Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 10 de 10
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Cell Rep ; 43(9): 114667, 2024 Sep 24.
Article de Anglais | MEDLINE | ID: mdl-39178114

RÉSUMÉ

Loss-of-function mutations in the C terminus of TPL2 kinase promote oncogenesis by impeding its proteasomal degradation, leading to sustained protein expression. However, the degradation mechanism for TPL2 has remained elusive. Through proximity-dependent biotin identification (BioID), we uncovered tripartite motif-containing 4 (TRIM4) as the E3 ligase that binds and degrades TPL2 by polyubiquitination of lysines 415 and 439. The naturally occurring TPL2 mutants R442H and E188K exhibit impaired TRIM4 binding, enhancing their stability. We further discovered that TRIM4 itself is stabilized by another E3 ligase, TRIM21, which in turn is regulated by KRAS. Mutant KRAS recruits RNF185 to degrade TRIM21 and subsequently TRIM4, thereby stabilizing TPL2. In the presence of mutant KRAS, TPL2 phosphorylates and degrades GSK3ß, resulting in ß-catenin stabilization and activation of the Wnt pathway. These findings elucidate the physiological mechanisms regulating TPL2 and its exploitation by mutant KRAS, underscoring the need to develop TPL2 inhibitors for KRAS-mutant cancers.


Sujet(s)
Protéines proto-oncogènes p21(ras) , Ubiquitin-protein ligases , Animaux , Humains , bêta-Caténine/métabolisme , Lignée cellulaire tumorale , Glycogen synthase kinase 3 beta/métabolisme , Cellules HEK293 , Mutation/génétique , Phosphorylation , Liaison aux protéines , Protéolyse , Protéines proto-oncogènes/métabolisme , Protéines proto-oncogènes/génétique , Protéines proto-oncogènes p21(ras)/métabolisme , Protéines proto-oncogènes p21(ras)/génétique , Ribonucléoprotéines , Ubiquitin-protein ligases/métabolisme , Ubiquitin-protein ligases/génétique , Ubiquitination , Voie de signalisation Wnt
2.
Nat Commun ; 12(1): 5248, 2021 09 09.
Article de Anglais | MEDLINE | ID: mdl-34504076

RÉSUMÉ

The HRAS, NRAS, and KRAS genes are collectively mutated in a fifth of all human cancers. These mutations render RAS GTP-bound and active, constitutively binding effector proteins to promote signaling conducive to tumorigenic growth. To further elucidate how RAS oncoproteins signal, we mined RAS interactomes for potential vulnerabilities. Here we identify EFR3A, an adapter protein for the phosphatidylinositol kinase PI4KA, to preferentially bind oncogenic KRAS. Disrupting EFR3A or PI4KA reduces phosphatidylinositol-4-phosphate, phosphatidylserine, and KRAS levels at the plasma membrane, as well as oncogenic signaling and tumorigenesis, phenotypes rescued by tethering PI4KA to the plasma membrane. Finally, we show that a selective PI4KA inhibitor augments the antineoplastic activity of the KRASG12C inhibitor sotorasib, suggesting a clinical path to exploit this pathway. In sum, we have discovered a distinct KRAS signaling axis with actionable therapeutic potential for the treatment of KRAS-mutant cancers.


