Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 20
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Small Methods ; : e2301445, 2024 Feb 14.
Article de Anglais | MEDLINE | ID: mdl-38353383

RÉSUMÉ

Multivariate analysis applied in biosensing greatly improves analytical performance by extracting relevant information or bypassing confounding factors such as nonlinear responses or experimental errors and noise. Plasmonic sensors based on various light coupling mechanisms have shown impressive performance in biosensing by detecting dielectric changes with high sensitivity. In this study, gold nanodiscs are used as metasurface in a Kretschmann setup, and a variety of features from the reflectance curve are used by machine learning to improve sensing performance. The nanostructures of the metasurface generate new plasmonic features, apart from the typical resonance that occurs in the classical Kretschmann mode of a gold thin film, related to the evanescent field beyond total internal reflection. When the engineered metasurface is integrated into a microfluidic chamber, the device provides additional spectral features generated by Fresnel reflections at all dielectric interfaces. The increased number of features results in greatly improved detection. Here, multivariate analysis enhances analytical sensitivity and sensor resolution by 200% and more than 20%, respectively, and reduces prediction errors by almost 40% compared to a standard plasmonic sensor. The combination of plasmonic metasurfaces and Fresnel reflections thus offers the possibility of improving sensing capabilities even in commonly available setups.

2.
Int J Mol Sci ; 24(8)2023 Apr 07.
Article de Anglais | MEDLINE | ID: mdl-37108041

RÉSUMÉ

The molecular doping (MD) process is based on the deposition of dopant-containing molecules over the surface of a semiconductor substrate, followed by the thermal diffusion step. Previous studies suggest that, during the deposition, the molecules nucleate clusters, and at prolonged deposition times, they grow into self-assembled layers on the sample to be doped. Little is known about the influence of nucleation kinetics on the final properties of these layers and how they change when we modify the solution properties. In this work, we examine the nucleation rate and the molecular surface coverage kinetics of diethyl-propyl phosphonate on silicon at different solution concentrations and how these conditions influence the final electrical properties of the doped samples. We present a high-resolution morphological characterization of the as-deposited molecules together with the electrical results of the final doped samples. The experimental results show a non-obvious behavior, explained through understanding of the competition between the molecules' physisorption and chemisorption mechanisms. As a consequence, due to the deeper knowledge of the deposition phase, a finer tuning of the conductive properties of MD-doped samples is achieved.


Sujet(s)
Électricité , Phosphonates , Analyse de regroupements , Conductivité électrique , Cinétique
3.
Small Methods ; 7(4): e2201546, 2023 Apr.
Article de Anglais | MEDLINE | ID: mdl-36807876

RÉSUMÉ

Periodic superlattices of noble metal nanoparticles  have demonstrated superior plasmonic properties compared to randomly distributed plasmonic arrangements due to near-field coupling and constructive far-field interference. Here, a chemically driven, templated self-assembly process of colloidal gold nanoparticles is investigated and optimized, and the technology is extended toward a generalized assembly process for variously shaped particles, such as spheres, rods, and triangles. The process yields periodic superlattices of homogenous  nanoparticle clusters on a centimeter scale. Electromagnetically simulated absorption spectra and corresponding experimental extinction measurements demonstrate excellent agreement in the far-field for all particle types and different lattice periods. The electromagnetic simulations reveal the specific nano-cluster near-field behavior, predicting the experimental findings provided by surface-enhanced Raman scattering measurements. It turns out that periodic arrays of spherical nanoparticles produce higher surface-enhanced Raman scattering enhancement factors than particles with less symmetry as a result of very well-defined strong hotspots.

4.
RSC Adv ; 12(53): 34503-34511, 2022 Nov 29.
Article de Anglais | MEDLINE | ID: mdl-36545619

RÉSUMÉ

Searching for novel functional materials has attracted significant interest for the breakthrough in photovoltaics to tackle the prevalent energy crisis. Through density functional theory calculations, we evaluate the structural, electronic, magnetic, and optical properties of new double perovskites Sn2MnTaO6 and Sn2FeTaO6 for potential photovoltaic applications. Our structural optimizations reveal a non-centrosymmetric distorted triclinic structure for the compounds. Using total energy calculations, antiferromagnetic and ferromagnetic orderings are predicted as the magnetic ground states for Sn2MnTaO6 and Sn2FeTaO6, respectively. The empty d orbitals of Ta5+-3d0 and partially filled d orbitals of Mn/Fe are the origins of ferroelectricity and magnetism in these double perovskites resulting in the potential multiferroicity. The studied double perovskites have semiconducting nature and possess narrow band gaps of approximately 1 eV. The absorption coefficient (α) calculations showed that the value of α in the visible region is in the order of 105 cm-1. The structural stability, suitable band gap, and high absorption coefficient values of proposed compounds suggest they could be good candidates for photovoltaic applications.

5.
Small ; 18(52): e2205780, 2022 12.
Article de Anglais | MEDLINE | ID: mdl-36344422

RÉSUMÉ

The advancement of nanoenabled wafer-based devices requires the establishment of core competencies related to the deterministic positioning of nanometric building blocks over large areas. Within this realm, plasmonic single-crystal gold nanotriangles represent one of the most attractive nanoscale components but where the formation of addressable arrays at scale has heretofore proven impracticable. Herein, a benchtop process is presented for the formation of large-area periodic arrays of gold nanotriangles. The devised growth pathway sees the formation of an array of defect-laden seeds using lithographic and vapor-phase assembly processes followed by their placement in a growth solution promoting planar growth and threefold symmetric side-faceting. The nanotriangles formed in this high-yield synthesis distinguish themselves in that they are epitaxially aligned with the underlying substrate, grown to thicknesses that are not readily obtainable in colloidal syntheses, and present atomically flat pristine surfaces exhibiting gold atoms with a close-packed structure. As such, they express crisp and unambiguous plasmonic modes and form photoactive surfaces with highly tunable and readily modeled plasmon resonances. The devised methods, hence, advance the integration of single-crystal gold nanotriangles into device platforms and provide an overall fabrication strategy that is adaptable to other nanomaterials.


Sujet(s)
Or , Nanostructures , Or/composition chimique , Nanostructures/composition chimique
6.
Nanomaterials (Basel) ; 12(15)2022 Jul 28.
Article de Anglais | MEDLINE | ID: mdl-35957016

RÉSUMÉ

Recent advances in nanoscale fabrication and characterization further accelerated research on photonics and plasmonics, which has already attracted long-standing interest. Alongside morphological constraints, phenomena in both fields highly depend on the materials' optical properties, dimensions, and surroundings. Building up the required knowledge and experience to design next-generation photonic devices can be a complex task for novice and experienced researchers who intend to evaluate the impact of subtle material and morphology variations while setting up experiments or getting a general overview. Here, we introduce the Photonic Materials Cloud (PMCloud), a web-based, interactive open tool for designing and analyzing photonic materials. PMCloud allows identification of the subtle differences between optical material models generated from a database, experimental data input, and inline-generated materials from various analytical models. Furthermore, it provides a fully interactive interface to evaluate their performance in important fundamental (numerical) optical experiments. We demonstrate PMCloud's applicability to state-of-the-art research questions, namely the comparison of the novel plasmonic materials aluminium-doped zinc oxide and zirconium nitride and the design of an optical, dielectric thin-film Bragg reflector. PMCloud opens a rapid, freely accessible path towards prototyping optical materials and simple fundamental devices and may serve as an educational platform for photonic materials research.

