ABSTRACT
Memories are stored into long-term representations through a process that depends on protein synthesis. However, a consolidated memory is not static and inflexible and can be reactivated under certain circumstances, the retrieval is able to reactivate memories and destabilize them engaging a process of restabilization known as reconsolidation. Although the molecular mechanisms that mediate fear memory reconsolidation are not entirely known, so here we investigated the molecular mechanisms in the hippocampus involved in contextual fear conditioning memory (CFC) reconsolidation in male Wistar rats. We demonstrated that the blockade of Src family kinases (SFKs), GluN2B-containing NMDA receptors and TrkB receptors (TrkBR) in the CA1 region of the hippocampus immediately after the reactivation session impaired contextual fear memory reconsolidation. These impairments were blocked by the neurotrophin BDNF and the NMDAR agonist, D-Serine. Considering that the study of the link between synaptic proteins is crucial for understanding memory processes, targeting the reconsolidation process may provide new ways of disrupting maladaptive memories, such as those seen in post-traumatic stress disorder. Here we provide new insights into the cellular mechanisms involved in contextual fear memory reconsolidation, demonstrating that SFKs, GluN2B-containing NMDAR, and TrkBR are necessary for the reconsolidation process. Our findings suggest a link between BDNF and SFKs and GluN2B-containing NMDAR as well as a link between NMDAR and SFKs and TrkBR in fear memory reconsolidation. These preliminary pharmacological findings provide new evidence of the mechanisms involved in the reconsolidation of fear memory and have the potential to contribute to the development of treatments for psychiatric disorders involving maladaptive memories.
Subject(s)
Receptors, N-Methyl-D-Aspartate , src-Family Kinases , Animals , Male , Rats , Brain-Derived Neurotrophic Factor/metabolism , Fear/physiology , Hippocampus/metabolism , Rats, Wistar , Receptors, N-Methyl-D-Aspartate/metabolism , src-Family Kinases/metabolismABSTRACT
The nuclear progesterone receptor (PR) is mainly known for its role as a ligand-regulated transcription factor. However, in the last ten years, this receptor's extranuclear or rapid actions have gained importance in the context of physiological and pathophysiological conditions such as cancer. The PR's polyproline (PXPP) motif allows protein-protein interaction through SH3 domains of several cytoplasmatic proteins, including the Src family kinases (SFKs). Among members of this family, cSrc is the most well-characterized protein in the scenario of rapid actions of the PR in cancer. Studies in breast cancer have provided the most detailed information on the signaling and effects triggered by the cSrc-PR interaction. Nevertheless, the study of this phenomenon and its consequences has been underestimated in other types of malignancies, especially those not associated with the reproductive system, such as glioblastomas (GBs). This review will provide a detailed analysis of the impact of the PR-cSrc interplay in the progression of some non-reproductive cancers, particularly, in GBs.
Subject(s)
Breast Neoplasms , Receptors, Progesterone , Breast Neoplasms/metabolism , Female , Humans , Progesterone , Protein-Tyrosine Kinases/metabolism , Receptors, Progesterone/metabolism , src-Family Kinases/metabolismABSTRACT
Fructose ingestion elicits a diversity of brain alterations, but it is unknown how it affects N-methyl-D-Aspartate receptors (NMDAr). Here, we analyzed the expression of NMDAr subunits and protein kinases after the long-term dietary fructose intake. Since NMDAr are related to epileptogenesis, we also examined whether fructose increases the susceptibility to seizures after the microinjection of kainic acid (KA) in the rat hippocampus. Wistar rats were randomly divided into water (control) and fructose groups. For twelve weeks, groups had ad libitum access to water or fructose solution (10% w/v). After treatment, hippocampal protein expression of NMDAr subunits and protein kinases involved in NMDAr regulation were analyzed. Additionally, electroencephalographic and behavioral changes related to seizures were evaluated after the microinjection of a sub-convulsive dose of KA in the hippocampus. Fructose induced the decrease of NR1 and, conversely, the increase of NR2A subunits expression in the hippocampus. Also, the phosphorylation of protein kinase C alpha (PKCα) and c-Src increased significantly. No electroencephalographic or behavioral patterns related to convulsive motor seizures were observed in the control group. However, all the rats that ingested fructose showed stage 3 seizures (forelimb clonus) and a significant increase in the number of wet-dog shakes. Moreover, electroencephalographic recordings revealed pronounced epileptiform activity and increased total spectral power at 30 and 60 min after the microinjection of KA. This study shows for the first time that fructose intake exacerbates the seizures induced by KA. Therefore, we propose that this proconvulsant effect could be mediated by changes in NMDAr subunits expression and increased activation of kinases modulating NMDAr function.
Subject(s)
Fructose/metabolism , High Fructose Corn Syrup/adverse effects , Receptors, N-Methyl-D-Aspartate/metabolism , Seizures/metabolism , Animals , Eating , Fructose/administration & dosage , High Fructose Corn Syrup/administration & dosage , Hippocampus/drug effects , Hippocampus/metabolism , Kainic Acid/toxicity , Male , Protein Kinase C/metabolism , Rats , Rats, Wistar , Receptors, N-Methyl-D-Aspartate/genetics , Seizures/etiology , src-Family Kinases/metabolismABSTRACT
The α7 nicotinic acetylcholine receptor is involved in neurological, neurodegenerative, and inflammatory disorders. It operates both as a ligand-gated cationic channel and as a metabotropic receptor in neuronal and non-neuronal cells. As protein phosphorylation is an important cell function regulatory mechanism, deciphering how tyrosine phosphorylation modulates α7 dual ionotropic/metabotropic molecular function is required for understanding its integral role in physiological and pathological processes. α7 single-channel activity elicited by ACh appears as brief isolated openings and less often as episodes of few openings in quick succession. The reduction of phosphorylation by tyrosine kinase inhibition increases the duration and frequency of activation episodes, whereas the inhibition of phosphatases has the opposite effect. Removal of two tyrosine residues at the α7 intracellular domain recapitulates the effects mediated by tyrosine kinase inhibition. The tyrosine-free mutant receptor shows longer duration-activation episodes, reduced desensitization rate and significantly faster recovery from desensitization, indicating that phosphorylation decreases α7 channel activity by favoring the desensitized state. However, the mutant receptor is incapable of triggering ERK1/2 phosphorylation in response to the α7-agonist. Thus, while tyrosine phosphorylation is absolutely required for α7-triggered ERK pathway, it negatively modulates α7 ionotropic activity. Overall, phosphorylation/dephosphorylation events fine-tune the integrated cell response mediated by α7 activation, thus having a broad impact on α7 cholinergic signaling.
Subject(s)
Acetylcholine/metabolism , Neurons/metabolism , Tyrosine/metabolism , alpha7 Nicotinic Acetylcholine Receptor/metabolism , src-Family Kinases/metabolism , HEK293 Cells , Humans , Neurons/cytology , Phosphorylation , Signal Transduction , alpha7 Nicotinic Acetylcholine Receptor/genetics , src-Family Kinases/geneticsABSTRACT
Linoleic acid (LA) is the most abundant polyunsaturated fatty acid in occidental diets, which mediate a variety of processes in human breast cancer cells, including migration and invasion. Extracellular vesicles (EVs) are vesicles released from endosomes and plasma membrane that are composed of a variety of molecules, including proteins, nucleic acids and lipids. EVs from cancer cells promote processes related with cancer progression. In the present study, we demonstrate that treatment of MDA-MB-231 cells with EVs from MDA-MB-231 cells stimulated with LA (LA EVs) promote migration and invasion via Src activity. LA EVs induce activation of FAK via Src activity and of Src and Akt2. LA EVs also induce the assembly of focal adhesions and MMP-9 secretion. These findings demonstrate that LA EVs mediate an autocrine and/or paracrine Src/FAK signaling pathway to promote migration and invasion.
Subject(s)
Cell Movement/drug effects , Extracellular Vesicles/metabolism , Focal Adhesion Kinase 1/metabolism , Linoleic Acid/pharmacology , src-Family Kinases/metabolism , Cell Line, Tumor , Extracellular Vesicles/drug effects , Focal Adhesions/drug effects , Humans , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effectsABSTRACT
BLK and BANK1 in primary Sjögren's syndrome (pSS) have scarcely been evaluated and the results are inconclusive. The aim of our study was to determine whether single nucleotide variants (SNVs) located within BLK or BANK1 are associated with susceptibility, clinical and serological features, and smoking in pSS. BLK rs13277113A/G, BANK1 rs10516487G/A and rs3733197G/A were genotyped in 203 cases and 424 controls using a TaqMan® SNP genotyping assay. The BLK rs13277113A allele showed association with pSS under the allelic (OR 1.35, p = 0.02), and recessive (OR 1.83, p = 0.003) model, while, BANK1 rs3733197G/A showed association under the dominant model (OR 2.90, p = 0.043). Interactions between BANK1 and BLK genotypes also showed association (OR 2.36, p < 0.0001). In addition, BLK rs13277113A/G was associated with protection against arthritis and BANK1 rs10516487G/A with both arthritis and keratoconjunctivitis sicca, meanwhile, BANK1 rs3733197G/A was associated with smoking in patients with pSS. This is the first study to describe an association between BLK and susceptibility to pSS in a Latin-American population. Our data also shows a first evidence of association between interactions of BLK and BANK1 in pSS, and association of BLK and BANK1with arthritis, keratoconjunctivitis sicca and smoking in patients with pSS.
Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Membrane Proteins/genetics , Sjogren's Syndrome/genetics , src-Family Kinases/genetics , Adaptor Proteins, Signal Transducing/metabolism , Aged , Arthritis, Rheumatoid/genetics , Case-Control Studies , Female , Gene Frequency , Genetic Predisposition to Disease , Genotype , Humans , Membrane Proteins/metabolism , Mexico/epidemiology , Middle Aged , Polymorphism, Single Nucleotide , Sjogren's Syndrome/metabolism , src-Family Kinases/metabolismABSTRACT
Castration-resistant prostate cancer (CRPC) is an advanced and androgen-independent form of prostate cancer. Recent studies of rapid actions mediated by estrogen in the prostate and its relationship with CRPC are emerging. We have previously shown that estrogen receptor (ER) promotes migration and invasion of the androgen-independent prostate cancer cells PC-3, but the signaling pathways involved in these events remain to be elucidated. Therefore, this study aimed to analyze the role of ERα and ERß in the activation of SRC, and the involvement of SRC and PI3K/AKT on invasion and colony formation of the PC-3 cells. Our results showed that the activation of ERα (using ERα-selective agonist PPT) and ERß (using ERß-selective agonist DPN) increased phosphorylation of SRC in PC-3 cells. In the presence of the selective inhibitor for SRC-family kinases PP2, the effects of DPN and PPT on transmigration and soft agar colony formation assays were decreased. Furthermore, SRC is involved in the expression of the non-phosphorylated ß-catenin. Finally, using PI3K specific inhibitor Wortmannin and AKT inhibitor MK2206, we showed that PI3K/AKT are also required for invasion and colony formation of PC-3 cells simulated by ER. This study provides novel insights into molecular mechanisms of ER in PC-3 cells by demonstrating that ER, located outside the cell nucleus, activates rapid responses molecules, including SRC and PI3K/AKT, which enhance the tumorigenic potential of prostate cancer cells, increasing cell proliferation, migration, invasion, and tumor formation.
Subject(s)
Androgens/metabolism , Prostatic Neoplasms/metabolism , Receptors, Estrogen/metabolism , Signal Transduction , Cell Line, Tumor , Estrogen Receptor alpha/metabolism , Estrogen Receptor beta/metabolism , Humans , Immunohistochemistry , Male , PC-3 Cells , Phosphatidylinositol 3-Kinases/metabolism , Phosphorylation , Prostatic Neoplasms/pathology , Proto-Oncogene Proteins c-akt/metabolism , beta Catenin/metabolism , src-Family Kinases/metabolismABSTRACT
Since tyrosine phosphorylation appears to play important functions in photoreceptor cells, we searched here for retinal nonreceptor tyrosine kinases of the Src family. We demonstrated that Src family tyrosine kinases were present in the cytosolic fraction of extracted bovine retinas. A Src family tyrosine kinase with an apparent molecular mass of about 62 kDa was purified to homogeneity from the soluble fraction of dark-adapted bovine retinas after three consecutive purification steps: ω-aminooctyl-agarose hydrophobic chromatography, Cibacron blue 3GA-agarose pseudo-affinity chromatography, and α-casein-agarose affinity chromatography. The purified protein was subjected to N-terminal amino acid sequencing and the sequence Gly-Ile-Ile-Lys-Ser-Glu-Glu was obtained, which displayed homology with the first seven residues of the Src family tyrosine kinase c-Yes from Bos taurus (Gly-Cys-Ile-Lys-Ser-Lys-Glu). Although the cytosolic fraction from dark-adapted retinas contained tyrosine kinases of the Src family capable of phosphorylating the α-subunit of transducin, which is the heterotrimeric G protein involved in phototransduction, the purified tyrosine kinase was not capable of using transducin as a substrate. The cellular role of this retinal Src family member remains to be found.
