Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 6 de 6
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Vet Q ; 44(1): 1-20, 2024 Dec.
Article de Anglais | MEDLINE | ID: mdl-38961536

RÉSUMÉ

Early nutritional management approach greatly impacts broilers' performance and resistance against coccidiosis. The current study explored the impact of post-hatch feeding with a combination of glutamine (Glut) and different levels of omega-3 on broiler chickens' growth performance, muscle building, intestinal barrier, antioxidant ability and protection against avian coccidiosis. A total of six hundred Cobb 500 was divided into six groups: first group (fed basal diet and unchallenged (control) and challenged (negative control, NC) groups were fed a basal diet without additives, and the other groups were infected with Eimeria spp and supplemented with 1.5% Glut alone or with three different levels of omega-3 (0.25, 0.5 and 1%) during the starter period. Notable improvement in body weight gain was observed in the group which fed basal diet supplemented with glut and 1% omega 3 even after coccidia infection (increased by 25% compared challenged group) while feed conversion ratio was restored to control. Myogeneis was enhanced in the group supplemented with Glut and omega-3 (upregulation of myogenin, MyoD, mechanistic target of rapamycin kinase and insulin like growth factor-1 and downregulating of myostatin genes). Groups supplemented with Glut and higher levels of omega-3 highly expressed occluding, mucin-2, junctional Adhesion Molecule 2, b-defensin-1 and cathelicidins-2 genes. Group fed 1% Glut + omega-3 showed an increased total antioxidant capacity and glutathione peroxidase and super oxide dismutase enzymes activities with reduced levels of malondialdehyde, reactive oxygen species and H2O2. Post-infection, dietary Glut and 1% omega-3 increased intestinal interleukin-10 (IL) and secretory immunoglobulin-A and serum lysozyme, while decreased the elevated inflammatory mediators comprising interleukin IL-6, tumor necrosis factor-alpha, nitric oxide (NO) and inducible NO synthase. Fecal oocyst excretion and lesions score severity were lowered in the group fed 1% Glut and omega 3. Based on these findings, dietary Glut and omega-3 supplementation augmented restored overall broilers' performance after coccidial challenge.


Sujet(s)
Aliment pour animaux , Antioxydants , Poulets , Coccidiose , Régime alimentaire , Compléments alimentaires , Eimeria , Acides gras omega-3 , Glutamine , Maladies de la volaille , Animaux , Coccidiose/médecine vétérinaire , Coccidiose/prévention et contrôle , Aliment pour animaux/analyse , Glutamine/administration et posologie , Glutamine/pharmacologie , Maladies de la volaille/prévention et contrôle , Maladies de la volaille/parasitologie , Antioxydants/métabolisme , Eimeria/physiologie , Acides gras omega-3/administration et posologie , Acides gras omega-3/pharmacologie , Régime alimentaire/médecine vétérinaire , Intestins/effets des médicaments et des substances chimiques , Intestins/parasitologie , Phénomènes physiologiques nutritionnels chez l'animal
2.
Vaccines (Basel) ; 10(12)2022 Dec 19.
Article de Anglais | MEDLINE | ID: mdl-36560588

RÉSUMÉ

Low pathogenic avian influenza (LPAI) H9N2 virus is one of the major poultry pathogens associated with severe economic losses in the poultry industry (broiler, layers, breeders, and grandparents' flocks), especially in endemic regions including the Middle East, North Africa, and Asian countries. This work is an attempt to evaluate the efficacy of whole inactivated H9N2 vaccine (MEFLUVACTM H9) in turkey poults kept under laboratory and commercial farm conditions. Here, 10,000 white turkey poults (1-day old) free from maternally derived immunity against H9N2 virus were divided into four groups; G1 involved 10 vaccinated birds kept under biosafety level-3 (BLS-3) as a laboratory vaccinated and challenged group, while G2 had 9970 vaccinated turkeys raised on a commercial farm. Ten of those birds were moved to BLS-3 for daily cloacal and tracheal swabbing to check for the absence of any life-threating disease, before conducting analyses. G3 (10 birds) served as a non-vaccinated challenged control under BSL-3 conditions, while G4 (10 birds) was used as a non-vaccinated and non-challenged control under BSL-3 conditions. Sera were collected on days 7-, 14-, 21-, and 28-post-vaccinations to monitor the humoral immune response using a hemagglutination-inhibition (HI) test. At these same intervals, cloacal and tracheal swabs were also checked for any viral infection. The challenge was conducted 28 days post-vaccination (PV) using AI-H9N2 in BSL-3 by intranasal inoculation of 6-log10 embryo infective dose50 (EID50). At 3-, 6-, and 10-days post-challenge, oropharyngeal swabs were taken from challenged birds to quantify viral shedding by quantitative polymerase chain reaction (qRT-PCR). The results of this study showed that vaccinated groups (G1/2) developed HI titers of 1.38, 4.38, 5.88, and 7.25 log2 in G1 vs. 1.2, 3.8, 4.9 and 6.2 log2 in G2 when measured at 7-, 14-, 21- and 28-days PV, respectively, while undetectable levels were recorded in non-vaccinated groups (G3/4). Birds in G3 showed 90% clinical sickness vs. 10% and 20% in G1/2, respectively, over a 10-day monitoring period following challenge. Vaccinated birds showed a significant reduction in virus shedding in terms of the number of shedders, amount of shed virus and shedding interval over the non-vaccinated challenged birds. Regarding mortality, all groups did not show any mortality, which confirms that the circulating H9N2 virus still has low pathogenicity and cannot cause mortality. However, the virus may cause up to 90% clinical sickness in non-vaccinated birds vs. 10% and 20% in laboratory- and farm-vaccinated birds, respectively, highlighting the role of the vaccine in limiting clinical sickness cases. In conclusion, under the current trial circumstances, MEFLUVACTM-H9 provided protective seroconversion titers, significant clinical sickness protection and significant reduction in virus shedding either in laboratory- or farm-vaccinated groups after a single vaccine dose.

3.
Animals (Basel) ; 12(16)2022 Aug 15.
Article de Anglais | MEDLINE | ID: mdl-36009671

RÉSUMÉ

Multi-strain probiotics (MSP) are considered innovative antibiotics' substitutes supporting superior gut health and immunity of farmed rabbits. The promising roles of MSP on performance, intestinal immunity, integrity and transporters, and resistance against Listeria monocytogenes (L. monocytogenes) were evaluated. In the feeding trial, 220 rabbits were fed a control diet or diet supplemented with three MSP graded levels. At 60 days of age, rabbits were experimentally infected with L. monocytogenes and the positive control, enrofloxacin, prophylactic MSP (MSPP), and prophylactic and therapeutic MSP (MSPTT) groups were included. During the growing period, MSP at the level of 1 × 108 CFU/kg diet (MSPIII) promoted the rabbits' growth, upregulated the nutrient transporters and tight-junction-related genes, and modified cytokines expression. Supplementing MSPTT for L. monocytogenes experimentally-infected rabbits restored the impaired growth and intestinal barriers, reduced clinical signs of severity and mortalities, and attenuated the excessive inflammatory reactions. Notably, enrofloxacin decreased L. monocytogenes and beneficial microbial loads; unlike MSPTT, which decreased pathogenic bacterial loads and sustained the beneficial ones. Histopathological changes were greatly reduced in MSPTT, confirming its promising role in restricting L. monocytogenes translocation to different organs. Therefore, our results suggest the use of MSPTT as an alternative to antibiotics, thereby conferring protection for rabbits against L. monocytogenes infection.

4.
Front Vet Sci ; 9: 847580, 2022.
Article de Anglais | MEDLINE | ID: mdl-35812892

RÉSUMÉ

Recently, the use of essential oils (EOs) or their bioactive compounds encapsulated by nanoparticles as alternative supplements for in-feed antimicrobials is gaining attention, especially in organic poultry production. Focusing on eugenol, its incorporation into the nanoformulation is a novel strategy to improve its stability and bioavailability and thus augment its growth-boosting and antimicrobial activities. Therefore, we explored eugenol nanoemulsion activities in modulating growth, digestive and gut barrier functions, immunity, cecal microbiota, and broilers response to avian pathogenic E. coli challenge (APEC) O78. A total of 1,000 one-day-old broiler chicks were allocated into five groups; negative control (NC, fed basal diet), positive control (PC), and 100, 250, and 400 mg/kg eugenol nanoemulsion supplemented groups. All groups except NC were challenged with APEC O78 at 14 days of age. The results showed that birds fed eugenol nanoemulsion displayed higher BWG, FI, and survivability and most improved FCR over the whole rearing period. Birds fed 400 mg/kg of eugenol nanoemulsion sustained a higher growth rate (24% vs. PC) after infection. Likely, the expression of digestive enzymes' genes (AMY2A, CCK, CELA1, and PNLIP) was more prominently upregulated and unaffected by APEC O78 challenge in the group fed eugenol nanoemulsion at the level of 400 mg/kg. Enhanced gut barrier integrity was sustained post-challenge in the group supplemented with higher levels of eugenol nanoemulsion as evidenced by the overexpression of cathelicidins-2, ß-defensin-1, MUC-2, JAM-2, occludin, CLDN-1, and FABP-2 genes. A distinct modulatory effect of dietary eugenol nanoemulsion was observed on cytokine genes (IL-1ß, TNF-α, IL-6, IL-8, and IL-10) expression with a prominent reduction in the excessive inflammatory reactions post-challenge. Supplementing eugenol nanoemulsion increased the relative cecal abundance of Lactobacillus species and reduced Enterobacteriaceae and Bacteriods counts. Notably, a prominent reduction in APEC O78 loads with downregulation of papC, iroN, iutA, and iss virulence genes and detrimental modifications in E. coli morphological features were noticed in the 400 mg/kg eugenol nanoemulsion group at the 3rd-week post-challenge. Collectively, we recommend the use of eugenol nanoemulsion as a prospective targeted delivery approach for achieving maximum broilers growth and protection against APEC O78 infection.

