxicity, inducing short- and long-term toxic effects on four native tropical species. The aquatic species Pristina longiseta was most sensitive to effluents from acidogenic and methanogenic reactors. TBBPA concentrations recovered from Chironomus sancticaroli bioaccumulation analysis ranged from 1.07 to 1.35 µg g-1. Evaluating new treatment technologies with multiple species bioassays is essential for a comprehensive effluent toxicity assessment and ensuring aquatic safety.


Subject(s)
Polybrominated Biphenyls , Water Pollutants, Chemical , Animals , Polybrominated Biphenyls/toxicity , Polybrominated Biphenyls/metabolism , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/metabolism , Anaerobiosis , Wastewater/chemistry , Biota , Flame Retardants/toxicity , Flame Retardants/metabolism , Waste Disposal, Fluid/methods , Chironomidae/drug effects , Chironomidae/metabolism , Aquatic Organisms/drug effects , Aquatic Organisms/metabolism
18.
Molecules ; 29(12)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38930791

ABSTRACT

Industrialization has brought many environmental problems since its expansion, including heavy metal contamination in water used for agricultural irrigation. This research uses microbial fuel cell technology to generate bioelectricity and remove arsenic, copper, and iron, using contaminated agricultural water as a substrate and Bacillus marisflavi as a biocatalyst. The results obtained for electrical potential and current were 0.798 V and 3.519 mA, respectively, on the sixth day of operation and the pH value was 6.54 with an EC equal to 198.72 mS/cm, with a removal of 99.08, 56.08, and 91.39% of the concentrations of As, Cu, and Fe, respectively, obtained in 72 h. Likewise, total nitrogen concentrations, organic carbon, loss on ignition, dissolved organic carbon, and chemical oxygen demand were reduced by 69.047, 86.922, 85.378, 88.458, and 90.771%, respectively. At the same time, the PDMAX shown was 376.20 ± 15.478 mW/cm2, with a calculated internal resistance of 42.550 ± 12.353 Ω. This technique presents an essential advance in overcoming existing technical barriers because the engineered microbial fuel cells are accessible and scalable. It will generate important value by naturally reducing toxic metals and electrical energy, producing electric currents in a sustainable and affordable way.


Subject(s)
Bacillus , Bioelectric Energy Sources , Bioelectric Energy Sources/microbiology , Bacillus/metabolism , Metals, Heavy , Water Pollutants, Chemical/metabolism , Copper/chemistry , Copper/metabolism , Hydrogen-Ion Concentration , Biodegradation, Environmental , Arsenic/metabolism
19.
Sci Total Environ ; 945: 174008, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38901594

ABSTRACT

The role of the carapace in the uptake and storage of newly accumulated metals was investigated in the green crab exposed to environmentally relevant concentrations of calcium ([Ca] = 389 mg L-1 or 9.7 mmol L-1), zinc ([Zn] = 82 µg L-1 or 1.25 µmol L-1), and nickel ([Ni] = 8.2 µg L-1 or 0.14 µmol L-1) in 12 °C seawater, using radio-tracers (45Ca, 65Zn, 63Ni). After 24-h exposure, carapace exhibited the highest concentration of newly accumulated Ca, whereas carapace and gills exhibited the highest concentrations of both newly accumulated Zn and Ni relative to other tissues. For all three metals, the carapace accounted for >85 % of the total body burden. Acute temperature changes (to 2 °C and 22 °C) revealed the highest overall temperature coefficient Q10 (2.15) for Ca uptake into the carapace, intermediate Q10 for Ni (1.87) and lowest Q10 (1.45) for Zn. New Ca uptake into the carapace continued linearly with time for 24 h, new Zn uptake gradually deviated from linearity, whereas Ni uptake reached a plateau by 6 h. Attachment of a rubber membrane to the dorsal carapace, thereby shielding about 20 % of the total crab surface area from the external water, eliminated both new Zn and Ni incorporation into the shielded carapace, whereas 36 % of new Ca incorporation persisted. When recently euthanized crabs were exposed, new Zn uptake into the carapace remained unchanged, whereas Ca and Ni uptake were reduced by 89 % and 71 %, respectively. We conclude that the carapace is a very important uptake and storage site for all three metals. All of the uptake of new Zn and new Ni, and most of the uptake of new Ca into this tissue comes directly from the external water. For Zn, the mechanism involves only physicochemical processes, whereas for Ca and Ni, life-dependent processes make the major contribution.


Subject(s)
Brachyura , Calcium , Nickel , Seawater , Water Pollutants, Chemical , Zinc , Animals , Brachyura/metabolism , Nickel/metabolism , Zinc/metabolism , Water Pollutants, Chemical/metabolism , Seawater/chemistry , Calcium/metabolism , Animal Shells/chemistry , Animal Shells/metabolism , Environmental Monitoring
20.
Mar Pollut Bull ; 205: 116593, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38878420

ABSTRACT

In 2019, the Brazilian coast was affected by the largest oil spill in its history. We assessed the levels of chemical elements in Lutjanus synagris and Haemulon aurolienatum fish from Itacaré (least affected area), Tinharé-Boipeba (most affected area) and Madre de Deus (chronically affected area). The level of metals differed between species, tissues, life cycle phases, maturation stages and between sampled locations, indicating the influence of biological and environmental aspects on bioaccumulation. Only fish in Madre de Deus showed lead contamination, while arsenic concentrations in the three areas exceeded the maximum value acceptable by Anvisa (National Health Surveillance Agency). It is suggested that the oil spill may have impacted species differently, also having an impact in fish from less affected areas. However, metal concentrations in fish in Madre de Deus stood out when compared to populations in other studied areas.


Subject(s)
Bioaccumulation , Environmental Monitoring , Fishes , Petroleum Pollution , Water Pollutants, Chemical , Animals , Brazil , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/metabolism , Fishes/metabolism , Metals/metabolism , Metals/analysis
SELECTION OF CITATIONS
SEARCH DETAIL