Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 6 de 6
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Article de Anglais | MEDLINE | ID: mdl-33816651

RÉSUMÉ

The islets of Langerhans constitute the endocrine pancreas which regulates blood glucose homeostasis and their dysfunction results in diabetes. Each of the pancreatic islets constitutes an entire micro-organ with intricate cell to cell interactions and that is well vascularized and innervated. An important therapeutic advantage in islet transplant is that pancreatic islets maintain their organ integrity when isolated and transplanted to patients with severe diabetes. Once transplanted, the islet micro-organs actively contribute to their own vascularization and start to function immediately. Hence, in terms of organ transplantation, the application of pancreatic islets will be a decisive clinical tool for future diabetes care (credit: Tilo Moede).

2.
Article de Anglais | MEDLINE | ID: mdl-29497631

RÉSUMÉ

It is now well established that beta cell replacement through pancreatic islet transplantation results in significant improvement in the quality-of-life of type 1 diabetes (T1D) patients. This is achieved through improved control and prevention of severe drops in blood sugar levels. Islet transplant therapy is on the verge of becoming standard-of-care in the USA. Yet, as with other established transplantation therapies, there remain hurdles to overcome to bring islet transplantation to full fruition as a long-lasting therapy of T1D. One of these hurdles is establishing reliable new sites, other than the liver, where durable efficacy and survival of transplanted islets can be achieved. In this article, we discuss the anterior chamber of the eye as a new site for clinical islet transplantation in the treatment of T1D. We specifically focus on the common conceptions, and preconceptions, on the requirements of islet mass, and whether or not the anterior chamber can accommodate sufficient islets to achieve meaningful efficacy and significant impact on hyperglycemia in clinical application.

3.
Diabetes Obes Metab ; 15 Suppl 3: 105-16, 2013 Sep.
Article de Anglais | MEDLINE | ID: mdl-24003927

RÉSUMÉ

Although, diabetes is reaching pandemic proportions, the exact aetiology of either type 1 (T1D) or type 2 diabetes (T2D) remains to be determined. Mounting evidence, however, suggests that islet inflammation is a likely common denominator during early development of either type of the disease. In this review, we highlight some of the inflammatory mechanisms that appear to be shared between T1D and T2D, and we explore the utility of intravital imaging in the study of islet inflammation. Intravital imaging has emerged as an indispensable tool in biomedical research and a variety of in vivo imaging approaches have been developed to study pancreatic islet physiology and pathophysiology in the native environment in health and disease. However, given the scattered distribution of the islets of Langerhans within the 'sea' of the exocrine pancreas located deep within the body and the fact that the islets only constitute 1-2% of the total volume of pancreatic tissue, studying the pancreatic islet in situ has been challenging. Here, we focus on a new experimental approach that enables studying local islet inflammation with single-cell resolution in the relevant context of the in vivo environment non-invasively and longitudinally and, thereby improving our understanding of diabetes pathogenesis.


Sujet(s)
Suivi cellulaire/méthodes , Imagerie diagnostique/méthodes , Inflammation/diagnostic , Ilots pancréatiques/anatomopathologie , Animaux , Diabète/diagnostic , Diabète/étiologie , Diabète/anatomopathologie , Humains , Injections oculaires , Transplantation d'ilots de Langerhans , Microscopie confocale , Pancréatite/diagnostic , Pancréatite/anatomopathologie
4.
Am J Transplant ; 13(6): 1461-73, 2013 Jun.
Article de Anglais | MEDLINE | ID: mdl-23679575

