Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 11 de 11
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
RSC Adv ; 13(35): 24789-24794, 2023 Aug 11.
Article de Anglais | MEDLINE | ID: mdl-37608969

RÉSUMÉ

An efficient one-pot, three-component process for the synthesis of benzimidazole derivatives using a catalytic amount of Fe(iii) porphyrin has been developed. The reaction proceeds via domino C-N bond formation and cyclization reactions of benzo-1,2-quinone, aldehydes and ammonium acetate as a nitrogen source to selectively produce benzimidazole. A number of benzimidazole derivatives have been synthesized using this method in high yields under mild reaction conditions.

2.
Anal Chim Acta ; 1226: 340286, 2022 Sep 15.
Article de Anglais | MEDLINE | ID: mdl-36068068

RÉSUMÉ

This study aims to use a paper-based sensor array for point-of-care detection of COVID-19 diseases. Various chemical compounds such as nanoparticles, organic dyes and metal ion complexes were employed as sensing elements in the array fabrication, capturing the metabolites of human serum samples. The viral infection caused the type and concentration of serum compositions to change, resulting in different color responses for the infected and control samples. For this purpose, 118 serum samples of COVID-19 patients and non-COVID controls both men and women with the age range of 14-88 years were collected. The serum samples were initially subjected to the sensor, followed by monitoring the variation in the color of sensing elements for 5 min using a scanner. By taking into consideration the statistical information, this method was capable of discriminating COVID-19 patients and control samples with 83.0% accuracy. The variation of age did not influence the colorimetric patterns. The desirable correlation was observed between the sensor responses and viral load values calculated by the PCR test, proposing a rapid and facile way to estimate the disease severity. Compared to other rapid detection methods, the developed assay is cost-effective and user-friendly, allowing for screening COVID-19 diseases reliably.


Sujet(s)
COVID-19 , Adolescent , Adulte , Sujet âgé , Sujet âgé de 80 ans ou plus , COVID-19/diagnostic , Dépistage de la COVID-19 , Colorimétrie/méthodes , Nez électronique , Femelle , Humains , Mâle , Adulte d'âge moyen , Techniques d'amplification d'acides nucléiques , Systèmes automatisés lit malade , Jeune adulte
3.
Front Chem ; 10: 898658, 2022.
Article de Anglais | MEDLINE | ID: mdl-35958232

RÉSUMÉ

A one-pot multicomponent reaction of a variety of benzaldehydes, dimedone, and 1H-1,2,4-triazol-3-amine for the efficient synthesis of quinazolinone derivatives under green conditions is reported. It was proved that MIL-101(Cr) could carry out successfully this multicomponent strategy to afford target products in high yields. The scope and limitation of this catalytic system concerning the aldehyde substrates were explored. Different aldehydes could be conveniently delivered to quinazolinones at room temperature with short reaction times in an atom-economy way. Notably, MIL-101(Cr) was also characterized by different analytic methods such as FT-IR, SEM, and EDX. The outstanding benefits of this methodology are the availability of substrates, using green conditions, excellent functional group compatibility, and reusability of catalysts, therefore providing easy access to a range of products of interest in organic and medicinal chemistry.

4.
Mikrochim Acta ; 189(9): 316, 2022 08 05.
Article de Anglais | MEDLINE | ID: mdl-35927498

RÉSUMÉ

A colorimetric sensor array designed on a paper substrate with a microfluidic structure has been developed. This array is capable of detecting COVID-19 disease by tracking metabolites of urine samples. In order to determine minor metabolic changes, various colorimetric receptors consisting of gold and silver nanoparticles, metalloporphyrins, metal ion complexes, and pH-sensitive indicators are used in the array structure. By injecting a small volume of the urine sample, the color pattern of the sensor changes after 7 min, which can be observed visually. The color changes of the receptors (recorded by a scanner) are subsequently calculated by image analysis software and displayed as a color difference map. This study has been performed on 130 volunteers, including 60 patients infected by COVID-19, 55 healthy controls, and 15 cured individuals. The resulting array provides a fingerprint response for each category due to the differences in the metabolic profile of the urine sample. The principal component analysis-discriminant analysis confirms that the assay sensitivity to the correctly detected patient, healthy, and cured participants is equal to 73.3%, 74.5%, and 66.6%, respectively. Apart from COVID-19, other diseases such as chronic kidney disease, liver disorder, and diabetes may be detectable by the proposed sensor. However, this performance of the sensor must be tested in the studies with a larger sample size. These results show the possible feasibility of the sensor as a suitable alternative to costly and time-consuming standard methods for rapid detection and control of viral and bacterial infectious diseases and metabolic disorders.


Sujet(s)
COVID-19 , Nanoparticules métalliques , COVID-19/diagnostic , Colorimétrie/méthodes , Humains , Nanoparticules métalliques/composition chimique , Microfluidique , Argent/composition chimique
5.
RSC Adv ; 12(32): 20968-20972, 2022 Jul 14.
Article de Anglais | MEDLINE | ID: mdl-35919129

RÉSUMÉ

An efficient metal-free synthesis strategy of benzoxazoles was developed via coupling catechols, ammonium acetate, and alkenes/alkynes/ketones. The developed methodology represents an operationally simple, one-pot and large-scale procedure for the preparation of benzoxazole derivatives using molecular iodine as the catalyst.