Sujet(s)
Protéines adaptatrices de la transduction du signal/métabolisme , Carcinogenèse/génétique , Tumeurs du poumon/génétique , Protéines membranaires/génétique , Antigènes mineurs d'histocompatibilité/génétique , Tumeurs du pancréas/génétique , Phosphotransferases (Alcohol Group Acceptor)/génétique , Protéines proto-oncogènes p21(ras)/génétique , Protéines adaptatrices de la transduction du signal/génétique , Animaux , Antinéoplasiques/pharmacologie , Carcinogenèse/métabolisme , Carcinogenèse/anatomopathologie , Lignée cellulaire tumorale , Membrane cellulaire/effets des médicaments et des substances chimiques , Membrane cellulaire/métabolisme , Chiens , Antienzymes/pharmacologie , Cellules épithéliales/effets des médicaments et des substances chimiques , Cellules épithéliales/métabolisme , Cellules épithéliales/anatomopathologie , Femelle , Cellules HEK293 , Humains , Tumeurs du poumon/traitement médicamenteux , Tumeurs du poumon/mortalité , Tumeurs du poumon/anatomopathologie , Cellules rénales canines Madin-Darby , Protéines membranaires/métabolisme , Souris , Souris SCID , Antigènes mineurs d'histocompatibilité/métabolisme , Mutation , Tumeurs du pancréas/traitement médicamenteux , Tumeurs du pancréas/mortalité , Tumeurs du pancréas/anatomopathologie , Phosphates phosphatidylinositol/biosynthèse , Phosphatidylsérine/biosynthèse , Phosphotransferases (Alcohol Group Acceptor)/métabolisme , Pipérazines/pharmacologie , Protéines proto-oncogènes p21(ras)/métabolisme , Pyridines/pharmacologie , Pyrimidines/pharmacologie , Analyse de survie , Charge tumorale/effets des médicaments et des substances chimiques , Tests d'activité antitumorale sur modèle de xénogreffe
3.
Methods Mol Biol ; 2262: 271-280, 2021.
Article de Anglais | MEDLINE | ID: mdl-33977483

RÉSUMÉ

Identifying the proteins that associate with RAS oncoproteins has great potential, not only to elucidate how these mutant proteins are regulated and signal but also to identify potential therapeutic targets. Here we describe a detailed protocol to employ proximity labeling by the BioID methodology, which has the advantage of capturing weak or transient interactions, to identify in an unbiased manner those proteins within the immediate vicinity of oncogenic RAS proteins.


Sujet(s)
Biotine/composition chimique , Biotinylation/méthodes , Motifs et domaines d'intéraction protéique , Cartographie d'interactions entre protéines/méthodes , Protéines G ras/métabolisme , Humains , Liaison aux protéines , Protéines G ras/composition chimique
4.
Nat Commun ; 9(1): 3646, 2018 09 07.
Article de Anglais | MEDLINE | ID: mdl-30194290

RÉSUMÉ

In human cancers, oncogenic mutations commonly occur in the RAS genes KRAS, NRAS, or HRAS, but there are no clinical RAS inhibitors. Mutations are more prevalent in KRAS, possibly suggesting a unique oncogenic activity mediated by KRAS-specific interaction partners, which might be targeted. Here, we determine the specific protein interactomes of each RAS isoform by BirA proximity-dependent biotin identification. The combined interactomes are screened by CRISPR-Cas9 loss-of-function assays for proteins required for oncogenic KRAS-dependent, NRAS-dependent, or HRAS-dependent proliferation and censored for druggable proteins. Using this strategy, we identify phosphatidylinositol phosphate kinase PIP5K1A as a KRAS-specific interactor and show that PIP5K1A binds to a unique region in KRAS. Furthermore, PIP5K1A depletion specifically reduces oncogenic KRAS signaling and proliferation, and sensitizes pancreatic cancer cell lines to a MAPK inhibitor. These results suggest PIP5K1A as a potential target in KRAS signaling for the treatment of KRAS-mutant cancers.


Sujet(s)
Phosphotransferases (Alcohol Group Acceptor)/métabolisme , Protéines proto-oncogènes p21(ras)/métabolisme , Lignée cellulaire tumorale , Transformation cellulaire néoplasique , Humains , Système de signalisation des MAP kinases , Thérapie moléculaire ciblée , Isoformes de protéines/métabolisme
5.
PLoS Genet ; 12(12): e1006487, 2016 Dec.
Article de Anglais | MEDLINE | ID: mdl-27935965

RÉSUMÉ

Biofilm formation on implanted medical devices is a major source of lethal invasive infection by Candida albicans. Filamentous growth of this fungus is tied to biofilm formation because many filamentation-associated genes are required for surface adherence. Cell cycle or cell growth defects can induce filamentation, but we have limited information about the coupling between filamentation and filamentation-associated gene expression after cell cycle/cell growth inhibition. Here we identified the CDK activating protein kinase Cak1 as a determinant of filamentation and filamentation-associated gene expression through a screen of mutations that diminish expression of protein kinase-related genes implicated in cell cycle/cell growth control. A cak1 diminished expression (DX) strain displays filamentous growth and expresses filamentation-associated genes in the absence of typical inducing signals. In a wild-type background, expression of filamentation-associated genes depends upon the transcription factors Bcr1, Brg1, Efg1, Tec1, and Ume6. In the cak1 DX background, the dependence of filamentation-associated gene expression on each transcription factor is substantially relieved. The unexpected bypass of filamentation-associated gene expression activators has the functional consequence of enabling biofilm formation in the absence of Bcr1, Brg1, Tec1, Ume6, or in the absence of both Brg1 and Ume6. It also enables filamentous cell morphogenesis, though not biofilm formation, in the absence of Efg1. Because these transcription factors are known to have shared target genes, we suggest that cell cycle/cell growth limitation leads to activation of several transcription factors, thus relieving dependence on any one.


Sujet(s)
Candida albicans/génétique , Kinases cyclines-dépendantes/génétique , Protéines fongiques/génétique , Morphogenèse/génétique , Protein kinases/génétique , Biofilms/croissance et développement , Candida albicans/croissance et développement , Candidose/génétique , Candidose/microbiologie , Cycle cellulaire/génétique , Cytosquelette/génétique , Protéines fongiques/biosynthèse , Régulation de l'expression des gènes fongiques , Humains , Hyphae/génétique , Hyphae/croissance et développement , Hyphae/pathogénicité , Protein kinases/biosynthèse , Facteurs de transcription/biosynthèse , Facteurs de transcription/génétique , Kinase activatrice des CDK
6.
Proc Natl Acad Sci U S A ; 113(14): E2019-28, 2016 Apr 05.
Article de Anglais | MEDLINE | ID: mdl-27001830

RÉSUMÉ

A fundamental problem in cell biology is to understand how spatial information is recognized and integrated into morphogenetic responses. Budding yeast undergoes differentiation to filamentous growth, which involves changes in cell polarity through mechanisms that remain obscure. Here we define a regulatory input where spatial landmarks (bud-site-selection proteins) regulate the MAPK pathway that controls filamentous growth (fMAPK pathway). The bud-site GTPase Rsr1p regulated the fMAPK pathway through Cdc24p, the guanine nucleotide exchange factor for the polarity establishment GTPase Cdc42p. Positional landmarks that direct Rsr1p to bud sites conditionally regulated the fMAPK pathway, corresponding to their roles in regulating bud-site selection. Therefore, cell differentiation is achieved in part by the reorganization of polarity at bud sites. In line with this conclusion, dynamic changes in budding pattern during filamentous growth induced corresponding changes in fMAPK activity. Intrinsic compromise of bud-site selection also impacted fMAPK activity. Therefore, a surveillance mechanism monitors spatial position in response to extrinsic and intrinsic stress and modulates the response through a differentiation MAPK pathway.


Sujet(s)
Système de signalisation des MAP kinases , Saccharomyces cerevisiae/métabolisme , Protéine G cdc42 de Saccharomyces cerevisiae/métabolisme
7.
Eukaryot Cell ; 14(9): 868-83, 2015 Sep.
Article de Anglais | MEDLINE | ID: mdl-26116211

RÉSUMÉ

Filamentous growth is a microbial differentiation response that involves the concerted action of multiple signaling pathways. In budding yeast, one pathway that regulates filamentous growth is a Cdc42p-dependent mitogen-activated protein kinase (MAPK) pathway. Several transmembrane (TM) proteins regulate the filamentous growth pathway, including the signaling mucin Msb2p, the tetraspan osmosensor Sho1p, and an adaptor Opy2p. The TM proteins were compared to identify common and unique features. Msb2p, Sho1p, and Opy2p associated by coimmunoprecipitation analysis but showed predominantly different localization patterns. The different localization patterns of the proteins resulted in part from different rates of turnover from the plasma membrane (PM). In particular, Msb2p (and Opy2p) were turned over rapidly compared to Sho1p. Msb2p signaled from the PM, and its turnover was a rate-limiting step in MAPK signaling. Genetic analysis identified unique phenotypes of cells overexpressing the TM proteins. Therefore, each TM regulator of the filamentous growth pathway has its own regulatory pattern and specific function in regulating filamentous growth. This specialization may be important for fine-tuning and potentially diversifying the filamentation response.


Sujet(s)
Protéines et peptides de signalisation intracellulaire/métabolisme , Système de signalisation des MAP kinases , Protéines membranaires/métabolisme , Protéines de Saccharomyces cerevisiae/métabolisme , Saccharomyces cerevisiae/métabolisme , Membrane cellulaire/métabolisme , Protéines et peptides de signalisation intracellulaire/génétique , Protéines membranaires/génétique , Transport des protéines , Saccharomyces cerevisiae/cytologie , Saccharomyces cerevisiae/génétique , Protéines de Saccharomyces cerevisiae/génétique
8.
Eukaryot Cell ; 14(4): 427-40, 2015 Apr.
Article de Anglais | MEDLINE | ID: mdl-25724886

RÉSUMÉ

Reversible phosphorylation of the phospholipid phosphatidylinositol (PI) is a key event in the determination of organelle identity and an underlying regulatory feature in many biological processes. Here, we investigated the role of PI signaling in the regulation of the mitogen-activated protein kinase (MAPK) pathway that controls filamentous growth in yeast. Lipid kinases that generate phosphatidylinositol 4-phosphate [PI(4)P] at the Golgi (Pik1p) or PI(4,5)P2 at the plasma membrane (PM) (Mss4p and Stt4p) were required for filamentous-growth MAPK pathway signaling. Introduction of a conditional allele of PIK1 (pik1-83) into the filamentous (Σ1278b) background reduced MAPK activity and caused defects in invasive growth and biofilm/mat formation. MAPK regulatory proteins that function at the PM, including Msb2p, Sho1p, and Cdc42p, were mislocalized in the pik1-83 mutant, which may account for the signaling defects of the PI(4)P kinase mutants. Other PI kinases (Fab1p and Vps34p), and combinations of PIP (synaptojanin-type) phosphatases, also influenced the filamentous-growth MAPK pathway. Loss of these proteins caused defects in cell polarity, which may underlie the MAPK signaling defect seen in these mutants. In line with this possibility, disruption of the actin cytoskeleton by latrunculin A (LatA) dampened the filamentous-growth pathway. Various PIP signaling mutants were also defective for axial budding in haploid cells, cell wall construction, or proper regulation of the high-osmolarity glycerol response (HOG) pathway. Altogether, the study extends the roles of PI signaling to a differentiation MAPK pathway and other cellular processes.


Sujet(s)
Système de signalisation des MAP kinases , Mitogen-Activated Protein Kinases/métabolisme , Phosphates phosphatidylinositol/métabolisme , Saccharomyces cerevisiae/croissance et développement , Membrane cellulaire/métabolisme , Polarité de la cellule , Paroi cellulaire/métabolisme , Appareil de Golgi/métabolisme , Phosphorylation , Saccharomyces cerevisiae/métabolisme
9.
Mol Cell Biol ; 35(8): 1414-32, 2015 Apr.
Article de Anglais | MEDLINE | ID: mdl-25666509

RÉSUMÉ

Signaling mucins are evolutionarily conserved regulators of signal transduction pathways. The signaling mucin Msb2p regulates the Cdc42p-dependent mitogen-activated protein kinase (MAPK) pathway that controls filamentous growth in yeast. The cleavage and release of the glycosylated inhibitory domain of Msb2p is required for MAPK activation. We show here that proteolytic processing of Msb2p was induced by underglycosylation of its extracellular domain. Cleavage of underglycosylated Msb2p required the unfolded protein response (UPR), a quality control (QC) pathway that operates in the endoplasmic reticulum (ER). The UPR regulator Ire1p, which detects misfolded/underglycosylated proteins in the ER, controlled Msb2p cleavage by regulating transcriptional induction of Yps1p, the major protease that processes Msb2p. Accordingly, the UPR was required for differentiation to the filamentous cell type. Cleavage of Msb2p occurred in conditional trafficking mutants that trap secretory cargo in the endomembrane system. Processed Msb2p was delivered to the plasma membrane, and its turnover by the ubiquitin ligase Rsp5p and ESCRT attenuated the filamentous-growth pathway. We speculate that the QC pathways broadly regulate signaling glycoproteins and their cognate pathways by recognizing altered glycosylation patterns that can occur in response to extrinsic cues.


Sujet(s)
Système de signalisation des MAP kinases , Mucines/métabolisme , Saccharomyces cerevisiae/métabolisme , Réponse aux protéines mal repliées , Glycosylation , Protéines et peptides de signalisation intracellulaire/composition chimique , Protéines et peptides de signalisation intracellulaire/métabolisme , Mitogen-Activated Protein Kinases/métabolisme , Protéolyse , Saccharomyces cerevisiae/composition chimique , Saccharomyces cerevisiae/croissance et développement , Protéines de Saccharomyces cerevisiae/composition chimique , Protéines de Saccharomyces cerevisiae/métabolisme
10.
PLoS Genet ; 10(10): e1004734, 2014 Oct.
Article de Anglais | MEDLINE | ID: mdl-25356552

RÉSUMÉ

Evolutionarily conserved mitogen activated protein kinase (MAPK) pathways regulate the response to stress as well as cell differentiation. In Saccharomyces cerevisiae, growth in non-preferred carbon sources (like galactose) induces differentiation to the filamentous cell type through an extracellular-signal regulated kinase (ERK)-type MAPK pathway. The filamentous growth MAPK pathway shares components with a p38-type High Osmolarity Glycerol response (HOG) pathway, which regulates the response to changes in osmolarity. To determine the extent of functional overlap between the MAPK pathways, comparative RNA sequencing was performed, which uncovered an unexpected role for the HOG pathway in regulating the response to growth in galactose. The HOG pathway was induced during growth in galactose, which required the nutrient regulatory AMP-dependent protein kinase (AMPK) Snf1p, an intact respiratory chain, and a functional tricarboxylic acid (TCA) cycle. The unfolded protein response (UPR) kinase Ire1p was also required for HOG pathway activation in this context. Thus, the filamentous growth and HOG pathways are both active during growth in galactose. The two pathways redundantly promoted growth in galactose, but paradoxically, they also inhibited each other's activities. Such cross-modulation was critical to optimize the differentiation response. The human fungal pathogen Candida albicans showed a similar regulatory circuit. Thus, an evolutionarily conserved regulatory axis links metabolic respiration and AMPK to Ire1p, which regulates a differentiation response involving the modulated activity of ERK and p38 MAPK pathways.


Sujet(s)
Différenciation cellulaire/génétique , Glycoprotéines membranaires/génétique , Protein-Serine-Threonine Kinases/génétique , Protéines de Saccharomyces cerevisiae/génétique , p38 Mitogen-Activated Protein Kinases/génétique , Candida albicans/génétique , Respiration cellulaire/génétique , Galactose/métabolisme , Glycérol/métabolisme , Humains , Système de signalisation des MAP kinases/génétique , Glycoprotéines membranaires/biosynthèse , Pression osmotique , Protein-Serine-Threonine Kinases/biosynthèse , Saccharomyces cerevisiae/génétique , Protéines de Saccharomyces cerevisiae/biosynthèse , Analyse de séquence d'ARN , p38 Mitogen-Activated Protein Kinases/biosynthèse , p38 Mitogen-Activated Protein Kinases/métabolisme
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE