Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 6 de 6
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
J Control Release ; 366: 548-566, 2024 Feb.
Article de Anglais | MEDLINE | ID: mdl-38211640

RÉSUMÉ

The lymphatic system possesses the main viral replication sites in the body following viral infection. Unfortunately, current antiretroviral agents penetrate the lymph nodes insufficiently when administered orally and, therefore, cannot access the lymphatic system sufficiently to interrupt this viral replication. For this reason, novel drug delivery systems aimed at enhancing the lymphatic uptake of antiretroviral drugs are highly desirable. Dissolving polymeric microarray patches (MAPs) may help to target the lymph intradermally. MAPs are intradermal drug delivery systems used to deliver many types of compounds. The present work describes a novel work investigating the lymphatic uptake of two anti-HIV drugs: cabotegravir (CAB) and rilpivirine (RPV) when delivered intradermally using dissolving MAPs containing nanocrystals of both drugs. Maps were formulated using NCs obtained by solvent-free milling technique. The polymers used to prepare the NCs of both drugs were PVA 10 Kda and PVP 58 Kda. Both NCs were submitted to the lyophilization process and reconstituted with deionized water to form the first layer of drug casting. Backing layers were developed for short application times and effective skin deposition. In vivo biodistribution profiles of RPV and CAB after MAP skin application were investigated and compared with the commercial intramuscular injection using rats. After a single application of RPV MAPs, a higher concentration of RPV was delivered to the axillary lymph nodes (AL) (Cmax 2466 ng/g - Tmax 3 days) when compared with RPV IM injection (18 ng/g - Tmax 1 day), while CAB MAPs delivered slightly lower amounts of drug to the AL (5808 ng/g in 3 days) when compared with CAB IM injection (9225 ng/g in 10 days). However, CAB MAPs delivered 7726 ng/g (Tmax 7 days) to the external lumbar lymph nodes, which was statistically equivalent to IM delivery (Cmax 8282 ng/g - Tmax 7 days). This work provides strong evidence that MAPs were able to enhance the delivery of CAB and RPV to the lymphatic system compared to the IM delivery route.


Sujet(s)
Pipérazinediones , Infections à VIH , Pyridones , Rilpivirine , Animaux , Rats , Préparations pharmaceutiques , Distribution tissulaire , Antirétroviraux , Polymères
2.
ACS Appl Mater Interfaces ; 15(26): 31300-31319, 2023 Jul 05.
Article de Anglais | MEDLINE | ID: mdl-37349320

RÉSUMÉ

Transdermal drug delivery is an alternative route of administration that offers avoidance of the associated drawbacks of orally and parenterally administered hydrophobics. However, owing to the extremely specific set of physicochemical characteristics required for passive transdermal drug permeation, the development of marketed transdermal products containing poorly soluble drugs has been severely limited. Microarray patches (MAPs) are a type of transdermal patch that differ from the traditional patch design due to the presence of tiny, micron-sized needles that permit enhanced drug permeation on their application surface. To date, MAPs have predominantly been used to deliver hydrophilic compounds. However, this work challenges this trend and focuses on the use of MAPs, in combination with commonly utilized solubility-enhancing techniques, to deliver the hydrophobic drug olanzapine (OLP) across the skin. Specifically, cyclodextrin (CD) complexation and particle size reduction were employed in tandem with hydrogel-forming and dissolving MAPs, respectively. In vivo experimentation using a female Sprague-Dawley rat model confirmed the successful delivery of OLP from hydrogel-forming MAPs (Cmax = 611.13 ± 153.34 ng/mL, Tmax = 2 h) and dissolving MAPs (Cmax = 690.56 ± 161.33 ng/mL, Tmax = 2 h) in a manner similar to that of oral therapy in terms of the rate and extent of drug absorption, as well as overall drug exposure and bioavailability. This work is the first reported use of polymeric MAPs in combination with the solubility-enhancing techniques of CD complexation and particle size reduction to successfully deliver the poorly soluble drug OLP via the transdermal route. Accordingly, this paper provides significant evidence to support an expansion of the library of molecules amenable to MAP-mediated drug delivery to include those that exhibit poor aqueous solubility.


Sujet(s)
Polymères , Peau , Rats , Animaux , Femelle , Olanzapine , Rat Sprague-Dawley , Administration par voie cutanée , Polymères/composition chimique , Systèmes de délivrance de médicaments/méthodes , Hydrogels , Aiguilles
3.
Int J Pharm ; 640: 123005, 2023 Jun 10.
Article de Anglais | MEDLINE | ID: mdl-37142137

RÉSUMÉ

HIV/AIDS remains a major global public health issue. While antiretroviral therapy is effective at reducing the viral load in the blood, up to 50% of those with HIV suffer from some degree of HIV-associated neurocognitive disorder, due to the presence of the blood-brain barrier restricting drugs from crossing into the central nervous system and treating the viral reservoir there. One way to circumvent this is the nose-to-brain pathway. This pathway can also be accessed via a facial intradermal injection. Certain parameters can increase delivery via this route, including using nanoparticles with a positive zeta potential and an effective diameter of 200 nm or less. Microneedle arrays offer a minimally invasive, pain-free alternative to traditional hypodermic injections. This study shows the formulation of nanocrystals of both rilpivirine (RPV) and cabotegravir, followed by incorporation into separate microneedle delivery systems for application to either side of the face. Following an in vivo study in rats, delivery to the brain was seen for both drugs. For RPV, a Cmax was seen at 21 days of 619.17 ± 73.32 ng/g, above that of recognised plasma IC90 levels, and potentially therapeutically relevant levels were maintained for 28 days. For CAB, a Cmax was seen at 28 days of 478.31 ± 320.86 ng/g, and while below recognised 4IC90 levels, does indicate that therapeutically relevant levels could be achieved by manipulating final microaaray patch size in humans.


Sujet(s)
Agents antiVIH , Infections à VIH , Nanoparticules , Humains , Rats , Animaux , Infections à VIH/traitement médicamenteux , Rilpivirine/usage thérapeutique , Troubles neurocognitifs/traitement médicamenteux , Pyridones
4.
J Pharm Biomed Anal ; 213: 114698, 2022 May 10.
Article de Anglais | MEDLINE | ID: mdl-35259714

RÉSUMÉ

The antiretroviral agents rilpivirine (RPV) and cabotegravir (CAB) are approved as a combined treatment regimen against human immunodeficiency virus (HIV). To fully understand the biodistribution of these agents and determine their concentration levels in various parts of the body, a simple, selective and sensitive bioanalytical method is essential. In the present study, a high performance liquid chromatography method with mass spectrometry detection (HPLC-MS) was developed for simultaneous detection and quantification of RPV and CAB in various biological matrices. These included plasma, skin, lymph nodes, vaginal tissue, liver, kidneys and spleen, harvested from female Sprague Dawley rats. The suitability of the developed method for each matrix was validated based on the guidelines of the International Council for Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH) on bioanalytical method validation. Analytes were extracted from biological samples employing a simple one-step protein precipitation method using acetonitrile. Samples were analysed using an Apex Scientific Inertsil ODS-3 column (4.6 mm × 250 mm, 5 µm particle size), maintained at 40 °C, on a HPLC system coupled with a single quadrupole MS detector. RPV was detected at a mass-to-charge ratio (m/z) of 367.4 and CAB at 406.3. Separation was achieved using isocratic elution at 0.3 mL/min with a mixture of acetonitrile and 0.1% (v/v) trifluoroacetic acid in water (81:19, v/v) as the mobile phase. The run time was set at 13 min. The presented method was selective, sensitive, accurate and precise for detection and quantification of RPV and CAB in all matrices. The developed and validated bioanalytical method was successfully employed for in vivo samples with both drugs simultaneously.


Sujet(s)
Antirétroviraux , Rilpivirine , Animaux , Antirétroviraux/analyse , Antirétroviraux/sang , Chromatographie en phase liquide à haute performance/méthodes , Pipérazinediones , Femelle , Préparations pharmaceutiques , Pyridones , Rats , Rat Sprague-Dawley , Reproductibilité des résultats , Rilpivirine/analyse , Rilpivirine/sang , Spectrométrie de masse en tandem/méthodes , Distribution tissulaire
5.
Adv Healthc Mater ; 10(20): e2100996, 2021 10.
Article de Anglais | MEDLINE | ID: mdl-34449129

RÉSUMÉ

Traditional drug delivery routes possess various disadvantages which make them unsuitable for certain population groups, or indeed unsuitable for drugs with certain physicochemical properties. As a result, a variety of alternative drug delivery routes have been explored in recent decades, including transdermal drug delivery. One of the most promising novel transdermal drug delivery technologies is a microarray patch (MAP), which can bypass the outermost skin barrier and deliver drugs directly into the viable epidermis and dermis. Unlike traditional MAPs which release loaded cargo simultaneously upon insertion into the skin, stimuli responsive MAPs based on biological stimuli are able to precisely release the drug in response to the need for additional doses. Thus, smart MAPs that are only responsive to certain external stimuli are highly desirable, as they provide safer and more efficient drug delivery. In addition to drug delivery, they can also be used for biological monitoring, which further expands their applications.


Sujet(s)
Préparations pharmaceutiques , Absorption cutanée , Administration par voie cutanée , Surveillance biologique , Systèmes de délivrance de médicaments , Peau/métabolisme , Patch transdermique
6.
Adv Drug Deliv Rev ; 173: 331-348, 2021 06.
Article de Anglais | MEDLINE | ID: mdl-33831475

RÉSUMÉ

Despite the existence of a variety of contraceptive products for women, as well as decades of research into the prevention and treatment of human immunodeficiency virus (HIV), there is still a globally unmet need for easily accessible, acceptable, and affordable products to protect women's sexual and reproductive health. Microarray patches (MAPs) are a novel platform being developed for the delivery of hormonal contraception and antiretroviral drugs. MAPs provide enhanced drug delivery to the systemic circulation via the transdermal route when compared to transdermal patches, oral and injectable formulations. These minimally invasive patches can be self-administered by the user, reducing the burden on health care personnel. Since MAPs represent needle-free drug delivery, no sharps waste is generated after application, thereby eliminating possible MAP reuse and risk of needle-stick injuries. This review discusses the administration of contraceptive and antiretroviral drugs using MAPs, their acceptability by end-users, and the future perspective of the field.


Sujet(s)
Agents antiVIH/pharmacologie , Contraceptifs féminins/pharmacologie , Infections à VIH/prévention et contrôle , VIH (Virus de l'Immunodéficience Humaine)/effets des médicaments et des substances chimiques , Analyse sur microréseau , Systèmes de délivrance de médicaments , Femelle , Humains
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...