6.
Sens Actuators B Chem ; 369: 132379, 2022 Oct 15.
Article de Anglais | MEDLINE | ID: mdl-35855726

RÉSUMÉ

According to World Health Organization reports, large numbers of people around the globe have been infected or died for Covid-19 due to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Researchers are still trying to find a rapid and accurate diagnostic method for revealing infected people by low viral load with the overriding goal of effective diagnostic management. Monitoring the body metabolic changes is known as an effective and inexpensive approach for the evaluation of the infected people. Here, an optical sniffer is introduced to detect exhaled breath metabolites of patients with Covid-19 (60 samples), healthy humans (55 samples), and cured people (15 samples), providing a unique color pattern for differentiation between the studied samples. The sniffer device is installed on a thin face mask, and directly exposed to the exhaled breath stream. The interactions occurring between the volatile compounds and sensing components such as porphyrazines, modified organic dyes, porphyrins, inorganic complexes, and gold nanoparticles allowing for the change of the color, thus being tracked as the sensor responses. The assay accuracy for the differentiation between patient, healthy and cured samples is calculated to be in the range of 80%-84%. The changes in the color of the sensor have a linear correlation with the disease severity and viral load evaluated by rRT-PCR method. Interestingly, comorbidities such as kidney, lung, and diabetes diseases as well as being a smoker may be diagnosed by the proposed method. As a powerful detection device, the breath sniffer can replace the conventional rapid test kits for medical applications.

7.
Talanta ; 246: 123537, 2022 Aug 15.
Article de Anglais | MEDLINE | ID: mdl-35597231

RÉSUMÉ

The monitoring of profile concentrations of chemical markers in saliva samples can be used to diagnose COVID-19 patients, and differentiate them from healthy individuals. Here, this purpose is achieved by designing a paper-based colorimetric sensor with an origami structure, containing general receptors such as pH-sensitive organic dyes, Lewis donors or acceptors, functionalized nanoparticles, and ion metal complexes. The color changes taking place in the receptors in the presence of chemical markers are visually observed and recorded with a digital instrument. Different types and amounts of the chemical markers provide the sensor with a unique response for patients (60 samples) or healthy (55 samples) individuals. These two categories can be discriminated with 84.3% accuracy. This study evidences that the saliva composition of cured and healthy participants is different from each other with accuracy of 85.7%. Moreover, viral load values obtained from the rRT-PCR method can be estimated by the designed sensor. Besides COVID-19, it may possible to simultaneously identify smokers and people with kidney disease and diabetes using the specified electronic tongue. Due to its high efficiency, the prepared paper device can be employed as a rapid detection kit to detect COVID-19.


Sujet(s)
COVID-19 , Nanoparticules métalliques , COVID-19/diagnostic , Colorimétrie/méthodes , Nez électronique , Humains , Nanoparticules métalliques/composition chimique , Systèmes automatisés lit malade
8.
Mol Divers ; 26(2): 1249-1258, 2022 Apr.
Article de Anglais | MEDLINE | ID: mdl-33978897

RÉSUMÉ

An effective and proficient process for the synthesis of a variety of thioethers via the one-step reaction of benzyl halides, aryl halides, and thiourea is presented. This strategy is a one-pot procedure to achieve a variety of thioethers without the requirement to thiols as starting compounds. A range of thioethers containing electron donating/electron-withdrawing functional groups were obtained with good to excellent yields under mild conditions. Moreover, the nanocatalyst exhibited excellent recyclability for the reaction, making it more sustainable. One-pot and multi-component synthesis, high yields of final products, green reaction media, high activity of nanocatalyst, simple separation of the products and catalyst, and high regioselectivity are several highlights of this method.


Sujet(s)
Bases de Schiff , Sulfures , Catalyse , Thiols
9.
ACS Omega ; 6(34): 22395-22399, 2021 Aug 31.
Article de Anglais | MEDLINE | ID: mdl-34497928

RÉSUMÉ

The multicomponent coupling reaction of catechol, ammonium acetate, and benzyl alcohol/benzyl methyl ether in the presence of a Fe(III) catalyst precursor afforded benzoxazole derivatives in good to excellent yields. The notable features of this protocol are abundant availability of the catalyst system, large-scale synthesis, high diversity, and high yields of products.

10.
Beilstein J Org Chem ; 16: 551-586, 2020.
Article de Anglais | MEDLINE | ID: mdl-32280385

RÉSUMÉ

In recent years, many inorganic silica/carbon-based and magnetic materials have been selected to arrest copper ions through a widespread range of anchoring and embedding methodologies. These inorganic supported nanocatalysts have been found to be efficient, environmentally friendly, recyclable, and durable. In addition, one of the vital issues for expanding new, stable, and reusable catalysts is the discovery of unique catalysts. The basis and foundation of this review article is to consider the recently published developments (2014-2019) in the synthesis and catalytic applications of copper supported by silica nanocomposites, carbon nanocomposites, and magnetic nanocomposites for expanding the "click" chemistry.

11.
J Org Chem ; 85(10): 6567-6577, 2020 05 15.
Article de Anglais | MEDLINE | ID: mdl-32326700

RÉSUMÉ

The Fe(III)-salen complex has been applied successfully as a catalyst for the novel, simple, efficient, and one-pot multicomponent synthesis of benzoxazole derivatives from catechols, ammonium acetate as the nitrogen source, and aldehydes (nontoxic and cheap alternatives of amines) for the first time. Using this procedure, a wide range of benzoxazoles was successfully synthesized in the presence of a catalyst in EtOH under mild conditions, and all products were obtained in excellent yields. To the best of our knowledge, this method is the first example of the multicomponent synthesis of benzoxazole derivatives using these starting materials. The notable features such as the use of air that is considered as a benign oxidant and EtOH as a green solvent, ease of product separation, readily available and inexpensive aldehydes, and mild conditions make our procedure more efficient and practical for organic synthesis. Moreover, the current protocol is successfully applied to synthesize desirable products on a large scale.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE