Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 7 de 7
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
New Phytol ; 239(1): 116-131, 2023 07.
Article de Anglais | MEDLINE | ID: mdl-37149888

RÉSUMÉ

Over 15 families of aquatic plants are known to use a strategy of developmental switching upon environmental stress to produce dormant propagules called turions. However, few molecular details for turion biology have been elucidated due to the difficulties in isolating high-quality nucleic acids from this tissue. We successfully developed a new protocol to isolate high-quality transcripts and carried out RNA-seq analysis of mature turions from the Greater Duckweed Spirodela polyrhiza. Comparison of turion transcriptomes to that of fronds, the actively growing leaf-like tissue, were carried out. Bioinformatic analysis of high confidence, differentially expressed transcripts between frond and mature turion tissues revealed major pathways related to stress tolerance, starch and lipid metabolism, and dormancy that are mobilized to reprogram frond meristems for turion differentiation. We identified the key genes that are likely to drive starch and lipid accumulation during turion formation, as well as those in pathways for starch and lipid utilization upon turion germination. Comparison of genome-wide cytosine methylation levels also revealed evidence for epigenetic changes in the formation of turion tissues. Similarities between turions and seeds provide evidence that key regulators for seed maturation and germination were retooled for their function in turion biology.


Sujet(s)
Araceae , Germination , Germination/génétique , Araceae/génétique , Génomique , Amidon/métabolisme , Lipides , Dormance des plantes/génétique
2.
Elife ; 112022 11 15.
Article de Anglais | MEDLINE | ID: mdl-36377784

RÉSUMÉ

As a first step in innate immunity, pattern recognition receptors (PRRs) recognize the distinct pathogen and herbivore-associated molecular patterns and mediate activation of immune responses, but specific steps in the evolution of new PRR sensing functions are not well understood. We employed comparative genomic and functional analyses to define evolutionary events leading to the sensing of the herbivore-associated peptide inceptin (In11) by the PRR inceptin receptor (INR) in legume plant species. Existing and de novo genome assemblies revealed that the presence of a functional INR gene corresponded with ability to respond to In11 across ~53 million years (my) of evolution. In11 recognition is unique to the clade of Phaseoloid legumes, and only a single clade of INR homologs from Phaseoloids was functional in a heterologous model. The syntenic loci of several non-Phaseoloid outgroup species nonetheless contain non-functional INR-like homologs, suggesting that an ancestral gene insertion event and diversification preceded the evolution of a specific INR receptor function ~28 my ago. Chimeric and ancestrally reconstructed receptors indicated that 16 amino acid differences in the C1 leucine-rich repeat domain and C2 intervening motif mediate gain of In11 recognition. Thus, high PRR diversity was likely followed by a small number of mutations to expand innate immune recognition to a novel peptide elicitor. Analysis of INR evolution provides a model for functional diversification of other germline-encoded PRRs.


The health status of a plant depends on the immune system it inherits from its parents. Plants have many receptor proteins that can recognize distinct molecules from insects and microbes, and trigger an immune response. Inheriting the right set of receptors allows plants to detect certain threats and to cope with diseases and pests. Soybeans, chickpeas and other closely-related crop plants belong to a family of plants known as the legumes. Previous studies have found that, unlike other plants, some legumes are able to respond to oral secretions from caterpillars. These plants have a receptor known as INR that binds to a molecule called inceptin in the secretions. However, it remained unclear how or when INR evolved. To address this gap, Snoeck et al. tested immune responses to inceptin in the leaves of 22 species of legume. The experiments revealed that only members of a subgroup of legumes called the Phaseoloids were able to recognize the molecule. Analyzing the genomes of several legume species revealed that the gene encoding INR first emerged around 28 million years ago. Among the descendants of the legumes that first evolved this receptor, only the crop plant soybean and a few other species were unable to respond to inceptin. The genomic data indicated that these species had in fact lost the gene encoding INR over evolutionary time. Snoeck et al. then combined data from genes encoding modern-day receptors to reconstruct the sequence of building blocks that make up the 28-million-year-old version of INR. This ancestral receptor was able to respond to inceptin in the caterpillar secretion, whereas an older version of the protein, which had a slightly different set of building blocks, could not. This suggests that INR evolved the ability to respond to inceptin as a result of small mutations in the gene encoding a more ancient receptor. The work of Snoeck et al. reveals how the Phaseoloids evolved to respond to caterpillars, and how this ability has been lost in soybeans and other members of the subgroup. In the future, these findings may aid plant breeding or genetic engineering approaches for enhancing soybeans and other crops resistance to caterpillar pests.


