Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
J Mech Behav Biomed Mater ; 104: 103675, 2020 04.
Article de Anglais | MEDLINE | ID: mdl-32174431

RÉSUMÉ

The aim of this study was to fabricate flowable resin composites, by incorporating Farnesol loaded Halloysite Nanotubes (Fa-HNT) as a filler and evaluate their physicochemical as well as biological properties. Chemical and morphological characterization of antibacterial filler, Fa-HNT were performed using Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), Transmission Electron Microscope (TEM), Scanning Electron Microscope (SEM). The antibacterial filler was mixed into composite material consisting of methacrylate monomers and dental glass fillers at concentrations of 1-20% (wt./wt.). It was observed that addition of mass fractions of Fa-HNT causes enhancement of compressive strength as well as flexural modulus of the composite. However, it significantly decreases flexural strength and degree of conversion. A significant antibacterial activity of dental composite was observed with increase in the area of zone of inhibition against the strains of Streptococcus mutans (S. mutans). There was no cytotoxicity observed by Fa-HNT resin composites on NIH-3T3 (mouse embryonic fibroblast cells) cell lines. A favourable integration of antibacterial filler with significant mechanical properties was achieved at concentrations from 7 to 13 wt% of Fa-HNT in dental composites, which is desirable in dentistry.


Sujet(s)
Farnésol , Nanotubes , Animaux , Argile , Résines composites/toxicité , Fibroblastes , Test de matériaux , Souris , Microscopie électronique à balayage
2.
Microsc Microanal ; 25(6): 1442-1448, 2019 12.
Article de Anglais | MEDLINE | ID: mdl-31134875

RÉSUMÉ

The difference in the defect structures produced by different ion masses in a tungsten lattice is investigated using 80 MeV Au7+ ions and 10 MeV B3+ ions. The details of the defects produced by ions in recrystallized tungsten foil samples are studied using transmission electron microscopy. Dislocations of type b = 1/2[111] and [001] were observed in the analysis. While highly energetic gold ion produced small clusters of defects with very few dislocation lines, boron has produced large and sparse clusters with numerous dislocation lines. The difference in the defect structures could be due to the difference in separation between primary knock-on atoms produced by gold and boron ions.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...