Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 10 de 10
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Cells ; 12(18)2023 09 17.
Article de Anglais | MEDLINE | ID: mdl-37759519

RÉSUMÉ

Aging is the slowest process in a living organism. During this process, mortality rate increases exponentially due to the accumulation of damage at the cellular level. Cellular senescence is a well-established hallmark of aging, as well as a promising target for preventing aging and age-related diseases. However, mapping the senescent cells in tissues is extremely challenging, as their low abundance, lack of specific markers, and variability arise from heterogeneity. Hence, methodologies for identifying or predicting the development of senescent cells are necessary for achieving healthy aging. A new wave of bioinformatic methodologies based on mathematics/physics theories have been proposed to be applied to aging biology, which is altering the way we approach our understand of aging. Here, we discuss the dynamical network biomarkers (DNB) theory, which allows for the prediction of state transition in complex systems such as living organisms, as well as usage of Raman spectroscopy that offers a non-invasive and label-free imaging, and provide a perspective on potential applications for the study of aging.


Sujet(s)
Vieillissement de la cellule , Vieillissement en bonne santé , Marqueurs biologiques , Biologie informatique
2.
Sci Rep ; 10(1): 19080, 2020 11 05.
Article de Anglais | MEDLINE | ID: mdl-33154387

RÉSUMÉ

Exposure to genotoxic stress by environmental agents or treatments, such as radiation therapy, can diminish healthspan and accelerate aging. We have developed a Drosophila melanogaster model to study the molecular effects of radiation-induced damage and repair. Utilizing a quantitative intestinal permeability assay, we performed an unbiased GWAS screen (using 156 strains from the Drosophila Genetic Reference Panel) to search for natural genetic variants that regulate radiation-induced gut permeability in adult D. melanogaster. From this screen, we identified an RNA binding protein, Musashi (msi), as one of the possible genes associated with changes in intestinal permeability upon radiation. The overexpression of msi promoted intestinal stem cell proliferation, which increased survival after irradiation and rescued radiation-induced intestinal permeability. In summary, we have established D. melanogaster as an expedient model system to study the effects of radiation-induced damage to the intestine in adults and have identified msi as a potential therapeutic target.


Sujet(s)
Protéines de Drosophila/génétique , Drosophila melanogaster/génétique , Drosophila melanogaster/effets des radiations , Protéines de liaison à l'ARN/génétique , Cellules souches adultes/physiologie , Cellules souches adultes/effets des radiations , Animaux , Mort cellulaire/effets des radiations , Prolifération cellulaire/effets des radiations , Altération de l'ADN , Protéines de Drosophila/physiologie , Drosophila melanogaster/physiologie , Femelle , Expression des gènes/effets des radiations , Gènes d'insecte/effets des radiations , Étude d'association pangénomique , Intestins/cytologie , Intestins/physiologie , Intestins/effets des radiations , Locomotion/effets des radiations , Perméabilité/effets des radiations , Protéines de liaison à l'ARN/physiologie , Lésions radiques expérimentales/génétique , Lésions radiques expérimentales/anatomopathologie , Lésions radiques expérimentales/physiopathologie
3.
PLoS Genet ; 14(11): e1007777, 2018 11.
Article de Anglais | MEDLINE | ID: mdl-30383748

RÉSUMÉ

Loss of gut integrity is linked to various human diseases including inflammatory bowel disease. However, the mechanisms that lead to loss of barrier function remain poorly understood. Using D. melanogaster, we demonstrate that dietary restriction (DR) slows the age-related decline in intestinal integrity by enhancing enterocyte cellular fitness through up-regulation of dMyc in the intestinal epithelium. Reduction of dMyc in enterocytes induced cell death, which leads to increased gut permeability and reduced lifespan upon DR. Genetic mosaic and epistasis analyses suggest that cell competition, whereby neighboring cells eliminate unfit cells by apoptosis, mediates cell death in enterocytes with reduced levels of dMyc. We observed that enterocyte apoptosis was necessary for the increased gut permeability and shortened lifespan upon loss of dMyc. Furthermore, moderate activation of dMyc in the post-mitotic enteroblasts and enterocytes was sufficient to extend health-span on rich nutrient diets. We propose that dMyc acts as a barometer of enterocyte cell fitness impacting intestinal barrier function in response to changes in diet and age.


