Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 3 de 3
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Nat Commun ; 9(1): 3216, 2018 08 10.
Article de Anglais | MEDLINE | ID: mdl-30097582

RÉSUMÉ

A 'sibling' species of the model organism Caenorhabditis elegans has long been sought for use in comparative analyses that would enable deep evolutionary interpretations of biological phenomena. Here, we describe the first sibling species of C. elegans, C. inopinata n. sp., isolated from fig syconia in Okinawa, Japan. We investigate the morphology, developmental processes and behaviour of C. inopinata, which differ significantly from those of C. elegans. The 123-Mb C. inopinata genome was sequenced and assembled into six nuclear chromosomes, allowing delineation of Caenorhabditis genome evolution and revealing unique characteristics, such as highly expanded transposable elements that might have contributed to the genome evolution of C. inopinata. In addition, C. inopinata exhibits massive gene losses in chemoreceptor gene families, which could be correlated with its limited habitat area. We have developed genetic and molecular techniques for C. inopinata; thus C. inopinata provides an exciting new platform for comparative evolutionary studies.


Sujet(s)
Caenorhabditis elegans/génétique , Génome , Séquence d'acides aminés , Animaux , Séquence nucléotidique , Caenorhabditis elegans/anatomie et histologie , Cellules chimioréceptrices/métabolisme , Séquence conservée/génétique , Éléments transposables d'ADN/génétique , Évolution moléculaire , Femelle , Variation génétique , Mâle , Famille multigénique , Interférence par ARN , Séquences d'acides nucléiques régulatrices/génétique , Spécificité d'espèce
2.
J Am Chem Soc ; 140(8): 2841-2852, 2018 02 28.
Article de Anglais | MEDLINE | ID: mdl-29401383

RÉSUMÉ

Peroxisomal ß-oxidation (pßo) is a highly conserved fat metabolism pathway involved in the biosynthesis of diverse signaling molecules in animals and plants. In Caenorhabditis elegans, pßo is required for the biosynthesis of the ascarosides, signaling molecules that control development, lifespan, and behavior in this model organism. Via comparative mass spectrometric analysis of pßo mutants and wildtype, we show that pßo in C. elegans and the satellite model P. pacificus contributes to life stage-specific biosynthesis of several hundred previously unknown metabolites. The pßo-dependent portion of the metabolome is unexpectedly diverse, e.g., intersecting with nucleoside and neurotransmitter metabolism. Cell type-specific restoration of pßo in pßo-defective mutants further revealed that pßo-dependent submetabolomes differ between tissues. These results suggest that interactions of fat, nucleoside, and other primary metabolism pathways can generate structural diversity reminiscent of that arising from combinatorial strategies in microbial natural product biosynthesis.


Sujet(s)
Caenorhabditis elegans/métabolisme , Glycolipides/biosynthèse , Métabolomique , Péroxysomes/métabolisme , Animaux , Glycolipides/composition chimique , Structure moléculaire , Oxydoréduction
3.
Angew Chem Int Ed Engl ; 56(17): 4729-4733, 2017 04 18.
Article de Anglais | MEDLINE | ID: mdl-28371259

RÉSUMÉ

The nematode Caenorhabditis elegans uses simple building blocks from primary metabolism and a strategy of modular assembly to build a great diversity of signaling molecules, the ascarosides, which function as a chemical language in this model organism. In the ascarosides, the dideoxysugar ascarylose serves as a scaffold to which diverse moieties from lipid, amino acid, neurotransmitter, and nucleoside metabolism are attached. However, the mechanisms that underlie the highly specific assembly of ascarosides are not understood. We show that the acyl-CoA synthetase ACS-7, which localizes to lysosome-related organelles, is specifically required for the attachment of different building blocks to the 4'-position of ascr#9. We further show that mutants lacking lysosome-related organelles are defective in the production of all 4'-modified ascarosides, thus identifying the waste disposal system of the cell as a hotspot for ascaroside biosynthesis.


Sujet(s)
Voies de biosynthèse , Protéines de Caenorhabditis elegans/métabolisme , Caenorhabditis elegans/métabolisme , Coenzyme A ligases/métabolisme , Glycolipides/métabolisme , Hexose/métabolisme , Animaux , Caenorhabditis elegans/composition chimique , Glycolipides/composition chimique , Hexose/composition chimique , Lysosomes/métabolisme
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...