7.
ACS Appl Mater Interfaces ; 14(24): 28186-28198, 2022 Jun 22.
Article de Anglais | MEDLINE | ID: mdl-35695394

RÉSUMÉ

The subwavelength confinement of light energy in the nanogaps formed between adjacent plasmonic nanostructures provides the foundational basis for nanophotonic applications. Within this realm, air-filled nanogaps are of central importance because they present a cavity where application-specific nanoscale objects can reside. When forming such configurations on substrate surfaces, there is an inherent difficulty in that the most technologically relevant nanogap widths require closely spaced nanostructures separated by distances that are inaccessible through standard electron-beam lithography techniques. Herein, we demonstrate an assembly route for the fabrication of aligned plasmonic gold trimers with air-filled vertical nanogaps having widths that are defined with spatial controls that exceed those of lithographic processes. The devised procedure uses a sacrificial oxide layer to define the nanogap, a glancing angle deposition to impose a directionality on trimer formation, and a sacrificial antimony layer whose sublimation regulates the gold assembly process. By further implementing a benchtop nanoimprint lithography process and a glancing angle ion milling procedure as additional controls over the assembly, it is possible to deterministically position trimers in periodic arrays and extend the assembly process to dimer formation. The optical response of the structures, which is characterized using polarization-dependent spectroscopy, surface-enhanced Raman scattering, and refractive index sensitivity measurements, shows properties that are consistent with simulation. This work, hence, forwards the wafer-based processing techniques needed to form air-filled nanogaps and place plasmonic energy at site-specific locations.

8.
Phys Chem Chem Phys ; 23(35): 19571-19578, 2021 Sep 15.
Article de Anglais | MEDLINE | ID: mdl-34525140

RÉSUMÉ

Advancing technology and growing interdisciplinary fields raise the need for new materials that simultaneously possess several significant physics quantities to meet human demands. In this research, using density functional theory, we aim to design A2MnVO6 (A = Ca, Ba) as new double perovskites and investigate their structural, electronic, and magnetic properties. Structural calculations based on the total energies show the optimized monoclinic and orthorhombic crystal structures for the Ca2MnVO6 (CMVO) and Ba2MVO6 (BMVO) compounds, respectively. Through performing calculations, we reveal that the Jahn-Teller effect plays an important role in polar distortions of VO6 and elongation of MnO6 octahedra, resulting from the V5+(3d0) and Mn3+(3d4:t32ge1g) electron configurations. The spin-polarized calculations predict the half-metallic ferromagnetic ground state for CMVO and BMVO with a total magnetic moment of 4.00 µB f.u.-1 Our findings introduce CMVO and BMVO double perovskites as promising candidates for designing ferromagnetic polar half-metals and spintronic applications.

9.
Nanomaterials (Basel) ; 11(8)2021 Jul 24.
Article de Anglais | MEDLINE | ID: mdl-34443729

RÉSUMÉ

Molecular Doping (MD) involves the deposition of molecules, containing the dopant atoms and dissolved in liquid solutions, over the surface of a semiconductor before the drive-in step. The control on the characteristics of the final doped samples resides on the in-depth study of the molecule behaviour once deposited. It is already known that the molecules form a self-assembled monolayer over the surface of the sample, but little is known about the role and behaviour of possible multiple layers that could be deposited on it after extended deposition times. In this work, we investigate the molecular surface coverage over time of diethyl-propyl phosphonate on silicon, by employing high-resolution morphological and electrical characterization, and examine the effects of the post-deposition surface treatments on it. We present these data together with density functional theory simulations of the molecules-substrate system and electrical measurements of the doped samples. The results allow us to recognise a difference in the bonding types involved in the formation of the molecular layers and how these influence the final doping profile of the samples. This will improve the control on the electrical properties of MD-based devices, allowing for a finer tuning of their performance.

10.
ACS Appl Mater Interfaces ; 12(13): 14983-14992, 2020 Apr 01.
Article de Anglais | MEDLINE | ID: mdl-32069393

RÉSUMÉ

Au nanoparticle (NP) decorated heterogeneous TiO2 catalysts are known to be effective in the degradation of various organic pollutants. The photocatalytic performance of such Au-TiO2 structures remarkably depends on the size, morphology, and surface coverage of the Au NPs decorating TiO2. Here we propose an effective way of preparing a highly active Au nanocluster (NC) decorated TiO2 thin film by a novel photodeposition method. By altering the solvent type as well as the illumination time, we achieved well-controlled surface coverage of TiO2 by Au NCs, which directly influences the photocatalytic performance. Here the Au NCs coverage affects both the electron store capacity and the optical absorption of the hybrid Au-TiO2 system. At low surface coverage, 19.2-29.5%, the Au NCs seem to enhance significantly the optical adsorption of TiO2 at UV wavelengths which therefore leads to a higher photocatalytic performance.

11.
RSC Adv ; 10(46): 27764-27774, 2020 Jul 21.
Article de Anglais | MEDLINE | ID: mdl-35686162

RÉSUMÉ

2,4-Dinitrotoluene (2,4-DNT) is a nitro aromatic compound used as a raw material for trinitrotoluene (TNT) explosive synthesis along with several other industrial applications. Easy, rapid, cost-effective, and selective detection of 2,4-DNT is becoming essential due to its hepato carcinogenic nature and presence in surface as well as ground water as a contaminant. Keeping this in view, this research, for the first-time, reports the synthesis of novel ZnO-Ag2O composite nanoflowers on a gold (Au) substrate, to fabricate an electrochemical sensor for label-free, direct sensing of 2,4-DNT selectively. The proposed ZnO-Ag2O/Au sensor exhibits a sensitivity of 5 µA µM-1 cm-2 with a low limit of detection (LOD) of 13 nM, in a linear dynamic range (LDR) of 0.4 µM to 40 µM. The sensor showed reasonably high re-usability and reproducibility, with reliable results for laboratory and real-world samples.

12.
Nanoscale ; 11(20): 9840-9844, 2019 May 28.
Article de Anglais | MEDLINE | ID: mdl-31038519

RÉSUMÉ

In recent years, heterogeneous photocatalysis has gained enormous interest due to increasing concerns about environmental pollution. Here we propose a facile approach to synthesize cauliflower-like CeO2-TiO2 hybrid structures by magnetron reactive sputtering, exhibiting an extremely high photocatalytic activity. While heating and air-quenching of the sputter deposited TiO2 thin film (first layer) triggered the formation of a nanocrack network, the second heat-treatment led to transformation of the CeO2 film (second layer) into CeO2 nanoclusters (NCs). We attribute the resulting high photocatalytic activity to the confined structure of the CeO2 NCs and the CeO2-TiO2 interface, which allows Ce3+/Ce4+ dynamic shifting. In addition to high photocatalytic activity in an aqueous medium, the prepared CeO2-TiO2 hybrid structures exhibited significant self-cleaning properties in air (non-aqueous).

13.
Sci Rep ; 7(1): 5300, 2017 07 13.
Article de Anglais | MEDLINE | ID: mdl-28706263

RÉSUMÉ

Integration of light-trapping features and exploitation of metal nanostructure plasmonic effects are promising approaches for enhancing the power conversion efficiency of organic solar cells. These approaches' effects on the light absorption enhancement have been widely studied, especially in inorganic devices. While this light-trapping concept can be transferred to organic devices, one has to also consider nanostructure-induced electrical effects on the device performance, due to the fundamental difference in the organic semiconducting material properties compared to their inorganic counterparts. In this contribution, we exemplarily model the electrical properties of organic solar cells with rectangular-grating structures, as compared to planar reference devices. Based on our numeric results, we demonstrate that, beyond an optical absorption enhancement, the device fill factor improves significantly by introducing the grating structures. From the simulations we conclude that enhanced carrier collection efficiency is the main reason for the increased solar cell fill factor. This work contributes towards a more fundamental understanding of the effect of nanostructured electrodes on the electrical properties of organic solar cells.

14.
ACS Omega ; 2(6): 2985-2993, 2017 Jun 30.
Article de Anglais | MEDLINE | ID: mdl-31457633

RÉSUMÉ

Quasi-one-dimensional structures from metal oxides have shown remarkable potentials with regard to their applicability in advanced technologies ranging from ultraresponsive nanoelectronic devices to advanced healthcare tools. Particularly due to the piezoresistive effects, zinc oxide (ZnO)-based nanowires showed outstanding performance in a large number of applications, including energy harvesting, flexible electronics, smart sensors, etc. In the present work, we demonstrate the versatile crystal engineering of ZnO nano- and microwires (up to centimeter length scales) by a simple flame transport process. To investigate the piezoresistive properties, particular ZnO nanowires were integrated on an electrical push-to-pull device, which enables the application of tensile strain and measurement of in situ electrical properties. The results from ZnO nanowires revealed a periodic variation in stress with respect to the applied periodic potential, which has been discussed in terms of defect relaxations.

15.
Opt Quantum Electron ; 49(3): 107, 2017.
Article de Anglais | MEDLINE | ID: mdl-32214612

RÉSUMÉ

Nanostructured dielectric waveguides are of high interest for biosensing applications, light emitting devices as well as solar cells. Multiperiodic and aperiodic nanostructures allow for custom-designed spectral properties as well as near-field characteristics with localized modes. Here, a comparison of experimental results and simulation results obtained with three different simulation methods is presented. We fabricated and characterized multiperiodic nanostructured dielectric waveguides with two and three compound periods as well as deterministic aperiodic nanostructured waveguides based on Rudin-Shapiro, Fibonacci, and Thue-Morse binary sequences. The near-field and far-field properties are computed employing the finite-element method (FEM), the finite-difference time-domain (FDTD) method as well as a rigorous coupled wave algorithm (RCWA). The results show that all three methods are suitable for the simulation of the above mentioned structures. Only small computational differences are obtained in the near fields and transmission characteristics. For the compound multiperiodic structures the simulations correctly predict the general shape of the experimental transmission spectra with number and magnitude of transmission dips. For the aperiodic nanostructures the agreement between simulations and measurements decreases, which we attribute to imperfect fabrication at smaller feature sizes.

16.
Opt Express ; 22 Suppl 5: A1363-71, 2014 Aug 25.
Article de Anglais | MEDLINE | ID: mdl-25322191

RÉSUMÉ

We propose multi-periodic nanostructures yielded by superposition of multiple binary gratings for wide control over photon emission in thin-film devices. We present wavelength- and angle-resolved photoluminescence measurements of multi-periodically nanostructured organic light-emitting layers. The spectral resonances are determined by the periodicities of the individual gratings. By varying component duty cycles we tune the relative intensity of the main resonance from 12% to 82%. Thus, we achieve simultaneous control over the spectral resonance positions and relative intensities.

17.
Appl Opt ; 53(3): 376-82, 2014 Jan 20.
Article de Anglais | MEDLINE | ID: mdl-24514122

RÉSUMÉ

Minimally invasive surgery procedures benefit from a reduced size of endoscopic devices. A prospective path to implement miniaturized endoscopy is single optical-fiber-based spectrally encoded imaging. While simultaneous spectrally encoded inertial-scan-free imaging and laser microsurgery have been successfully demonstrated in a large table setup, a highly miniaturized optical design would promote the development of multipurpose endoscope heads. This paper presents a highly scalable, entirely transmissive axial design for a spectral 2D spatial disperser. The proposed design employs a grating prism and a virtual imaged phased array (VIPA). Based on semi-analytical device modeling, we performed a systematic parameter analysis to assess the spectral disperser's manufacturability and to obtain an optimum application-specific design. We found that, in particular, a low grating period combined with a high optical input bandwidth and low VIPA tilt showed favorable results in terms of a high spatial resolution, a small device diameter, and a large field of view. Our calculations reveal that a reasonable imaging performance can be achieved with system diameters of below 5 mm, which renders the proposed 2D spatial disperser design highly suitable for use in future endoscope heads that combine mechanical-scan-free imaging and laser microsurgery.


Sujet(s)
Endoscopes , Thérapie laser/instrumentation , Lentilles optiques , Éclairage/instrumentation , Microchirurgie/instrumentation , Réfractométrie/instrumentation , Chirurgie assistée par ordinateur/instrumentation , Conception d'appareillage , Analyse de panne d'appareillage , Amélioration d'image/instrumentation , Lumière , Miniaturisation , Diffusion de rayonnements , Intégration de systèmes
18.
Opt Express ; 21(3): 3324-35, 2013 Feb 11.
Article de Anglais | MEDLINE | ID: mdl-23481792

RÉSUMÉ

Virtually imaged phased arrays (VIPAs) offer a high potential for wafer-level integration and superior optical properties compared to conventional gratings. We introduce an elastomer-based tunable VIPA enabling fine tuning of the dispersion characteristics. It consists of a poly-dimethylsiloxane (PDMS) layer sandwiched between silver bottom and top coatings, which form the VIPA's high reflective and semi-transparent mirror, respectively. The latter also acts as an electrode for Joule heating, such that the optical PDMS resonator cavity tuning is carried out via a combination of thermal expansion and the thermo-optic effect. Analogous to the free spectral range (FSR), based on a VIPA specific dispersion law, we introduce a new characteristic VIPA performance measure, namely the free angular range (FAR). We report a tuning span of one FAR achieved by a 7.2K temperature increase of a 170µm PDMS VIPA. Both resonance quality and tunability are analyzed in numerical simulations and experiments.


Sujet(s)
Polydiméthylsiloxanes/composition chimique , Nylons/composition chimique , Réfractométrie/instrumentation , Résonance plasmonique de surface/instrumentation , Conception d'appareillage , Analyse de panne d'appareillage
19.
Opt Express ; 21(23): 28960-7, 2013 Nov 18.
Article de Anglais | MEDLINE | ID: mdl-24514410

RÉSUMÉ

The angular light scattering profile of microscopic particles significantly depends on their morphological parameters, such as size and shape. This dependency is widely used in state-of-the-art flow cytometry methods for particle classification. We introduce a new spectrally encoded angular light scattering method, with potential application in scanning flow cytometry. We show that a one-to-one wavelength-to-angle mapping enables the measurement of the angular dependence of scattered light from microscopic particles over a wide dynamic range. Improvement in dynamic range is obtained by equalizing the angular dependence of scattering via wavelength equalization. Continuous angular spectrum is obtained without mechanical scanning enabling single-shot measurement. Using this information, particle morphology can be determined with improved accuracy. We derive and experimentally verify an analytic wavelength-to-angle mapping model, facilitating rapid data processing. As a proof of concept, we demonstrate the method's capability of distinguishing differently sized polystyrene beads. The combination of this technique with time-stretch dispersive Fourier transform offers real-time and high-throughput (high frame rate) measurements and renders the method suitable for integration in standard flow cytometers.

20.
Proc Natl Acad Sci U S A ; 109(29): 11630-5, 2012 Jul 17.
Article de Anglais | MEDLINE | ID: mdl-22753513

RÉSUMÉ

Optical microscopy is one of the most widely used diagnostic methods in scientific, industrial, and biomedical applications. However, while useful for detailed examination of a small number (< 10,000) of microscopic entities, conventional optical microscopy is incapable of statistically relevant screening of large populations (> 100,000,000) with high precision due to its low throughput and limited digital memory size. We present an automated flow-through single-particle optical microscope that overcomes this limitation by performing sensitive blur-free image acquisition and nonstop real-time image-recording and classification of microparticles during high-speed flow. This is made possible by integrating ultrafast optical imaging technology, self-focusing microfluidic technology, optoelectronic communication technology, and information technology. To show the system's utility, we demonstrate high-throughput image-based screening of budding yeast and rare breast cancer cells in blood with an unprecedented throughput of 100,000 particles/s and a record false positive rate of one in a million.


Sujet(s)
Imagerie diagnostique/méthodes , Cytométrie en flux/méthodes , Tests de criblage à haut débit/méthodes , Techniques d'analyse microfluidique/méthodes , Vidéomicroscopie/méthodes , Lignée cellulaire tumorale , Femelle , Humains , Saccharomycetales
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...