5.
Poult Sci ; 101(6): 101884, 2022 Jun.
Article de Anglais | MEDLINE | ID: mdl-35490499

RÉSUMÉ

Respiratory diseases inflicted by Mycoplasma gallisepticum (MG) and Ornithobacterium rhinotracheale (ORT) cause severe economic losses and great burden to the poultry industry worldwide. Therefore, the current study was planned to assess the efficacy of aivlosin alone or in combination with zinc oxide nanoparticles (ZnO-NPs) in the treatment of experimental MG and/or ORT infections in broilers. Moreover, we also aimed to evaluate the role of ZnO-NPs on aivlosin residues in broiler tissues. A total of 1,440 Cobb chicks were allocated into 6 groups. At 14 d of age, chickens of groups 1 and 3 were experimentally infected with MG intratracheally and 6 d later, chickens of groups 2 and 3 were infected occulonasaly with ORT. Groups 1, 2, and 3 were divided into 4 subgroups; birds in subgroups 1, 2, and 3 were treated with aivlosin (A), ZnO-NPs (Z), and A/Z, respectively, while those in subgroups 4 was left without treatments. Moreover, groups 4 and 5 were kept noninfected and treated with aivlosin alone or in combination with ZnO-NPs, respectively. Finally, group 6 was kept as a negative control. The current results showed that the recovery from respiratory diseases caused by MG and/or ORT infections was most successful after treatment with A/Z in combination. Consequently, clinical signs, mortality rates, postmortem lesions of the respiratory organs, histopathological lesions of liver, trachea and lung and tracheal MG and ORT counts were significantly (P < 0.05) reduced following A/Z treatment. Taken together, high performance liquid chromatography analysis revealed that ZnO-NPs decreased the aivlosin residues in liver, muscle and skin of healthy and infected chickens. Based on these results, it could be concluded that aivlosin/ZnO-NPs therapy is a valuable approach for controlling MG and/or ORT infections in boilers.


Sujet(s)
Infections à Flavobacteriaceae , Mycoplasma gallisepticum , Nanoparticules , Ornithobacterium , Maladies de la volaille , Oxyde de zinc , Animaux , Poulets , Infections à Flavobacteriaceae/traitement médicamenteux , Infections à Flavobacteriaceae/microbiologie , Infections à Flavobacteriaceae/médecine vétérinaire , Maladies de la volaille/traitement médicamenteux , Maladies de la volaille/microbiologie , Tylosine/analogues et dérivés
6.
Vet World ; 12(5): 677-683, 2019 May.
Article de Anglais | MEDLINE | ID: mdl-31327903

RÉSUMÉ

AIM: This study aimed to investigate the prevalence of different bacterial species affecting ducks as well as demonstrating the antimicrobial susceptibility and molecular typing of the isolated strains. MATERIALS AND METHODS: A total of 500 samples were randomly collected from different duck farms at Ismailia Governorate, Egypt. The collected samples were subjected to the bacteriological examination. Polymerase chain reaction (PCR) was applied for amplification of Kmt1 gene of Pasteurella multocida and X region of protein-A (spA) gene of the isolated Staphylococcus aureus strains to ensure their virulence. The antibiotic sensitivity test was carried out. RESULTS: The most common pathogens isolated from apparently healthy and diseased ducks were P. multocida (10.4% and 25.2%), Escherichia coli (3.6% and 22.8%), Staphylococcus epidermidis (10% and 8.8%), Pseudomonas aeruginosa (2% and 10%), and Proteus vulgaris (0.8% and 10%), respectively. In addition, S. aureus and Salmonella spp. were isolated only from the diseased ducks with prevalence (12.2%) and (2.8%), respectively. Serotyping of the isolated E. coli strains revealed that 25 E. coli strains were belonged to five different serovars O1, O18, O111, O78, and O26, whereas three strains were untypable. Salmonella serotyping showed that all the isolated strains were Salmonella Typhimurium. PCR revealed that four tested P. multocida strains were positive for Kmt1 gene with specific amplicon size 460 bp, while three strains were negative. In addition, all the tested S. aureus strains were positive for spA gene with specific amplicon size 226 bp. The antibiotic sensitivity test revealed that most of the isolated strains were sensitive to enrofloxacin, norfloxacin, and ciprofloxacin. CONCLUSION: P. multocida is the most predominant microorganism isolated from apparently healthy and diseased ducks followed by E. coli and Staphylococci. The combination of both phenotypic and genotypic characterization is more reliable an epidemiological tool for identification of bacterial pathogens affecting ducks.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...