Sujet(s)
Restriction calorique , Drosophila melanogaster/physiologie , Entérocytes/physiologie , Muqueuse intestinale/physiologie , Longévité/physiologie , Vieillissement/génétique , Vieillissement/anatomopathologie , Vieillissement/physiologie , Animaux , Animal génétiquement modifié , Apoptose , Protéines de liaison à l'ADN/antagonistes et inhibiteurs , Protéines de liaison à l'ADN/génétique , Protéines de liaison à l'ADN/physiologie , Protéines de Drosophila/antagonistes et inhibiteurs , Protéines de Drosophila/génétique , Protéines de Drosophila/physiologie , Drosophila melanogaster/cytologie , Drosophila melanogaster/génétique , Entérocytes/cytologie , Techniques de knock-down de gènes , Gènes d'insecte , Humains , Muqueuse intestinale/cytologie , Longévité/génétique , Mutation , Perméabilité , Facteurs de transcription/antagonistes et inhibiteurs , Facteurs de transcription/génétique , Facteurs de transcription/physiologie , Régulation positive
4.
Dev Growth Differ ; 60(8): 502-508, 2018 Oct.
Article de Anglais | MEDLINE | ID: mdl-30368781

RÉSUMÉ

The transcriptional repressor Blimp-1 is a labile protein. This characteristic is key for determining pupation timing because the timing of the disappearance of Blimp-1 affects pupation timing by regulating the expression of its target ßftz-f1. However, the molecular mechanisms that regulate the protein turnover of Blimp-1 are still unclear. Here, we demonstrate that Blimp-1 is regulated by the ubiquitin proteasome system. We show that Blimp-1 degradation is inhibited by proteasome inhibitor MG132. Pupation timing was delayed in mutants of 26S proteasome subunits as well as FBXO11, which recruits target proteins to the 26S proteasome as a component of the SCF ubiquitin ligase complex by slowing down the degradation speed of Blimp-1. Delay in pupation timing in the FBXO11 mutant was suppressed by the induction of ßFTZ-F1. Furthermore, fat-body-specific knockdown of proteasomal activity was sufficient to induce a delay in pupation timing. These results suggest that Blimp-1 is degraded by the 26S proteasome and is recruited by FBXO11 in the fat body, which is important for determining pupation timing.


Sujet(s)
Protéines de Drosophila/métabolisme , Proteasome endopeptidase complex/métabolisme , Pupe/croissance et développement , Pupe/métabolisme , Protéines de répression/métabolisme , Animaux , Drosophila , Protéines de Drosophila/antagonistes et inhibiteurs , Antienzymes/composition chimique , Antienzymes/pharmacologie , Protéines F-box/métabolisme , Corps gras/métabolisme , Leupeptines/composition chimique , Leupeptines/pharmacologie , Pupe/enzymologie , Protéines de répression/antagonistes et inhibiteurs , Facteurs temps
5.
Development ; 143(13): 2410-6, 2016 07 01.
Article de Anglais | MEDLINE | ID: mdl-27226323

RÉSUMÉ

During the development of multicellular organisms, many events occur with precise timing. In Drosophila melanogaster, pupation occurs about 12 h after puparium formation and its timing is believed to be determined by the release of a steroid hormone, ecdysone (E), from the prothoracic gland. Here, we demonstrate that the ecdysone-20-monooxygenase Shade determines pupation timing by converting E to 20-hydroxyecdysone (20E) in the fat body, which is the organ that senses nutritional status. The timing of shade expression is determined by its transcriptional activator ßFtz-f1. The ßftz-f1 gene is activated after a decline in the expression of its transcriptional repressor Blimp-1, which is temporally expressed around puparium formation in response to a high titer of 20E. The expression level and stability of Blimp-1 is critical for the precise timing of pupation. Thus, we propose that Blimp-1 molecules function like sand in an hourglass in this precise developmental timer system. Furthermore, our data suggest that a biological advantage results from both the use of a transcriptional repressor for time determination and the association of developmental timing with nutritional status of the organism.


Sujet(s)
Horloges biologiques , Cytochrome P-450 enzyme system/métabolisme , Protéines de liaison à l'ADN/métabolisme , Protéines de Drosophila/métabolisme , Drosophila melanogaster/croissance et développement , Drosophila melanogaster/métabolisme , Corps gras/métabolisme , Pupe/croissance et développement , Récepteurs aux stéroïdes/métabolisme , Protéines de répression/métabolisme , Animaux , Horloges biologiques/effets des médicaments et des substances chimiques , Drosophila melanogaster/effets des médicaments et des substances chimiques , Drosophila melanogaster/génétique , Ecdystérone/pharmacologie , Corps gras/effets des médicaments et des substances chimiques , Régulation de l'expression des gènes au cours du développement/effets des médicaments et des substances chimiques , Modèles biologiques , Stabilité protéique/effets des médicaments et des substances chimiques , Pupe/génétique , Facteurs temps
6.
Cell Metab ; 23(1): 143-54, 2016 Jan 12.
Article de Anglais | MEDLINE | ID: mdl-26626459

RÉSUMÉ

Endogenous circadian clocks orchestrate several metabolic and signaling pathways that are known to modulate lifespan, suggesting clocks as potential targets for manipulation of metabolism and lifespan. We report here that the core circadian clock genes, timeless (tim) and period (per), are required for the metabolic and lifespan responses to DR in Drosophila. Consistent with the involvement of a circadian mechanism, DR enhances the amplitude of cycling of most circadian clock genes, including tim, in peripheral tissues. Mass-spectrometry-based lipidomic analysis suggests a role of tim in cycling of specific medium chain triglycerides under DR. Furthermore, overexpression of tim in peripheral tissues improves its oscillatory amplitude and extends lifespan under ad libitum conditions. Importantly, effects of tim on lifespan appear to be mediated through enhanced fat turnover. These findings identify a critical role for specific clock genes in modulating the effects of nutrient manipulation on fat metabolism and aging.


Sujet(s)
Protéines CLOCK/métabolisme , Horloges circadiennes , Protéines de Drosophila/métabolisme , Métabolisme lipidique , Longévité , Animaux , Protéines CLOCK/génétique , Restriction calorique , Protéines de Drosophila/génétique , Drosophila melanogaster , Femelle , Expression des gènes , Régulation de l'expression des gènes , Mâle , Transduction du signal
7.
Proc Natl Acad Sci U S A ; 112(5): 1452-7, 2015 Feb 03.
Article de Anglais | MEDLINE | ID: mdl-25605909

RÉSUMÉ

In Drosophila, pulsed production of the steroid hormone ecdysone plays a pivotal role in developmental transitions such as metamorphosis. Ecdysone production is regulated in the prothoracic gland (PG) by prothoracicotropic hormone (PTTH) and insulin-like peptides (Ilps). Here, we show that monoaminergic autocrine regulation of ecdysone biosynthesis in the PG is essential for metamorphosis. PG-specific knockdown of a monoamine G protein-coupled receptor, ß3-octopamine receptor (Octß3R), resulted in arrested metamorphosis due to lack of ecdysone. Knockdown of tyramine biosynthesis genes expressed in the PG caused similar defects in ecdysone production and metamorphosis. Moreover, PTTH and Ilps signaling were impaired by Octß3R knockdown in the PG, and activation of these signaling pathways rescued the defect in metamorphosis. Thus, monoaminergic autocrine signaling in the PG regulates ecdysone biogenesis in a coordinated fashion on activation by PTTH and Ilps. We propose that monoaminergic autocrine signaling acts downstream of a body size checkpoint that allows metamorphosis to occur when nutrients are sufficiently abundant.


Sujet(s)
Drosophila/croissance et développement , Ecdysone/biosynthèse , Métamorphose biologique , Récepteurs aux amines biogéniques/physiologie , Thorax/physiologie , Animaux , Hormones des insectes/métabolisme , Larve/croissance et développement , Récepteurs aux amines biogéniques/métabolisme , Transduction du signal , Tyramine/biosynthèse
8.
J Mol Biol ; 425(1): 71-81, 2013 Jan 09.
Article de Anglais | MEDLINE | ID: mdl-23137796

RÉSUMÉ

Nuclear receptor transcription factor family members share target sequence similarity; however, little is known about how these factors exert their specific regulatory control. Here, we examine the mechanism regulating the expression of the Drosophila EDG84A gene, a target gene of the orphan nuclear receptor ßFTZ-F1, as a model to study the cooperative behavior among nuclear receptors. We show that the three nuclear receptors ßFTZ-F1, DHR3, and DHR39 bind to a common element in the EDG84A promoter. The expression level of the EDG84A promoter-lacZ reporter genes in DHR39-induced and mutant animals, respectively, suggests that DHR39 works as a repressor. The activity of a reporter gene carrying a mutation preventing DHR3 binding was reduced in ftz-f1 mutants and rescued by the induced expression of ßFTZ-F1, suggesting that DHR3 and ßFTZ-F1 activate the EDG84A gene in a redundant manner. A reporter gene carrying a mutation that abolishes DHR39 and FTZ-F1 binding was prematurely expressed, and the expression level of the reporter gene carrying a mutation preventing DHR3 binding was reduced. These findings suggest that the temporal expression of this gene is mainly controlled by ßFTZ-F1 but that the binding of DHR3 is also important. Comparison of the binding site sequence among Drosophila species suggests that DHR3 binding ability was gained after the melanogaster subgroup evolved, and this ability may contribute to the robust expression of this gene. These results show the complicated regulatory mechanisms utilized by multiple nuclear receptors to properly regulate the expression of their target gene through a single target site.


Sujet(s)
Protéines de liaison à l'ADN/métabolisme , Protéines de Drosophila/métabolisme , Drosophila melanogaster/génétique , Protéines d'insecte/génétique , Récepteurs cytoplasmiques et nucléaires/métabolisme , Récepteurs aux stéroïdes/métabolisme , Animaux , Sites de fixation , Protéines de liaison à l'ADN/génétique , Protéines de Drosophila/génétique , Drosophila melanogaster/croissance et développement , Drosophila melanogaster/métabolisme , Régulation de l'expression des gènes au cours du développement/génétique , Gènes rapporteurs , Protéines d'insecte/métabolisme , Métamorphose biologique , Mutation , Régions promotrices (génétique)/génétique , Récepteurs cytoplasmiques et nucléaires/génétique , Récepteurs aux stéroïdes/génétique , Activation de la transcription/génétique
9.
Dev Growth Differ ; 53(5): 697-703, 2011 Jun.
Article de Anglais | MEDLINE | ID: mdl-21671917

RÉSUMÉ

Blimp-1 is an ecdysone-inducible transcription factor that is expressed in the early stage of the prepupal period. The timing of its disappearance determines expression timing of the FTZ-F1 gene, whose temporally restricted expression is essential for the prepupal development. To elucidate the termination mechanism of Blimp-1 gene expression, we examined the regulation of the Blimp-1 gene using an organ culture system. The results showed that the Blimp-1 gene is transcribed in cultured organs taken from a low ecdysteroid period even after extended exposure to 20-hydroxyecdysone, while well-known early genes such as E75A are repressed under the same conditions. Similar selective transcription was observed in the cultured organs obtained from a high ecdysteroid period. We further showed that Blimp-1 transcripts quickly disappeared in the presence of actinomycin D. From these results, we concluded that the Blimp-1 gene is transcribed when the ecdysteroid titer is high, but the expressed mRNA degrades rapidly; these unique regulations limit its expression to the high ecdysteroid stage.


Sujet(s)
Protéines de Drosophila/métabolisme , Drosophila/croissance et développement , Régulation de l'expression des gènes au cours du développement/physiologie , Protéines de répression/métabolisme , Animaux , Amorces ADN/génétique , Protéines de liaison à l'ADN/métabolisme , Dactinomycine , Ecdysone/métabolisme , Larve/croissance et développement , RT-PCR , Facteurs de transcription/métabolisme
10.
Mol Cell Biol ; 27(24): 8739-47, 2007 Dec.
Article de Anglais | MEDLINE | ID: mdl-17923694

RÉSUMÉ

Regulatory mechanisms controlling the timing of developmental events are crucial for proper development to occur. ftz-f1 is expressed in a temporally regulated manner following pulses of ecdysteroid and this precise expression is necessary for the development of Drosophila melanogaster. To understand how insect hormone ecdysteroids regulate the timing of FTZ-F1 expression, we purified a DNA binding regulator of ftz-f1. Mass spectroscopy analysis revealed this protein to be a fly homolog of mammalian B lymphocyte-induced maturation protein 1 (Blimp-1). Drosophila Blimp-1 (dBlimp-1) is induced directly by 20-hydroxyecdysone, and its product exists during high-ecdysteroid periods and turns over rapidly. Forced expression of dBlimp-1 and RNA interference analysis indicate that dBlimp-1 acts as a repressor and controls the timing of FTZ-F1 expression. Furthermore, its prolonged expression results in delay of pupation timing. These results suggest that the transient transcriptional repressor dBlimp-1 is important for determining developmental timing in the ecdysone-induced pathway.


Sujet(s)
Protéines de Drosophila/métabolisme , Drosophila melanogaster/effets des médicaments et des substances chimiques , Drosophila melanogaster/embryologie , Ecdysone/pharmacologie , Protéines de répression/métabolisme , Transcription génétique , Animaux , Sites de fixation , Extrait cellulaire , Noyau de la cellule/effets des médicaments et des substances chimiques , Noyau de la cellule/métabolisme , Protéines de liaison à l'ADN/génétique , Protéines de liaison à l'ADN/métabolisme , Protéines de Drosophila/génétique , Protéines de Drosophila/isolement et purification , Embryon non mammalien/effets des médicaments et des substances chimiques , Embryon non mammalien/métabolisme , Régulation de l'expression des gènes au cours du développement/effets des médicaments et des substances chimiques , Régions promotrices (génétique)/génétique , Pupe/effets des médicaments et des substances chimiques , ARN messager/génétique , ARN messager/métabolisme , Protéines de répression/génétique , Protéines de répression/isolement et purification , Similitude de séquences d'acides aminés , Thermodynamique , Facteurs temps , Facteurs de transcription/génétique , Facteurs de transcription/métabolisme , Transcription génétique/effets des médicaments et des substances chimiques
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE