Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
PLoS One ; 18(9): e0291527, 2023.
Article de Anglais | MEDLINE | ID: mdl-37729256

RÉSUMÉ

Distinctness, uniformity, and stability (DUS) test is the legal requirement in crop breeding to grant the intellectual property right for new varieties by evaluating their morphological characteristics across environments. On the other hand, molecular markers accurately identify genetic variations and validate the purity of the cultivars. Therefore, genomic DUS can improve the efficiency of traditional DUS testing. In this study, 112 Egyptian fenugreek genotypes were grown in Egypt at two locations: Wadi El-Natrun (Wadi), El-Beheira Governorate, with salty and sandy soil, and Giza, Giza governorate, with loamy clay soil. Twelve traits were measured, of which four showed a high correlation above 0.94 over the two locations. We observed significant genotype-by-location interactions (GxL) for seed yield, as it was superior in Wadi, with few overlapping genotypes with Giza. We attribute this superiority in Wadi to the maternal habitat, as most genotypes grew in governorates with newly reclaimed salty and sandy soil. As a first step toward genomic DUS, we performed an association study, and out of 38,142 SNPs, we identified 39 SNPs demonstrating conditional neutrality and four showing pleiotropic effects. Forty additional SNPs overlapped between both locations, each showing a similar impact on the associated trait. Our findings highlight the importance of GxL in validating the effect of each SNP to make better decisions about its suitability in the marker-assisted breeding program and demonstrate its potential use in registering new plant varieties.


Sujet(s)
Trigonella , Trigonella/génétique , Égypte , Polymorphisme de nucléotide simple , Amélioration des plantes , Génotype , Sable , Sol
2.
Genes (Basel) ; 11(8)2020 08 05.
Article de Anglais | MEDLINE | ID: mdl-32764325

RÉSUMÉ

Fenugreek as a self-pollinated plant is ideal for genome-wide association mapping where traits can be marked by their association with natural mutations. However, fenugreek is poorly investigated at the genomic level due to the lack of information regarding its genome. To fill this gap, we genotyped a collection of 112 genotypes with 153,881 SNPs using double digest restriction site-associated DNA sequencing. We used 38,142 polymorphic SNPs to prove the suitability of the population for association mapping. One significant SNP was associated with both seed length and seed width, and another SNP was associated with seed color. Due to the lack of a comprehensive genetic map, it is neither possible to align the newly developed markers to chromosomes nor to predict the underlying genes. Therefore, systematic targeting of those markers to homologous genomes of other legumes can overcome those problems. A BLAST search using the genomic fenugreek sequence flanking the identified SNPs showed high homology with several members of the Trifolieae tribe indicating the potential of translational approaches to improving our understanding of the fenugreek genome. Using such a comprehensively-genotyped fenugreek population is the first step towards identifying genes underlying complex traits and to underpin fenugreek marker-assisted breeding programs.


Sujet(s)
Medicago/génétique , Polymorphisme de nucléotide simple , Similitude de séquences , Trigonella/génétique , Caractère quantitatif héréditaire , Graines/génétique
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...