Subject(s)
Cytosol/enzymology , Retina/enzymology , src-Family Kinases/isolation & purification , src-Family Kinases/metabolism , Amino Acid Sequence , Animals , Cattle , Chromatography/methods , Electrophoresis, Polyacrylamide Gel , Peptides/metabolism , Phosphorylation , Sequence Analysis, Protein/methods , Substrate Specificity , src-Family Kinases/chemistryABSTRACT
This study was performed to evaluate the effect of monobutyl phthalate (MBP) on GPR30-activated pathways in Sertoli cells. Additionally, we tested if GIM-1 (Panax ginseng metabolite) modulates MBP action. Human Sertoli cells (HSeC lineage) were exposed to MBP and/or GIM-1 for 30 min, 1, 12, and 48 h. Four experimental treatments were performed: control (DEMEM/F12 medium), MBP, GIM-1, and MBP + GIM-1. The results indicate that MBP activates GPR30, PKA, Src, EGFR, and the ERK1/2 proteins, while GIM-1 inhibits PKA, Src, ERK1/2, and the AKT pathway. MBP also enhances Cofilin expression, decreasing F-actin intensity on the cell surface in a short time. The combined exposure demonstrated a functional antagonism between compounds. Collectively, these data show that MBP activates GPR30 in Sertoli cells, and GIM-1 modulates this response, playing a protective role in Sertoli cells exposed to MBP.
Subject(s)
Cytoprotection/drug effects , Endocrine Disruptors/toxicity , Panax , Phthalic Acids/toxicity , Receptors, Estrogen/metabolism , Receptors, G-Protein-Coupled/metabolism , Sertoli Cells/drug effects , Cell Line , Cyclic AMP-Dependent Protein Kinases/metabolism , Humans , Male , Matrix Metalloproteinase 2/metabolism , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Sertoli Cells/metabolism , src-Family Kinases/metabolismABSTRACT
The progression of cancer depends on the interaction between the cells and their microenvironment. Progesterone is a steroid and progestogen sex hormone produced by the corpus luteum, which is a transitory endocrine gland in female mammals and prepares the endometrium for implantation. Also, progesterone is involved in antitumorigenic process in different types of cancer. Our goal is to investigate the role of progesterone in cell invasion and migration. Ovarian cells were treated with different concentrations of progesterone. 500 nM or 1 µM progesterone decreased the migration of the cells in 24 h or less without affecting the viability. Immunoblot showed that treatment with 1 µM progesterone decreased the phosphorylated forms of Src and FAK, and the cells were less polarized. Our results suggest that progesterone interferes with migration and invasion of ovarian cells. Inhibitory experiments inferred the progesterone receptor playing a role in migration and invasion. Decreased phosphorylation of molecules involved in these processes was also found.
Subject(s)
Cell Movement/drug effects , Ovarian Neoplasms/pathology , Progesterone/pharmacology , Cell Line, Tumor , Dose-Response Relationship, Drug , Female , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Humans , Neoplasm Invasiveness , Phosphorylation/drug effects , src-Family Kinases/metabolismABSTRACT
Triple negative breast cancer (TNBC) is a breast cancer subtype associated with high rates of metastasis, heterogeneity, drug resistance and a poor prognosis. Extracellular vesicles (EVs) are vesicles of endosomal and plasma membrane origin, and are secreted by healthy and cancer cells. In cancer, EVs contribute to tumor progression by mediating escape from the immune system surveillance, and are involved in extracellular matrix degradation, invasion, angiogenesis, migration and metastasis. Furthermore, EVs have been identified in several human fluids. However, the role of EVs from patients with breast cancer in the migration and invasion of human breast cancer cells is not fully understood. The present study investigated whether EVs isolated from Mexican patients with breast cancer can induce cellular processes related to invasion in breast cancer. Moreover, plasma fractions enriched in EVs and deprived of plateletderived EVs obtained from blood samples of 32 Mexican patients with biopsydiagnosed breast cancer at different clinical stages who had not received treatment were analyzed. Furthermore, one control group was included, which consisted of 20 Mexican healthy females. The present results demonstrated that EVs from women with breast cancer promote migration and invasion, and increase matrix metalloproteinase (MMP)2 and MMP9 secretion in TNBC MDAMB231 cells. In addition, it was found that EVs from patients with breast cancer induced Src and focal adhesion kinase activation, and focal adhesions assembly with an increase in focal adhesions number, while the migration and invasion was dependent on Src activity. Collectively, EVs from Mexican patients with breast cancer induce migration and invasion via a Srcdependent pathway in TNBC MDAMB231 cells.
Subject(s)
Extracellular Vesicles/metabolism , Signal Transduction , Triple Negative Breast Neoplasms/pathology , Adolescent , Adult , Aged , Aged, 80 and over , Case-Control Studies , Cell Movement , Epithelial-Mesenchymal Transition , Female , Gene Expression Regulation, Neoplastic , Humans , MCF-7 Cells , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/metabolism , Mexico , Middle Aged , Neoplasm Invasiveness , Neoplasm Staging , Triple Negative Breast Neoplasms/blood , Triple Negative Breast Neoplasms/metabolism , Young Adult , src-Family Kinases/metabolismABSTRACT
The cell wall is one of the most important structures of pathogenic fungi, enabling initial interaction with the host and consequent modulation of immunological responses. Over the years, some researchers have shown that cell wall components of Histoplasma capsulatum vary among fungal isolates, and one of the major differences is the presence or absence of α-(1,3)-glucan, classifying wild-type fungi as chemotypes II or I, respectively. The present work shows that an isolate of H. capsulatum chemotype I induced lower levels of interleukin (IL)-8 secretion by the lung epithelial cell line A549, when compared to chemotype II yeasts. Thus, we expected that the absence of α-glucan in spontaneous variant yeasts, which were isolated from chemotype II cultures, would modify IL-8 secretion by A549 cells, but surprisingly, these fungi promoted similar levels of IL-8 secretion as their wild-type counterpart. Furthermore, when using a specific inhibitor for Syk activation, we observed that this inhibitor reduced IL-8 levels in A549 cell cultures infected with wild type chemotype I fungi. This inhibitor failed to reduce this cytokine levels in A549 cell cultures infected with chemotype II and their spontaneous variant yeasts, which also do not present α-glucan on their surface. The importance of SFKs and PKC δ in this event was also analyzed. Our results show that different isolates of H. capsulatum modulate distinct cell signaling pathways to promote cytokine secretion in host epithelial cells, emphasizing the existence of various mechanisms for Histoplasma pathogenicity.
Subject(s)
Alveolar Epithelial Cells/metabolism , Histoplasma/metabolism , Interleukin-8/metabolism , A549 Cells , Alveolar Epithelial Cells/microbiology , Cell Wall/metabolism , Glucans/metabolism , Histoplasma/isolation & purification , Host-Pathogen Interactions , Humans , Lung/pathology , Protein Kinase C-delta/metabolism , Signal Transduction , Species Specificity , Syk Kinase/metabolism , src-Family Kinases/metabolismABSTRACT
Arsenic is an endocrine disruptor that promotes breast cancer (BCa) development. Estrogen synthesis, through aromatase activation, is essential for BCa promotion and progression through activating the G-coupled estrogen receptor 1 (GPER1), regulating rapid nongenomic effects involved in cell proliferation and migration of BCa cells. Herein, was studied the role of aromatase activation and the GPER1 pathway on sodium arsenite-induced promotion and progression of MDA-MB-231 and MDA-MB-453 BCa cell lines. Our results demonstrated that 0.1 µM of sodium arsenite induces cell proliferation, migration, invasion, and stimulates aromatase activity of BCa cell lines MDA-MB-231, MDA-MB-453, MCF-7, but not in a nontumorigenic breast epithelial cell line (MCF-12A). Using letrozole (an aromatase inhibitor) and G-15 (a GPER1-selective antagonist), we demonstrated that sodium arsenite-induced proliferation and migration is mediated by induction of aromatase enzyme and, at least in part, by GPER1 activation in MDA-MB-231 and MDA-MB-453 cells. Sodium arsenite induced phosphorylation of Src that participated in sodium arsenite-induced aromatase activity, and -cell proliferation of MDA-MB-231 cell line. Overall, data suggests that sodium arsenite induces a positive-feedback loop, resulting in the promotion and progression of BCa cells, through induction of aromatase activity, E2 production, GPER1 stimulation, and Src activation.
Subject(s)
Aromatase/metabolism , Arsenites/toxicity , Breast Neoplasms/enzymology , Cell Movement/drug effects , Cell Proliferation/drug effects , Enzyme Activators/toxicity , Sodium Compounds/toxicity , Breast Neoplasms/pathology , Enzyme Activation , Estradiol/metabolism , Female , Humans , MCF-7 Cells , Neoplasm Invasiveness , Phosphorylation , Receptors, Estrogen/metabolism , Receptors, G-Protein-Coupled/metabolism , Signal Transduction , src-Family Kinases/metabolismABSTRACT
Aspergillus fumigatus (A. fumigatus) is an environmental fungus and a human pathogen. Neutrophils are critical effector cells during the fungal infections, and neutropenia is a risk factor for the development of pulmonary aspergillosis. Neutrophil extracellular traps (NETs) are released by neutrophils in response to A. fumigatus and inhibit the conidial germination. In this work, we observed that the receptors TLR2, TLR4, and Dectin-1 were dispensable for the A. fumigatus induced NET release. In contrast CD11b/CD18 was critical for the NET release in response to A. fumigatus conidia, and this required the CD11b I-domain-mediated recognition, whereas the blockade of the CD11b lectin domain did not affect the A. fumigatus induced NET release. A. fumigatus induced NET release relied on the activity of spleen tyrosine kinase (Syk), Src family kinase(s), and class IA PI3 kinase δ. Although A. fumigatus promoted histone citrullination, this process was dispensable for the NET release in response to A. fumigatus conidia. The A. fumigatus induced NET release required the reactive oxygen species generation by the NOX2 complex, in a downstream pathway requiring CD11b/CD18, Src kinase family activity, Syk and PI3K class IA δ. Our findings thus reveal the signaling pathways involved in the formation of NETs in response to A. fumigatus.
Subject(s)
Aspergillosis/immunology , Aspergillus fumigatus/immunology , DNA/immunology , Extracellular Traps/immunology , Histones/chemistry , Macrophage-1 Antigen/metabolism , Neutrophils/immunology , Protein-Arginine Deiminase Type 4/chemistry , Aspergillosis/metabolism , Aspergillosis/microbiology , Aspergillus fumigatus/metabolism , CD11b Antigen/metabolism , CD18 Antigens/metabolism , Citrullination , DNA/metabolism , Extracellular Traps/microbiology , Humans , Macrophage-1 Antigen/genetics , Neutrophils/microbiology , Phosphatidylinositol 3-Kinases/metabolism , Protein-Arginine Deiminase Type 4/metabolism , Reactive Oxygen Species/metabolism , Syk Kinase/metabolism , src-Family Kinases/metabolismABSTRACT
Adhesion is a crucial characteristic of epithelial cells to form barriers to pathogens and toxic substances from the environment. Epithelial cells attach to each other using intercellular junctions on the lateral membrane, including tight and adherent junctions, as well as the Na+,K+-ATPase. Our group has shown that non-adherent chinese hamster ovary (CHO) cells transfected with the canine ß1 subunit become adhesive, and those homotypic interactions amongst ß1 subunits of the Na+,K+-ATPase occur between neighboring epithelial cells. Ouabain, a cardiotonic steroid, binds to the α subunit of the Na+,K+-ATPase, inhibits the pump activity and induces the detachment of epithelial cells when used at concentrations above 300 nM. At nanomolar non-inhibiting concentrations, ouabain affects the adhesive properties of epithelial cells by inducing the expression of cell adhesion molecules through the activation of signaling pathways associated with the α subunit. In this study, we investigated whether the adhesion between ß1 subunits was also affected by ouabain. We used CHO fibroblasts stably expressing the ß1 subunit of the Na+,K+-ATPase (CHO ß1), and studied the effect of ouabain on cell adhesion. Aggregation assays showed that ouabain increased the adhesion between CHO ß1 cells. Immunofluorescence and biotinylation assays showed that ouabain (50 nM) increases the expression of the ß1 subunit of the Na+,K+-ATPase at the cell membrane. We also examined the effect of ouabain on the activation of signaling pathways in CHO ß1 cells, and their subsequent effect on cell adhesion. We found that cSrc is activated by ouabain and, therefore, that it likely regulates the adhesive properties of CHO ß1 cells. Collectively, our findings suggest that the ß1 subunit adhesion is modulated by the expression levels of the Na+,K+-ATPase at the plasma membrane, which is regulated by ouabain.
Subject(s)
Cell Adhesion/drug effects , Fibroblasts/drug effects , Fibroblasts/metabolism , Ouabain/pharmacology , Protein Subunits/metabolism , Sodium-Potassium-Exchanging ATPase/metabolism , Animals , CHO Cells , Cell Membrane/metabolism , Cricetulus , Gene Expression , Protein Binding , Protein Subunits/genetics , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Sodium/metabolism , Sodium-Potassium-Exchanging ATPase/chemistry , Sodium-Potassium-Exchanging ATPase/genetics , src-Family Kinases/metabolismABSTRACT
BACKGROUND/AIMS: Ouabain, a well-known plant-derived toxin, is also a hormone found in mammals at nanomolar levels that binds to a site located in the a-subunit of Naâº,Kâº-ATPase. Our main goal was to understand the physiological roles of ouabain. Previously, we found that ouabain increases the degree of tight junction sealing, GAP junction-mediated communication and ciliogenesis. Considering our previous results, we investigated the effect of ouabain on adherens junctions. METHODS: We used immunofluorescence and immunoblot methods to measure the effect of 10 nM ouabain on the cellular and nuclear content of E-cadherin, ß-catenin and γ-catenin in cultured monolayers of Marin Darby canine renal cells (MDCK). We also studied the effect of ouabain on adherens junction biogenesis through sequential Ca²âº removal and replenishment. Then, we investigated whether c-Src and ERK1/2 kinases are involved in these responses. RESULTS: Ouabain enhanced the cellular content of the adherens junction proteins E-cadherin, ß-catenin and γ-catenin and displaced ß-catenin and γ-catenin from the plasma membrane into the nucleus. Ouabain also increased the expression levels of E-cadherin and ß-catenin in the plasma membrane after Ca²âº replenishment. These effects on adherens junctions were sensitive to PP2 and PD98059, suggesting that they depend on c-Src and ERK1/2 signaling. The translocation of ß-catenin and γ-catenin into the nucleus was specific because ouabain did not change the localization of the tight junction proteins ZO-1 and ZO-2. Moreover, in ouabain-resistant MDCK cells, which express a Naâº,Kâº-ATPase α1-subunit with low affinity for ouabain, this hormone was unable to regulate adherens junctions, indicating that the ouabain receptor that regulates adherens junctions is Naâº,Kâº-ATPase. CONCLUSION: Ouabain (10 nM) upregulated adherens junctions. This novel result supports the proposition that one of the physiological roles of this hormone is the modulation of cell contacts.
Subject(s)
Adherens Junctions/drug effects , Ouabain/pharmacology , Adherens Junctions/metabolism , Animals , CSK Tyrosine-Protein Kinase , Cadherins/metabolism , Calcium/metabolism , Cell Nucleus/metabolism , Dogs , Madin Darby Canine Kidney Cells , Microscopy, Fluorescence , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Signal Transduction/drug effects , Sodium-Potassium-Exchanging ATPase/metabolism , beta Catenin/metabolism , gamma Catenin/metabolism , src-Family Kinases/metabolismABSTRACT
BACKGROUND: Integrins mediate cell adhesion, migration, and survival by connecting the intracellular machinery with the surrounding extracellular matrix. Previous studies demonstrated the interaction between αvß3 integrin and VEGF type 2 receptor (VEGFR2) in VEGF-induced angiogenesis. DisBa-01, a recombinant His-tag fusion, RGD-disintegrin from Bothrops alternatus snake venom, binds to αvß3 integrin with nanomolar affinity blocking cell adhesion to the extracellular matrix. Here we present in vitro evidence of a direct interference of DisBa-01 with αvß3/VEGFR2 cross-talk and its downstream pathways. METHODS: Human umbilical vein (HUVECs) were cultured in plates coated with fibronectin (FN) or vitronectin (VN) and tested for migration, invasion and proliferation assays in the presence of VEGF, DisBa-01 (1000 nM) or VEGF and DisBa-01 simultaneously. Phosphorylation of αvß3/VEGFR2 receptors and the activation of intracellular signaling pathways were analyzed by western blotting. Morphological alterations were observed and quantified by fluorescence confocal microscopy. RESULTS: DisBa-01 treatment of endothelial cells inhibited critical steps of VEGF-mediated angiogenesis such as migration, invasion and tubulogenesis. The blockage of αvß3/VEGFR2 cross-talk by this disintegrin decreases protein expression and phosphorylation of VEGFR2 and ß3 integrin subunit, regulates FAK/SrC/Paxillin downstream signals, and inhibits ERK1/2 and PI3K pathways. These events result in actin re-organization and inhibition of HUVEC migration and adhesion. Labelled-DisBa-01 colocalizes with αvß3 integrin and VEGFR2 in treated cells. CONCLUSIONS: Disintegrin inhibition of αvß3 integrin blocks VEGFR2 signalling, even in the presence of VEGF, which impairs the angiogenic mechanism. These results improve our understanding concerning the mechanisms of pharmacological inhibition of angiogenesis.
Subject(s)
Cell Movement/drug effects , Crotalid Venoms/pharmacology , Disintegrins/pharmacology , Human Umbilical Vein Endothelial Cells , Integrin alphaVbeta3/metabolism , Signal Transduction/drug effects , Vascular Endothelial Growth Factor Receptor-2/metabolism , Cell Adhesion , Cells, Cultured , Focal Adhesion Kinase 1/metabolism , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Paxillin/metabolism , Phosphatidylinositol 3-Kinase/metabolism , src-Family Kinases/metabolismABSTRACT
BACKGROUND/AIM: The evolution of gastric carcinogenesis remains largely unknown, as the regulatory mechanisms involved in the aggressiveness of gastric cancer are still poorly understood. Kinases are downstream modulators and effectors of various cell signaling cascades and play key roles in the development of neoplastic diseases. The objective of this study was to evaluate the expression of genes and proteins of the SRC family, including FYN, YES, BLK, FGR, LYN and SRC, in a model of intestinal gastric carcinogenesis generated by treating Cebus apella, a New World non-human primate, with N-methyl nitrosourea (MNU). MATERIALS AND METHODS: mRNA expression of genes was measured by real-time reverse transcription quantitative PCR (RT-qPCR) and protein expression was measured by western blotting in six Cebus apella treated with N-methyl-nitrosourea (MNU) for about 2.5 years. RESULTS: Elevated mRNA and protein expression mainly of the SRC and LYN kinases was observed. Their expression was gradually increasing as non-atrophic gastritis was evolving to gastric cancer. CONCLUSION: SRC family kinases play a key role in tumor progression and metastasis and may be a promising target for the treatment of gastric cancer.
Subject(s)
Methylnitrosourea/adverse effects , Stomach Neoplasms/metabolism , src-Family Kinases/genetics , src-Family Kinases/metabolism , Animals , Cebus , Disease Models, Animal , Disease Progression , Gene Expression Regulation, Neoplastic , Neoplasm Metastasis , Stomach Neoplasms/chemically induced , Stomach Neoplasms/genetics , Up-RegulationABSTRACT
Ric-8A is a pleiotropic guanine nucleotide exchange factor involved in the activation of various heterotrimeric G-protein pathways during adulthood and early development. Here, we sought to determine the downstream effectors of Ric-8A during the migration of the vertebrate cranial neural crest (NC) cells. We show that the Gα13 knockdown phenocopies the Ric-8A morphant condition, causing actin cytoskeleton alteration, protrusion instability, and a strong reduction in the number and dynamics of focal adhesions. In addition, the overexpression of Gα13 is sufficient to rescue Ric-8A-depleted cells. Ric-8A and Gα13 physically interact and colocalize in protrusions of the cells leading edge. The focal adhesion kinase FAK colocalizes and interacts with the endogenous Gα13, and a constitutively active form of Src efficiently rescues the Gα13 morphant phenotype in NC cells. We propose that Ric-8A-mediated Gα13 signalling is required for proper cranial NC cell migration by regulating focal adhesion dynamics and protrusion formation.
Subject(s)
Cell Movement , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Focal Adhesions/metabolism , GTP-Binding Protein alpha Subunits, G12-G13/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Neural Crest/cytology , Signal Transduction , Xenopus Proteins/metabolism , Xenopus/metabolism , Actin Cytoskeleton/drug effects , Actin Cytoskeleton/metabolism , Animals , Cell Adhesion/drug effects , Cell Membrane/drug effects , Cell Membrane/metabolism , Cell Movement/drug effects , Down-Regulation/drug effects , Embryo, Nonmammalian/drug effects , Embryo, Nonmammalian/metabolism , Focal Adhesions/drug effects , Models, Biological , Morpholinos/pharmacology , Neural Crest/metabolism , Phenotype , Signal Transduction/drug effects , Xenopus/embryology , src-Family Kinases/metabolismABSTRACT
Annexin A2 (ANXA2) is upregulated in several malignancies, including colorectal cancer (CRC). However, there is little knowledge on the molecular mechanisms involved to its upregulation. The aim of this study was to identify the mechanism through which ANXA2 overexpression leads to CRC progression and evaluate its potential prognostic value. We used human CRC samples to analyse the correlation between ANXA2 levels and tumour staging. ANXA2 expression was increased in CRC tissues compared to normal colon tissues. In addition, we observe increased ANXA2 levels in stage IV tumours and metastasis, when compared to stage I-III. Whereas E-cadherin, an epithelial marker, decreased in stage II-IV and increased in metastasis. We've also shown that TGF-ß, a classic EMT inductor, caused upregulation of ANXA2, and internalization of both E-cadherin and ANXA2 in CRC cells. ANXA2 silencing hindered TGF-ß-induced invasiveness, and inhibitors of the Src/ANXA2/STAT3 pathway reversed the EMT. In silico analysis confirmed overexpression of ANXA2 and association to the consensus moleculars subtypes (CMS) with the worst prognosis. Therefore, ANXA2 overexpression play a pivotal role in CRC invasiveness through Src/ANXA2/STAT3 pathway activation. The association of ANXA2 to distinct CMSs suggests the possible use of ANXA2 as a prognostic marker or directed target therapy.