Sujet(s)
Immunité innée , Récepteurs de reconnaissance de motifs moléculaires , Récepteurs de reconnaissance de motifs moléculaires/génétique , Récepteurs de reconnaissance de motifs moléculaires/métabolisme , Plantes/génétique , Plantes/métabolisme , Synténie
3.
PLoS One ; 17(3): e0264966, 2022.
Article de Anglais | MEDLINE | ID: mdl-35255111

RÉSUMÉ

Cranberry (Vaccinium macrocarpon) is a member of the Heath family (Ericaceae) and is a temperate low-growing woody perennial native to North America that is both economically important and has significant health benefits. While some native varieties are still grown today, breeding programs over the past 50 years have made significant contributions to improving disease resistance, fruit quality and yield. An initial genome sequence of an inbred line of the wild selection 'Ben Lear,' which is parent to multiple breeding programs, provided insight into the gene repertoire as well as a platform for molecular breeding. Recent breeding efforts have focused on leveraging the circumboreal V. oxycoccos, which forms interspecific hybrids with V. macrocarpon, offering to bring in novel fruit chemistry and other desirable traits. Here we present an updated, chromosome-resolved V. macrocarpon reference genome, and compare it to a high-quality draft genome of V. oxycoccos. Leveraging the chromosome resolved cranberry reference genome, we confirmed that the Ericaceae has undergone two whole genome duplications that are shared with blueberry and rhododendron. Leveraging resequencing data for 'Ben Lear' inbred lines, as well as several wild and elite selections, we identified common regions that are targets of improvement. These same syntenic regions in V. oxycoccos, were identified and represent environmental response and plant architecture genes. These data provide insight into early genomic selection in the domestication of a native North American berry crop.


Sujet(s)
Ericaceae , Vaccinium macrocarpon , Domestication , Ericaceae/génétique , Fruit/génétique , Génome végétal , Amélioration des plantes , Extraits de plantes/analyse , Vaccinium macrocarpon/composition chimique , Vaccinium macrocarpon/génétique
4.
Plant Physiol ; 188(2): 879-897, 2022 02 04.
Article de Anglais | MEDLINE | ID: mdl-34893913

RÉSUMÉ

The ability to trace every cell in some model organisms has led to the fundamental understanding of development and cellular function. However, in plants the complexity of cell number, organ size, and developmental time makes this a challenge even in the diminutive model plant Arabidopsis (Arabidopsis thaliana). Duckweed, basal nongrass aquatic monocots, provide an opportunity to follow every cell of an entire plant due to their small size, reduced body plan, and fast clonal growth habit. Here we present a chromosome-resolved genome for the highly invasive Lesser Duckweed (Lemna minuta) and generate a preliminary cell atlas leveraging low cell coverage single-nuclei sequencing. We resolved the 360 megabase genome into 21 chromosomes, revealing a core nonredundant gene set with only the ancient tau whole-genome duplication shared with all monocots, and paralog expansion as a result of tandem duplications related to phytoremediation. Leveraging SMARTseq2 single-nuclei sequencing, which provided higher gene coverage yet lower cell count, we profiled 269 nuclei covering 36.9% (8,457) of the L. minuta transcriptome. Since molecular validation was not possible in this nonmodel plant, we leveraged gene orthology with model organism single-cell expression datasets, gene ontology, and cell trajectory analysis to define putative cell types. We found that the tissue that we computationally defined as mesophyll expressed high levels of elemental transport genes consistent with this tissue playing a role in L. minuta wastewater detoxification. The L. minuta genome and preliminary cell map provide a paradigm to decipher developmental genes and pathways for an entire plant.


Sujet(s)
Araceae/génétique , Espèce introduite , Dispersion des plantes/génétique , Transcriptome , Génome végétal
5.
Science ; 374(6569): eabi7489, 2021 Nov 12.
Article de Anglais | MEDLINE | ID: mdl-34762468

RÉSUMÉ

Centromeres attach chromosomes to spindle microtubules during cell division and, despite this conserved role, show paradoxically rapid evolution and are typified by complex repeats. We used long-read sequencing to generate the Col-CEN Arabidopsis thaliana genome assembly that resolves all five centromeres. The centromeres consist of megabase-scale tandemly repeated satellite arrays, which support CENTROMERE SPECIFIC HISTONE H3 (CENH3) occupancy and are densely DNA methylated, with satellite variants private to each chromosome. CENH3 preferentially occupies satellites that show the least amount of divergence and occur in higher-order repeats. The centromeres are invaded by ATHILA retrotransposons, which disrupt genetic and epigenetic organization. Centromeric crossover recombination is suppressed, yet low levels of meiotic DNA double-strand breaks occur that are regulated by DNA methylation. We propose that Arabidopsis centromeres are evolving through cycles of satellite homogenization and retrotransposon-driven diversification.


Sujet(s)
Arabidopsis/génétique , Centromère/génétique , Chromosomes de plante/génétique , Épigenèse génétique , Arabidopsis/ultrastructure , Centromère/composition chimique , Méthylation de l'ADN , ADN satellite , Évolution moléculaire , Génome végétal , Histone/analyse , Méiose , Recombinaison génétique , Rétroéléments , Analyse de séquence d'ADN
6.
Int J Mol Sci ; 21(19)2020 Sep 26.
Article de Anglais | MEDLINE | ID: mdl-32993167

RÉSUMÉ

Kluyveromyces marxianus (K. marxianus) is an increasingly popular industrially relevant yeast. It is known to possess a highly efficient non-homologous end joining (NHEJ) pathway that promotes random integration of non-homologous DNA fragments into its genome. The nature of the integration events was traditionally analyzed by Southern blot hybridization. However, the precise DNA sequence at the insertion sites were not fully explored. We transformed a PCR product of the Saccharomyces cerevisiae URA3 gene (ScURA3) into an uracil auxotroph K. marxianus otherwise wildtype strain and picked 24 stable Ura+ transformants for sequencing analysis. We took advantage of rapid advances in DNA sequencing technologies and developed a method using a combination of Illumina MiSeq and Oxford Nanopore sequencing. This approach enables us to uncover the gross chromosomal rearrangements (GCRs) that are associated with the ScURA3 random integration. Moreover, it will shine a light on understanding DNA repair mechanisms in eukaryotes, which could potentially provide insights for cancer research.


Sujet(s)
Chromosomes de champignon , Kluyveromyces/génétique , Protéines de Saccharomyces cerevisiae/génétique , Saccharomyces cerevisiae/génétique , Aberrations des chromosomes , Réparation de l'ADN par jonction d'extrémités , ADN fongique/génétique , Séquençage par nanopores/méthodes , Transformation génétique
7.
Plant Cell Physiol ; 57(12): 2451-2460, 2016 Dec.
Article de Anglais | MEDLINE | ID: mdl-27742883

RÉSUMÉ

In plants, a limited capacity to utilize or export the end-products of the Calvin-Benson cycle (CB) from photosynthetically active source cells to non-photosynthetic sink cells can result in reduced carbon capture and photosynthetic electron transport (PET), and lowered photochemical efficiency. The down-regulation of photosynthesis caused by reduced capacity to utilize photosynthate has been termed 'sink limitation'. Recently, several cyanobacterial and algal strains engineered to overproduce target metabolites have exhibited increased photochemistry, suggesting that possible source-sink regulatory mechanisms may be involved. We directly examined photochemical properties following induction of a heterologous sucrose 'sink' in the unicellular cyanobacterium Synechococcus elongatus PCC 7942. We show that total photochemistry increases proportionally to the experimentally controlled rate of sucrose export. Importantly, the quantum yield of PSII (ΦII) increases in response to sucrose export while the PET chain becomes more oxidized from less PSI acceptor-side limitation, suggesting increased CB activity and a decrease in sink limitation. Enhanced photosynthetic activity and linear electron flow are detectable within hours of induction of the heterologous sink and are independent of pigmentation alterations or the ionic/osmotic effects of the induction system. These observations provide direct evidence that secretion of heterologous carbon bioproducts can be used as an alternative approach to improve photosynthetic efficiency, presumably by by-passing sink limitation. Our results also suggest that engineered microalgal production strains are valuable alternative models for examining photosynthetic sink limitation because they enable greater control and monitoring of metabolite fluxes relative to plants.


Sujet(s)
Carbone/métabolisme , Métabolisme énergétique , Régulation de l'expression des gènes végétaux , Génie métabolique , Saccharose/métabolisme , Synechococcus/physiologie , Chlorophylle/métabolisme , Régulation négative , Transport d'électrons , Lumière , Oxydoréduction , Photosynthèse , Complexe protéique du photosystème II/métabolisme , Synechococcus/effets des radiations
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...