RÉSUMÉ

Keratoplasty is the primary treatment to cure blindness due to corneal opacification. However, immune-mediated rejection remains the leading cause of keratoplasty failure. Here, we utilize an in vivo imaging approach to monitor, track, and characterize in real-time the recruitment of GFP-labeled allo-specific activated (Bonzo) T cells during corneal allograft rejection. We show that the recruitment of effector T cells to the site of transplantation determined the fate of corneal allografts, and that local intra-graft production of CCL5 and CXCL9/10 regulated motility patterns of effector T cells in situ, and correlated with allograft rejection. We also show that different motility patterns associate with distinct in vivo phenotypes (round, elongated, and ruffled) of graft-infiltrating effector T cells with varying proportions during progression of rejection. The ruffled phenotype was characteristic of activated effectors T cells and predominated during ongoing rejection, which associated with significantly increased T cell dynamics within the allografts. Importantly, CCR5/CXCR3 blockade decreased the motility, size, and number of infiltrating T cells and significantly prolonged allograft survival. Our findings indicate that chemokines produced locally within corneal allografts play an important role in the in situ activation and dynamic behavior of infiltrating effector T cells, and may guide targeted interventions to promote graft survival.


Sujet(s)
Mouvement cellulaire/immunologie , Chimiokines/immunologie , Cornée/immunologie , Transplantation de cornée , Rejet du greffon/immunologie , Immunité cellulaire , Lymphocytes T/anatomopathologie , Animaux , Chimiokines/métabolisme , Cornée/anatomopathologie , Maladies de la cornée/chirurgie , Modèles animaux de maladie humaine , Test ELISA , Femelle , Cytométrie en flux , Rejet du greffon/anatomopathologie , Survie du greffon , Souris , Souris de lignée BALB C , Souris de lignée C57BL , Lymphocytes T/immunologie , Transplantation homologue
5.
Article de Anglais | MEDLINE | ID: mdl-29497630

RÉSUMÉ

The World Health Organization projects diabetes prevalence worldwide to be at 4.4% in 2030 compared to 2.8% in the year 2000. These alarming predictions come amid vigorous efforts in diabetes research which have failed so far to deliver effective therapies. Our incomplete understanding of the pathogenesis of diabetes is likely to contribute to the "disconnect" between our research efforts and their translation into successful therapies. Technically, studying the pathophysiology of the pancreatic islets is hindered by the anatomical location of the pancreas, which is deeply embedded in the body, and by lack of experimental tools that enable comprehensive interrogation of the pancreatic islets with sufficient resolution in the context of the natural in vivo environment non-invasively and longitudinally. Emerging evidence also indicates that challenges in successful translation of findings in animal models to the human setting are complicated by some inherent structural and functional differences between the mouse and human islets. In this review, we briefly describe the advantages and shortcomings of existing intravital imaging approaches used to study the pancreatic islet biology in vivo, and we contrast such techniques with a recently established intravital approach using pancreatic islet transplantation into the anterior chamber of the eye. We also provide a summary of recent structure-function studies in the human pancreas to reveal distinctive features of human islets compared with mouse islets. We finally touch on a recently renewed discussion of the validity of animal models in studying human health and disease, and we highlight the potential utility of "humanized" animal models in studying different aspects of human islet biology and improving our understanding of diabetes.

6.
Diabetologia ; 54(5): 1121-6, 2011 May.
Article de Anglais | MEDLINE | ID: mdl-21360190

RÉSUMÉ

AIMS/HYPOTHESIS: The aim of this study was to provide evidence that the anterior chamber of the eye serves as a novel clinical islet implantation site. METHODS: In a preclinical model, allogeneic pancreatic islets were transplanted into the anterior chamber of the eye of a baboon model for diabetes, and metabolic and ophthalmological outcomes were assessed. RESULTS: Islets readily engrafted on the iris and there was a decrease in exogenous insulin requirements due to insulin secretion from the intraocular grafts. No major adverse effects on eye structure and function could be observed during the transplantation period. CONCLUSIONS/INTERPRETATION: Our study demonstrates the long-term survival and function of allogeneic islets after transplantation into the anterior chamber of the eye. The safety and simplicity of this procedure provides support for further studies aimed at translating this technology into the clinic.


Sujet(s)
Chambre antérieure du bulbe oculaire/chirurgie , Diabète expérimental/thérapie , Transplantation d'ilots de Langerhans/méthodes , Animaux , Papio
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE