Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 40
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Genes Dev ; 38(3-4): 131-150, 2024 03 22.
Article de Anglais | MEDLINE | ID: mdl-38453481

RÉSUMÉ

Maternal inactivation of genes encoding components of the subcortical maternal complex (SCMC) and its associated member, PADI6, generally results in early embryo lethality. In humans, SCMC gene variants were found in the healthy mothers of children affected by multilocus imprinting disturbances (MLID). However, how the SCMC controls the DNA methylation required to regulate imprinting remains poorly defined. We generated a mouse line carrying a Padi6 missense variant that was identified in a family with Beckwith-Wiedemann syndrome and MLID. If homozygous in female mice, this variant resulted in interruption of embryo development at the two-cell stage. Single-cell multiomic analyses demonstrated defective maturation of Padi6 mutant oocytes and incomplete DNA demethylation, down-regulation of zygotic genome activation (ZGA) genes, up-regulation of maternal decay genes, and developmental delay in two-cell embryos developing from Padi6 mutant oocytes but little effect on genomic imprinting. Western blotting and immunofluorescence analyses showed reduced levels of UHRF1 in oocytes and abnormal localization of DNMT1 and UHRF1 in both oocytes and zygotes. Treatment with 5-azacytidine reverted DNA hypermethylation but did not rescue the developmental arrest of mutant embryos. Taken together, this study demonstrates that PADI6 controls both nuclear and cytoplasmic oocyte processes that are necessary for preimplantation epigenetic reprogramming and ZGA.


Sujet(s)
Ovocytes , Zygote , Animaux , Enfant , Femelle , Humains , Souris , Protéines liant les séquences stimulatrices de type CCAAT/génétique , Cytoplasme/génétique , Cytoplasme/métabolisme , Méthylation de l'ADN/génétique , Développement embryonnaire/génétique , Empreinte génomique/génétique , Ubiquitin-protein ligases/métabolisme
2.
Mol Neurodegener ; 16(1): 35, 2021 06 21.
Article de Anglais | MEDLINE | ID: mdl-34148545

RÉSUMÉ

BACKGROUND: Parkinson's disease (PD) is a neurodegenerative movement disorder affecting 1-5% of the general population for which neither effective cure nor early diagnostic tools are available that could tackle the pathology in the early phase. Here we report a multi-stage procedure to identify candidate genes likely involved in the etiopathogenesis of PD. METHODS: The study includes a discovery stage based on the analysis of whole exome data from 26 dominant late onset PD families, a validation analysis performed on 1542 independent PD patients and 706 controls from different cohorts and the assessment of polygenic variants load in the Italian cohort (394 unrelated patients and 203 controls). RESULTS: Family-based approach identified 28 disrupting variants in 26 candidate genes for PD including PARK2, PINK1, DJ-1(PARK7), LRRK2, HTRA2, FBXO7, EIF4G1, DNAJC6, DNAJC13, SNCAIP, AIMP2, CHMP1A, GIPC1, HMOX2, HSPA8, IMMT, KIF21B, KIF24, MAN2C1, RHOT2, SLC25A39, SPTBN1, TMEM175, TOMM22, TVP23A and ZSCAN21. Sixteen of them have not been associated to PD before, were expressed in mesencephalon and were involved in pathways potentially deregulated in PD. Mutation analysis in independent cohorts disclosed a significant excess of highly deleterious variants in cases (p = 0.0001), supporting their role in PD. Moreover, we demonstrated that the co-inheritance of multiple rare variants (≥ 2) in the 26 genes may predict PD occurrence in about 20% of patients, both familial and sporadic cases, with high specificity (> 93%; p = 4.4 × 10- 5). Moreover, our data highlight the fact that the genetic landmarks of late onset PD does not systematically differ between sporadic and familial forms, especially in the case of small nuclear families and underline the importance of rare variants in the genetics of sporadic PD. Furthermore, patients carrying multiple rare variants showed higher risk of manifesting dyskinesia induced by levodopa treatment. CONCLUSIONS: Besides confirming the extreme genetic heterogeneity of PD, these data provide novel insights into the genetic of the disease and may be relevant for its prediction, diagnosis and treatment.


Sujet(s)
/méthodes , Prédisposition génétique à une maladie/génétique , Maladie de Parkinson/génétique , Adulte , Âge de début , Sujet âgé , Femelle , Humains , Mâle , Adulte d'âge moyen , Pedigree
3.
Development ; 148(10)2021 05 15.
Article de Anglais | MEDLINE | ID: mdl-33999993

RÉSUMÉ

In mammals, the pre-gastrula proximal epiblast gives rise to primordial germ cells (PGCs) or somatic precursors in response to BMP4 and WNT signaling. Entry into the germline requires activation of a naïve-like pluripotency gene regulatory network (GRN). Recent work has shown that suppression of OTX2 expression in the epiblast by BMP4 allows cells to develop a PGC fate in a precise temporal window. However, the mechanisms by which OTX2 suppresses PGC fate are unknown. Here, we show that, in mice, OTX2 prevents epiblast cells from activating the pluripotency GRN by direct repression of Oct4 and Nanog. Loss of this control during PGC differentiation in vitro causes widespread activation of the pluripotency GRN and a deregulated response to LIF, BMP4 and WNT signaling. These abnormalities, in specific cell culture conditions, result in massive germline entry at the expense of somatic mesoderm differentiation. Increased generation of PGCs also occurs in mutant embryos. We propose that the OTX2-mediated repressive control of Oct4 and Nanog is the basis of the mechanism that determines epiblast contribution to germline and somatic lineage.


Sujet(s)
Cellules germinales/cytologie , Feuillets embryonnaires/cytologie , Protéine homéotique Nanog/antagonistes et inhibiteurs , Facteur de transcription Oct-3/antagonistes et inhibiteurs , Facteurs de transcription Otx/métabolisme , Animaux , Protéine morphogénétique osseuse de type 4/métabolisme , Différenciation cellulaire/physiologie , Cellules cultivées , Régulation de l'expression des gènes au cours du développement/génétique , Facteur inhibiteur de la leucémie/métabolisme , Souris , Souris de lignée C57BL , Souris knockout , Cellules souches pluripotentes/cytologie , Voie de signalisation Wnt/physiologie
4.
Nature ; 562(7728): 595-599, 2018 10.
Article de Anglais | MEDLINE | ID: mdl-30283136

RÉSUMÉ

The successful segregation of germ cells from somatic lineages is vital for sexual reproduction and species survival. In the mouse, primordial germ cells (PGCs), precursors of all germ cells, are induced from the post-implantation epiblast1. Induction requires BMP4 signalling to prospective PGCs2 and the intrinsic action of PGC transcription factors3-6. However, the molecular mechanisms that connect BMP4 to induction of the PGC transcription factors that are responsible for segregating PGCs from somatic lineages are unknown. Here we show that the transcription factor OTX2 is a key regulator of these processes. Downregulation of Otx2 precedes the initiation of the PGC programme both in vitro and in vivo. Deletion of Otx2 in vitro markedly increases the efficiency of PGC-like cell differentiation and prolongs the period of PGC competence. In the absence of Otx2 activity, differentiation of PGC-like cells becomes independent of the otherwise essential cytokine signals, with germline entry initiating even in the absence of the PGC transcription factor BLIMP1. Deletion of Otx2 in vivo increases PGC numbers. These data demonstrate that OTX2 functions repressively upstream of PGC transcription factors, acting as a roadblock to limit entry of epiblast cells to the germline to a small window in space and time, thereby ensuring correct numerical segregation of germline cells from the soma.


Sujet(s)
Cellules germinales/cytologie , Cellules germinales/métabolisme , Facteurs de transcription Otx/métabolisme , Animaux , Numération cellulaire , Différenciation cellulaire/génétique , Lignage cellulaire/génétique , Cytokines/métabolisme , Régulation négative , Femelle , Délétion de gène , Régulation de l'expression des gènes au cours du développement , Feuillets embryonnaires/cytologie , Feuillets embryonnaires/métabolisme , Mâle , Souris , Souris de lignée C57BL , Souris de lignée CBA , Facteurs de transcription Otx/déficit , Facteurs de transcription Otx/génétique , Facteur-1 liant le domaine de régulation positive I/métabolisme
5.
Cell Rep ; 23(12): 3635-3646, 2018 06 19.
Article de Anglais | MEDLINE | ID: mdl-29925004

RÉSUMÉ

Placental growth factor (PlGF) is a proangiogenic member of the vascular endothelial growth factor (VEGF) family playing a central role in pathological angiogenesis. PlGF-DE is a PlGF variant unable to bind vascular endothelial growth factor receptor 1 (VEGFR-1) but still able to generate heterodimer with VEGF-A. We have generated PlGF-DE knockin mice that are vital and fertile and show unaltered expression of Plgf, Vegf-a, Vegfr-1, and Vegfr-2 compared with wild-type mice. Interestingly, these mutants showed additional and remarkable angiogenesis impairment in tumor growth, hindlimb ischemia, and choroidal neovascularization compared with both PlGF knockout and wild-type mice. These findings provided insights on VEGF-A/PlGF heterodimer function, which was able to rescue neovascularization and vascular leakage in PlGF-DE knockin mice. Collectively, these data show that PlGF-DE knockin mouse could be considered the full functional knockout of PlGF, suggesting a reassessment of the phenotypes of knockout mice for the genes whose products are able to generate heterodimeric proteins.


Sujet(s)
Techniques de knock-in de gènes , Facteur de croissance placentaire/métabolisme , Multimérisation de protéines , Facteur de croissance endothéliale vasculaire de type A/métabolisme , Animaux , Prolifération cellulaire , Néovascularisation choroïdienne/métabolisme , Néovascularisation choroïdienne/anatomopathologie , Inhibiteur p27 de kinase cycline-dépendante/métabolisme , Extracellular Signal-Regulated MAP Kinases/métabolisme , Mâle , Souris de lignée C57BL , Souris knockout , Nitric oxide synthase type III/métabolisme , Phosphorylation , Récepteur-2 au facteur croissance endothéliale vasculaire/métabolisme
6.
Stem Cell Reports ; 9(5): 1642-1659, 2017 11 14.
Article de Anglais | MEDLINE | ID: mdl-29056334

RÉSUMÉ

Embryonic stem cells (ESCs) cultured in leukemia inhibitory factor (LIF) plus fetal bovine serum (FBS) exhibit heterogeneity in the expression of naive and primed transcription factors. This heterogeneity reflects the dynamic condition of ESCs and their versatility to promptly respond to signaling effectors promoting naive or primed pluripotency. Here, we report that ESCs lacking Nanog or overexpressing Otx2 exhibit an early primed identity in LIF + FBS and fail to convert into 2i-induced naive state. Conversely, Otx2-null ESCs possess naive identity features in LIF + FBS similar to Nanog-overexpressing ESCs and convert poorly into FGF-induced early primed state. When both Nanog and Otx2 are inactivated, ESCs cultured in LIF + FBS exhibit primed identity and weakened ability to convert into naive state. These data suggest that, through mutual antagonism, NANOG and OTX2 specify the heterogeneous identity of ESCs cultured in LIF + FBS and individually predispose them for optimal response to naive or primed inducing factors.


Sujet(s)
Différenciation cellulaire , Cellules souches embryonnaires de souris/cytologie , Protéine homéotique Nanog/génétique , Facteurs de transcription Otx/génétique , Animaux , Lignée cellulaire , Milieux de culture sans sérum/pharmacologie , Facteur inhibiteur de la leucémie/pharmacologie , Souris , Cellules souches embryonnaires de souris/effets des médicaments et des substances chimiques , Cellules souches embryonnaires de souris/métabolisme , Protéine homéotique Nanog/métabolisme , Facteurs de transcription Otx/métabolisme
7.
Nat Commun ; 7: 12589, 2016 09 02.
Article de Anglais | MEDLINE | ID: mdl-27586544

RÉSUMÉ

Known molecular determinants of developmental plasticity are mainly transcription factors, while the extrinsic regulation of this process has been largely unexplored. Here we identify Cripto as one of the earliest epiblast markers and a key extracellular determinant of the naive and primed pluripotent states. We demonstrate that Cripto sustains mouse embryonic stem cell (ESC) self-renewal by modulating Wnt/ß-catenin, whereas it maintains mouse epiblast stem cell (EpiSC) and human ESC pluripotency through Nodal/Smad2. Moreover, we provide unprecedented evidence that Cripto controls the metabolic reprogramming in ESCs to EpiSC transition. Remarkably, Cripto deficiency attenuates ESC lineage restriction in vitro and in vivo, and permits ESC transdifferentiation into trophectoderm lineage, suggesting that Cripto has earlier functions than previously recognized. All together, our studies provide novel insights into the current model of mammalian pluripotency and contribute to the understanding of the extrinsic regulation of the first cell lineage decision in the embryo.


Sujet(s)
Développement embryonnaire/physiologie , Cellules souches embryonnaires/physiologie , Facteur de croissance épidermique/métabolisme , Glycoprotéines membranaires/métabolisme , Protéines tumorales/métabolisme , Cellules souches pluripotentes/physiologie , bêta-Caténine/métabolisme , Animaux , Reprogrammation cellulaire/génétique , Facteur de croissance épidermique/génétique , Feuillets embryonnaires/cytologie , Humains , Glycoprotéines membranaires/génétique , Souris , Souris knockout , Protéines tumorales/génétique , Protéine Nodal/métabolisme , Protéine Smad2/métabolisme , Protéines de type Wingless/métabolisme
8.
Cell Rep ; 15(12): 2651-64, 2016 06 21.
Article de Anglais | MEDLINE | ID: mdl-27292645

RÉSUMÉ

Mouse embryonic stem cells (ESCs) and the inner cell mass (ICM)-derived epiblast exhibit naive pluripotency. ESC-derived epiblast stem cells (EpiSCs) and the postimplantation epiblast exhibit primed pluripotency. Although core pluripotency factors are well-characterized, additional regulators, including Otx2, recently have been shown to function during the transition from naive to primed pluripotency. Here we uncover a role for Otx2 in the control of the naive pluripotent state. We analyzed Otx2-binding activity in ESCs and EpiSCs and identified Nanog, Oct4, and Sox2 as direct targets. To unravel the Otx2 transcriptional network, we targeted the strongest Otx2-binding site in the Nanog promoter, finding that this site modulates the size of specific ESC-subtype compartments in cultured cells and promotes Nanog expression in vivo, predisposing ICM differentiation to epiblast. Otx2-mediated Nanog regulation thus contributes to the integrity of the ESC state and cell lineage specification in preimplantation development.


Sujet(s)
Blastocyste/cytologie , Cellules souches embryonnaires/cytologie , Feuillets embryonnaires/cytologie , Protéine homéotique Nanog/génétique , Facteurs de transcription Otx/métabolisme , Régions promotrices (génétique)/génétique , Animaux , Sites de fixation , Blastocyste/effets des médicaments et des substances chimiques , Blastocyste/métabolisme , Compartimentation cellulaire/effets des médicaments et des substances chimiques , Différenciation cellulaire/effets des médicaments et des substances chimiques , Lignage cellulaire/effets des médicaments et des substances chimiques , Prolifération cellulaire/effets des médicaments et des substances chimiques , Chimère/métabolisme , Développement embryonnaire/effets des médicaments et des substances chimiques , Développement embryonnaire/génétique , Cellules souches embryonnaires/métabolisme , Endoderme/cytologie , Analyse de profil d'expression de gènes , Régulation de l'expression des gènes au cours du développement/effets des médicaments et des substances chimiques , Feuillets embryonnaires/effets des médicaments et des substances chimiques , Feuillets embryonnaires/métabolisme , Facteur inhibiteur de la leucémie/pharmacologie , Mésoderme/cytologie , Souris , Mutation/génétique , Protéine homéotique Nanog/métabolisme , Facteurs de transcription Otx/génétique , Liaison aux protéines/effets des médicaments et des substances chimiques
9.
F1000Res ; 3: 178, 2014.
Article de Anglais | MEDLINE | ID: mdl-25165539

RÉSUMÉ

Plasticity in the visual cerebral cortex is regulated by the internalization of Otx2 homeoprotein into parvalbumin neurons in cortical layers II/III and IV. However the Otx2 locus is not active in these neurons and the protein is imported from external sources, including the choroid plexus. Because Otx1 and Otx2 may have redundant functions, we wanted to verify if part of the staining in parvalbumin neurons corresponds to Otx1 transported from cortical layer V neurons. It is demonstrated here that Otx staining in layer IV cells is maintained in Otx1-null mice. The immunoprecipitation of extracts from finely dissected granular and supragranular cortex (layers I-IV) gave immunoblots with a band corresponding to Otx2 and not Otx1. Moreover, high-resolution mass spectrometry analysis after immunoprecipitation identifies two peptides within the Otx2 homeodomain. One of these peptides is specific for Otx2 and is not found in Otx1. These results unambiguously establish that the staining in parvalbumin neurons revealed with the anti-Otx2 antibodies used in our previous studies identifies non-cell autonomous Otx2.

10.
Cell Rep ; 8(4): 1018-25, 2014 Aug 21.
Article de Anglais | MEDLINE | ID: mdl-25127144

RÉSUMÉ

Distinct midbrain dopamine (mDA) neuron subtypes are found in the substantia nigra pars compacta (SNc) and the ventral tegmental area (VTA), but it is mainly SNc neurons that degenerate in Parkinson's disease. Interest in how mDA neurons develop has been stimulated by the potential use of stem cells in therapy or disease modeling. However, very little is known about how specific dopaminergic subtypes are generated. Here, we show that the expression profiles of the transcription factors Sox6, Otx2, and Nolz1 define subpopulations of mDA neurons already at the neural progenitor cell stage. After cell-cycle exit, Sox6 selectively localizes to SNc neurons, while Otx2 and Nolz1 are expressed in a subset of VTA neurons. Importantly, Sox6 ablation leads to decreased expression of SNc markers and a corresponding increase in VTA markers, while Otx2 ablation has the opposite effect. Moreover, deletion of Sox6 affects striatal innervation and dopamine levels. We also find reduced Sox6 levels in Parkinson's disease patients. These findings identify Sox6 as a determinant of SNc neuron development and should facilitate the engineering of relevant mDA neurons for cell therapy and disease modeling.


Sujet(s)
Neurones dopaminergiques/physiologie , Facteurs de transcription Otx/physiologie , Facteurs de transcription SOX-D/physiologie , Substantia nigra/cytologie , Aire tegmentale ventrale/cytologie , Animaux , Plan d'organisation du corps , Humains , Souris transgéniques , Spécificité d'organe , Substantia nigra/embryologie , Substantia nigra/métabolisme , Aire tegmentale ventrale/embryologie , Aire tegmentale ventrale/métabolisme
11.
Cell Stem Cell ; 14(6): 838-53, 2014 Jun 05.
Article de Anglais | MEDLINE | ID: mdl-24905168

RÉSUMÉ

Naive and primed pluripotency is characterized by distinct signaling requirements, transcriptomes, and developmental properties, but both cellular states share key transcriptional regulators: Oct4, Sox2, and Nanog. Here, we demonstrate that transition between these two pluripotent states is associated with widespread Oct4 relocalization, mirrored by global rearrangement of enhancer chromatin landscapes. Our genomic and biochemical analyses identified candidate mediators of primed state-specific Oct4 binding, including Otx2 and Zic2/3. Even when differentiation cues are blocked, premature Otx2 overexpression is sufficient to exit the naive state, induce transcription of a substantial subset of primed pluripotency-associated genes, and redirect Oct4 to previously inaccessible enhancer sites. However, the ability of Otx2 to engage new enhancer regions is determined by its levels, cis-encoded properties of the sites, and the signaling environment. Our results illuminate regulatory mechanisms underlying pluripotency and suggest that the capacity of transcription factors such as Otx2 and Oct4 to pioneer new enhancer sites is highly context dependent.


Sujet(s)
Éléments activateurs (génétique)/génétique , Cellules souches pluripotentes/cytologie , Cellules souches pluripotentes/métabolisme , Animaux , Cellules cultivées , Souris , Facteur de transcription Oct-3/métabolisme , Facteurs de transcription Otx/métabolisme
12.
Hum Mol Genet ; 23(7): 1742-53, 2014 Apr 01.
Article de Anglais | MEDLINE | ID: mdl-24234651

RÉSUMÉ

In the human, mutations of OTX2 (Orthodenticle homeobox 2 transcription factor) translate into eye malformations of variable expressivity (even between the two eyes of the same individual) and incomplete penetrance, suggesting the existence of subtle thresholds in OTX2 activity. We have addressed this issue by analyzing retinal structure and function in six mutant mice with graded Otx2 activity: Otx2(+/+), Otx2(+/AA), Otx2(+/GFP), Otx2(AA/AA), Otx2(AA/GFP) and Otx2(GFP/GFP). Null mice (Otx2(GFP/GFP)) fail to develop the head and are embryonic lethal, and compound heterozygous Otx2(AA/GFP) mice show a truncated head and die at birth. All other genotypes develop until adulthood. We analyzed eye structure and visual physiology in the genotypes that develop until adulthood and report that phenotype severity parallels Otx2 activity. Otx2(+/AA) are only mildly affected whereas Otx2(+/GFP) are more affected than Otx2(+/AA) but less than Otx2(AA/AA) mice. Otx2(AA/AA) mice later manifest the most severe defects, with variable expressivity. Electrophysiological and histological analyses of the mouse retina revealed progressive death of bipolar cells and cone photoreceptors that is both Otx2 activity- and age-dependent with the same ranking of phenotypic severity. This study demonstrates the importance of gene dosage in the development of age-dependent pathologies and underscores the fact that small gene dosage differences can cause significant pathological states.


Sujet(s)
Malformations oculaires/génétique , Facteurs de transcription Otx/génétique , Cellules bipolaires rétiniennes/cytologie , Cellules photoréceptrices en cône de la rétine/cytologie , Cellules horizontales de la rétine/cytologie , Animaux , Différenciation cellulaire/génétique , Lignée cellulaire , Dosage génique , Régulation de l'expression des gènes au cours du développement , Protéines à fluorescence verte/génétique , Souris , Souris de lignée C57BL , Souris transgéniques , Pénétrance , Acuité visuelle/génétique
13.
Development ; 141(2): 377-88, 2014 Jan.
Article de Anglais | MEDLINE | ID: mdl-24335253

RÉSUMÉ

During embryonic development, the rostral neuroectoderm is regionalized into broad areas that are subsequently subdivided into progenitor compartments with specialized identity and fate. These events are controlled by signals emitted by organizing centers and interpreted by target progenitors, which activate superimposing waves of intrinsic factors restricting their identity and fate. The transcription factor Otx2 plays a crucial role in mesencephalic development by positioning the midbrain-hindbrain boundary (MHB) and its organizing activity. Here, we investigated whether Otx2 is cell-autonomously required to control identity and fate of dorsal mesencephalic progenitors. With this aim, we have inactivated Otx2 in the Pax7(+) dorsal mesencephalic domain, previously named m1, without affecting MHB integrity. We found that the Pax7(+) m1 domain can be further subdivided into a dorsal Zic1(+) m1a and a ventral Zic1(-) m1b sub-domain. Loss of Otx2 in the m1a (Pax7(+) Zic1(+)) sub-domain impairs the identity and fate of progenitors, which undergo a full switch into a coordinated cerebellum differentiation program. By contrast, in the m1b sub-domain (Pax7(+) Zic1(-)) Otx2 is prevalently required for post-mitotic transition of mesencephalic GABAergic precursors. Moreover, genetic cell fate, BrdU cell labeling and Otx2 conditional inactivation experiments indicate that in Otx2 mutants all ectopic cerebellar cell types, including external granule cell layer (EGL) precursors, originate from the m1a progenitor sub-domain and that reprogramming of mesencephalic precursors into EGL or cerebellar GABAergic progenitors depends on temporal sensitivity to Otx2 ablation. Together, these findings indicate that Otx2 intrinsically controls different aspects of dorsal mesencephalic neurogenesis. In this context, Otx2 is cell-autonomously required in the m1a sub-domain to suppress cerebellar fate and promote mesencephalic differentiation independently of the MHB organizing activity.


Sujet(s)
Cervelet/embryologie , Cervelet/métabolisme , Mésencéphale/embryologie , Mésencéphale/métabolisme , Facteurs de transcription Otx/métabolisme , Animaux , Plan d'organisation du corps , Différenciation cellulaire , Cellules souches embryonnaires/cytologie , Cellules souches embryonnaires/métabolisme , Femelle , Souris , Souris knockout , Souches mutantes de souris , Souris transgéniques , Mutation , Cellules souches neurales/cytologie , Cellules souches neurales/métabolisme , Neurogenèse , Organisateurs embryonnaires/embryologie , Organisateurs embryonnaires/métabolisme , Facteurs de transcription Otx/déficit , Facteurs de transcription Otx/génétique , Facteur de transcription PAX7/métabolisme , Grossesse , Facteurs de transcription/déficit , Facteurs de transcription/génétique , Facteurs de transcription/métabolisme
14.
PeerJ ; 1: e142, 2013.
Article de Anglais | MEDLINE | ID: mdl-24010020

RÉSUMÉ

Dorsal horn neurons in the spinal cord integrate and relay sensory information to higher brain centers. These neurons are organized in specific laminae and different transcription factors are involved in their specification. The murine homeodomain Gbx1 protein is expressed in the mantle zone of the spinal cord at E12.5-13.5, correlating with the appearance of a discernable dorsal horn around E14 and eventually defining a narrow layer in the dorsal horn around perinatal stages. At postnatal stages, Gbx1 identifies a specific subpopulation of GABAergic neurons in the dorsal spinal cord. We have generated a loss of function mutation for Gbx1 and analyzed its consequences during spinal cord development. Gbx1 (-/-) mice are viable and can reproduce as homozygous null mutants. However, the adult mutant mice display an altered gait during forward movement that specifically affects the hindlimbs. This abnormal gait was evaluated by a series of behavioral tests, indicating that locomotion is impaired, but not muscle strength or motor coordination. Molecular analysis showed that the development of the dorsal horn is not profoundly affected in Gbx1 (-/-) mutant mice. However, analysis of terminal neuronal differentiation revealed that the proportion of GABAergic inhibitory interneurons in the superficial dorsal horn is diminished. Our study unveiled a role for Gbx1 in specifying a subset of GABAergic neurons in the dorsal horn of the spinal cord involved in the control of posterior limb movement.

15.
Development ; 140(5): 1055-66, 2013 Mar.
Article de Anglais | MEDLINE | ID: mdl-23364326

RÉSUMÉ

The choroid plexuses (ChPs) are the main regulators of cerebrospinal fluid (CSF) composition and thereby also control the composition of a principal source of signaling molecules that is in direct contact with neural stem cells in the developing brain. The regulators of ChP development mediating the acquisition of a fate that differs from the neighboring neuroepithelial cells are poorly understood. Here, we demonstrate in mice a crucial role for the transcription factor Otx2 in the development and maintenance of ChP cells. Deletion of Otx2 by the Otx2-CreERT2 driver line at E9 resulted in a lack of all ChPs, whereas deletion by the Gdf7-Cre driver line affected predominately the hindbrain ChP, which was reduced in size, primarily owing to an increase in apoptosis upon Otx2 deletion. Strikingly, Otx2 was still required for the maintenance of hindbrain ChP cells at later stages when Otx2 deletion was induced at E15, demonstrating a central role of Otx2 in ChP development and maintenance. Moreover, the predominant defects in the hindbrain ChP mediated by Gdf7-Cre deletion of Otx2 revealed its key role in regulating early CSF composition, which was altered in protein content, including the levels of Wnt4 and the Wnt modulator Tgm2. Accordingly, proliferation and Wnt signaling levels were increased in the distant cerebral cortex, suggesting a role of the hindbrain ChP in regulating CSF composition, including key signaling molecules. Thus, Otx2 acts as a master regulator of ChP development, thereby influencing one of the principal sources of signaling in the developing brain, the CSF.


Sujet(s)
Plexus choroïde/embryologie , Plexus choroïde/croissance et développement , Plexus choroïde/physiologie , Facteurs de transcription Otx/physiologie , Animaux , Animaux nouveau-nés , Cellules cultivées , Liquide cérébrospinal/composition chimique , Liquide cérébrospinal/métabolisme , Plexus choroïde/métabolisme , Embryon de mammifère , Femelle , Analyse de profil d'expression de gènes , Régulation de l'expression des gènes au cours du développement , Souris , Souris transgéniques , Facteurs de transcription Otx/génétique , Facteurs de transcription Otx/métabolisme , Grossesse , Rhombencéphale/embryologie , Rhombencéphale/croissance et développement , Rhombencéphale/métabolisme , Rhombencéphale/physiologie , Facteurs de transcription/génétique , Facteurs de transcription/métabolisme , Facteurs de transcription/physiologie , Transcriptome/génétique
16.
Dev Biol ; 373(1): 176-83, 2013 Jan 01.
Article de Anglais | MEDLINE | ID: mdl-23117062

RÉSUMÉ

Understanding the molecular basis underlying the neurogenesis of mesencephalic-diencephalic Dopaminergic (mdDA) neurons is a major task fueled by their relevance in controlling locomotor activity and emotion and their involvement in neurodegenerative and psychiatric diseases. Increasing evidence suggests that mdDA neurons of the substantia nigra pars compacta (SNpc) and ventral tegmental area (VTA) represent two main distinct neuronal populations, which, in turn, include specific neuronal subsets. Relevant studies provided important results on mdDA neurogenesis, but, nevertheless, have not yet clarified how the identity of mdDA neuronal subtypes is established and, in particular, whether neurogenic factors may direct progenitors towards the differentiation of specific mdDA neuronal subclasses. The transcription factor Otx2 is required for the neurogenesis of mesencephalic DA (mesDA) neurons and to control neuron subtype identity and sensitivity to the MPTP neurotoxin in the adult VTA. Here we studied whether Otx2 is required in mdDA progenitors for the generation of specific mdDA neuronal subtypes. We found that although expressed in virtually all mdDA progenitors, Otx2 is required selectively for the differentiation of VTA neuronal subtypes expressing Ahd2 and/or Calb but not for those co-expressing Girk2 and glyco-Dat. Moreover, mild over-expression of Otx2 in SNpc progenitors and neurons is sufficient to rescue En1 haploinsufficiency-dependent defects, such as progressive loss and increased MPTP sensitivity of SNpc neurons. Collectively, these data suggest that mdDA progenitors exhibit differential sensitivity to Otx2, which selectively influences the generation of a large and specific subset of VTA neurons. In addition, these data suggest that Otx2 and En1 may share similar properties and control survival and vulnerability to MPTP neurotoxin respectively in VTA and SNpc.


Sujet(s)
Neurones dopaminergiques/physiologie , Protéines à homéodomaine/métabolisme , Neurogenèse/physiologie , Facteurs de transcription Otx/métabolisme , Aire tegmentale ventrale/cytologie , Aire tegmentale ventrale/embryologie , 1-Méthyl-4-phényl-1,2,3,6-tétrahydropyridine/administration et posologie , 1-Méthyl-4-phényl-1,2,3,6-tétrahydropyridine/pharmacologie , Animaux , Numération cellulaire , Neurones dopaminergiques/effets des médicaments et des substances chimiques , Neurones dopaminergiques/métabolisme , Immunohistochimie , Hybridation in situ , Souris
17.
Development ; 140(1): 43-55, 2013 Jan 01.
Article de Anglais | MEDLINE | ID: mdl-23154415

RÉSUMÉ

Mouse embryonic stem cells (ESCs) represent the naïve ground state of the preimplantation epiblast and epiblast stem cells (EpiSCs) represent the primed state of the postimplantation epiblast. Studies have revealed that the ESC state is maintained by a dynamic mechanism characterized by cell-to-cell spontaneous and reversible differences in sensitivity to self-renewal and susceptibility to differentiation. This metastable condition ensures indefinite self-renewal and, at the same time, predisposes ESCs for differentiation to EpiSCs. Despite considerable advances, the molecular mechanism controlling the ESC state and pluripotency transition from ESCs to EpiSCs have not been fully elucidated. Here we show that Otx2, a transcription factor essential for brain development, plays a crucial role in ESCs and EpiSCs. Otx2 is required to maintain the ESC metastable state by antagonizing ground state pluripotency and promoting commitment to differentiation. Furthermore, Otx2 is required for ESC transition into EpiSCs and, subsequently, to stabilize the EpiSC state by suppressing, in pluripotent cells, the mesendoderm-to-neural fate switch in cooperation with BMP4 and Fgf2. However, according to its central role in neural development and differentiation, Otx2 is crucially required for the specification of ESC-derived neural precursors fated to generate telencephalic and mesencephalic neurons. We propose that Otx2 is a novel intrinsic determinant controlling the functional integrity of ESCs and EpiSCs.


Sujet(s)
Cellules souches embryonnaires/cytologie , Cellules souches embryonnaires/métabolisme , Facteurs de transcription Otx/physiologie , Animaux , Différenciation cellulaire/génétique , Différenciation cellulaire/physiologie , Gènes rapporteurs , Souris , Souris knockout , Souris transgéniques , Facteurs de transcription Otx/biosynthèse , Facteurs de transcription Otx/déficit , Cellules souches pluripotentes/cytologie , Cellules souches pluripotentes/physiologie
18.
EMBO Mol Med ; 4(3): 192-205, 2012 Mar.
Article de Anglais | MEDLINE | ID: mdl-22247000

RÉSUMÉ

Ankyloblepharon-ectodermal defects-cleft lip/palate (AEC) syndrome, which is characterized by cleft palate and severe defects of the skin, is an autosomal dominant disorder caused by mutations in the gene encoding transcription factor p63. Here, we report the generation of a knock-in mouse model for AEC syndrome (p63(+/L514F) ) that recapitulates the human disorder. The AEC mutation exerts a selective dominant-negative function on wild-type p63 by affecting progenitor cell expansion during ectodermal development leading to a defective epidermal stem cell compartment. These phenotypes are associated with impairment of fibroblast growth factor (FGF) signalling resulting from reduced expression of Fgfr2 and Fgfr3, direct p63 target genes. In parallel, a defective stem cell compartment is observed in humans affected by AEC syndrome and in Fgfr2b(-/-) mice. Restoring Fgfr2b expression in p63(+/L514F) epithelial cells by treatment with FGF7 reactivates downstream mitogen-activated protein kinase signalling and cell proliferation. These findings establish a functional link between FGF signalling and p63 in the expansion of epithelial progenitor cells and provide mechanistic insights into the pathogenesis of AEC syndrome.


Sujet(s)
Prolifération cellulaire , Bec-de-lièvre/métabolisme , Fente palatine/métabolisme , Ectoderme/cytologie , Dysplasie ectodermique/métabolisme , Malformations oculaires/métabolisme , Facteurs de croissance fibroblastique/métabolisme , Transduction du signal , Cellules souches/cytologie , Facteurs de transcription/génétique , Protéines suppresseurs de tumeurs/génétique , Animaux , Bec-de-lièvre/génétique , Bec-de-lièvre/physiopathologie , Fente palatine/génétique , Fente palatine/physiopathologie , Ectoderme/métabolisme , Dysplasie ectodermique/génétique , Dysplasie ectodermique/physiopathologie , Malformations oculaires/génétique , Malformations oculaires/physiopathologie , Paupières/malformations , Paupières/métabolisme , Paupières/physiopathologie , Femelle , Humains , Mâle , Souris , Souris de lignée C57BL , Souris knockout , Souris transgéniques , Mutation , Cellules souches/métabolisme , Facteurs de transcription/métabolisme , Protéines suppresseurs de tumeurs/métabolisme
19.
Hum Mol Genet ; 20(23): 4644-54, 2011 Dec 01.
Article de Anglais | MEDLINE | ID: mdl-21890494

RÉSUMÉ

Cardiomyopathy is a puzzling complication in addition to skeletal muscle pathology for patients with mutations in ß-, γ- or δ-sarcoglycan (SG) genes. Patients with mutations in α-SG rarely have associated cardiomyopathy, or their cardiac pathology is very mild. We hypothesize that a fifth SG, ε-SG, may compensate for α-SG deficiency in the heart. To investigate the function of ε-SG in striated muscle, we generated an Sgce-null mouse and a Sgca-;Sgce-null mouse, which lacks both α- and ε-SGs. While Sgce-null mice showed a wild-type phenotype, with no signs of muscular dystrophy or heart disease, the Sgca-;Sgce-null mouse developed a progressive muscular dystrophy and a more anticipated and severe cardiomyopathy. It shows a complete loss of residual SGs and a strong reduction in both dystrophin and dystroglycan. Our data indicate that ε-SG is important in preventing cardiomyopathy in α-SG deficiency.


Sujet(s)
Dystrophine/métabolisme , Myocarde/métabolisme , Sarcoglycanes/déficit , Animaux , Technique de Western , Technique d'immunofluorescence , Souris , Souris de lignée C57BL , Souris knockout , Modèles animaux , Myocarde/anatomopathologie , Myocarde/ultrastructure , Conditionnement physique d'animal , Sarcoglycanes/métabolisme
20.
Dev Neurobiol ; 71(8): 665-79, 2011 Aug.
Article de Anglais | MEDLINE | ID: mdl-21309083

RÉSUMÉ

Mesencephalic-diencephalic dopaminergic (mdDA) neurons play a relevant role in the control of movement, behavior, and cognition. Indeed loss and/or abnormal functioning of mdDA neurons are responsible for Parkinson's disease as well as for addictive and psychiatric disorders. In the last years a wealth of information has been provided on gene functions controlling identity, fate, and proliferation of mdDA progenitors. This review will focus on the role exerted by Otx genes in early decisions regulating sequential steps required for the neurogenesis of mesencephalic dopaminergic (mesDA) neurons. In this context, the regulatory network involving Otx functional interactions with signaling molecules and transcription factors required to promote or prevent the development of mesDA neurons will be analyzed in detail.


Sujet(s)
Dopamine/métabolisme , Mésencéphale/croissance et développement , Neurogenèse/physiologie , Neurones/métabolisme , Facteurs de transcription Otx/génétique , Humains , Mésencéphale/métabolisme , Facteurs de transcription Otx/métabolisme
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...