Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 5 de 5
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Adv Mater ; : e2408374, 2024 Jul 25.
Article de Anglais | MEDLINE | ID: mdl-39049689

RÉSUMÉ

Advances in additive manufacturing in composites have transformed aerospace, medical devices, tissue engineering, and electronics. A key aspect of enhancing properties of 3D-printed objects involves fine-tuning the material by embedding and orienting reinforcement within the structure. Existing methods for orienting these reinforcements are limited by pattern types, alignment, and particle characteristics. Acoustics offers a versatile method to control the particles independent of their size, geometry, and charge, enabling intricate pattern formations. However, integrating acoustics into 3D printing has been challenging due to the scattering of the acoustic field between polymerized layers and unpolymerized resin, resulting in unwanted patterns. To address this challenge, SonoPrint, an innovative acoustically assisted volumetric 3D printer is developed that enables simultaneous reinforcement patterning and printing of the entire structure. SonoPrint generates mechanically tunable composite geometries by embedding reinforcement particles, such as microscopic glass, metal, and polystyrene, within the fabricated structure. This printer employs a standing wave field to create targeted particle motifs-including parallel lines, radial lines, circles, rhombuses, hexagons, and polygons-directly in the photosensitive resin, completing the print in just a few minutes. SonoPrint enhances structural properties and promises to advance volumetric printing, unlocking applications in tissue engineering, biohybrid robots, and composite fabrication.

2.
Lab Chip ; 24(4): 764-775, 2024 02 13.
Article de Anglais | MEDLINE | ID: mdl-38193588

RÉSUMÉ

Multifunctional micromanipulation systems have garnered significant attention due to the growing interest in biological and medical research involving model organisms like zebrafish (Danio rerio). Here, we report a novel acoustofluidic rotational micromanipulation system that offers rapid trapping, high-speed rotation, multi-angle imaging, and 3D model reconstruction of zebrafish larvae. An ultrasound-activated oscillatory glass capillary is used to trap and rotate a zebrafish larva. Simulation and experimental results demonstrate that both the vibrating mode and geometric placement of the capillary contribute to the developed polarized vortices along the long axis of the capillary. Given its capacities for easy-to-operate, stable rotation, avoiding overheating, and high-throughput manipulation, our system poses the potential to accelerate zebrafish-directed biomedical research.


Sujet(s)
Micromanipulation , Danio zébré , Animaux , Larve , Rotation
3.
Nat Commun ; 13(1): 6370, 2022 10 26.
Article de Anglais | MEDLINE | ID: mdl-36289227

RÉSUMÉ

Liquid manipulation is the foundation of most laboratory processes. For macroscale liquid handling, both do-it-yourself and commercial robotic systems are available; however, for microscale, reagents are expensive and sample preparation is difficult. Over the last decade, lab-on-a-chip (LOC) systems have come to serve for microscale liquid manipulation; however, lacking automation and multi-functionality. Despite their potential synergies, each has grown separately and no suitable interface yet exists to link macro-level robotics with micro-level LOC or microfluidic devices. Here, we present a robot-assisted acoustofluidic end effector (RAEE) system, comprising a robotic arm and an acoustofluidic end effector, that combines robotics and microfluidic functionalities. We further carried out fluid pumping, particle and zebrafish embryo trapping, and mobile mixing of complex viscous liquids. Finally, we pre-programmed the RAEE to perform automated mixing of viscous liquids in well plates, illustrating its versatility for the automatic execution of chemical processes.


Sujet(s)
Robotique , Animaux , Danio zébré , Laboratoires sur puces , Automatisation , Microfluidique
4.
Nat Commun ; 13(1): 3317, 2022 06 09.
Article de Anglais | MEDLINE | ID: mdl-35680907

RÉSUMÉ

Digital light processing bioprinting favors biofabrication of tissues with improved structural complexity. However, soft-tissue fabrication with this method remains a challenge to balance the physical performances of the bioinks for high-fidelity bioprinting and suitable microenvironments for the encapsulated cells to thrive. Here, we propose a molecular cleavage approach, where hyaluronic acid methacrylate (HAMA) is mixed with gelatin methacryloyl to achieve high-performance bioprinting, followed by selectively enzymatic digestion of HAMA, resulting in tissue-matching mechanical properties without losing the structural complexity and fidelity. Our method allows cellular morphological and functional improvements across multiple bioprinted tissue types featuring a wide range of mechanical stiffness, from the muscles to the brain, the softest organ of the human body. This platform endows us to biofabricate mechanically precisely tunable constructs to meet the biological function requirements of target tissues, potentially paving the way for broad applications in tissue and tissue model engineering.


Sujet(s)
Bio-impression , Bio-impression/méthodes , Gélatine/composition chimique , Humains , Acide hyaluronique , Hydrogels/composition chimique , Méthacrylates/composition chimique , Impression tridimensionnelle , Ingénierie tissulaire/méthodes , Structures d'échafaudage tissulaires/composition chimique
5.
Biomicrofluidics ; 15(4): 041304, 2021 Jul.
Article de Anglais | MEDLINE | ID: mdl-34367403

RÉSUMÉ

Microfluidics-enhanced bioprinting holds great promise in the field of biofabrication as it enables the fabrication of complex constructs with high shape fidelity and utilization of a broad range of bioinks with varying viscosities. Microfluidic systems contain channels on the micrometer-scale, causing a change in fluid behaviors, enabling unconventional bioprinting applications such as facilitating the precise spatial positioning and switching between bioinks with higher accuracy compared to traditional approaches. These systems can roughly be divided into three groups: microfluidic chips, co- and triaxial printheads, and printheads combining both. Although several aspects and parameters remain to be improved, this technology is promising as it is a step toward recapitulating the complex native histoarchitecture of human tissues more precisely. In this Perspective, key research on these different systems will be discussed before moving onto the limitations and outlook of microfluidics-enhanced bioprinting as a whole.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE