Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 3 de 3
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Food Chem ; 457: 140179, 2024 Nov 01.
Article de Anglais | MEDLINE | ID: mdl-38924919

RÉSUMÉ

The baking process has the potential to generate health-risk compounds, including products from lipid oxidation and Maillard reaction. Pre- and post-digestion levels of hydroxymethylfurfural (HMF), malondialdehyde (MDA), glyoxal (GO), and methylglyoxal (MGO) were studied in cakes formulated with hazelnut and sunflower oil, along with their oleogels as margarine substitutes. The concentration of HMF in oil and oleogel-formulated cakes increased after digestion compared to cakes formulated with margarine. The MDA values were between 82 and 120 µg/100 g in oil and oleogel formulated cakes before digestion and a decrease was observed after digestion. The substitution of margarine with oil and oleogels resulted in the production of high amounts of GO and MGO in cakes. However, the highest bioaccessibility as 318.2% was found in cakes formulated by margarine for GO. Oleogels may not pose a potential health benefit compared to margarines due to the formation of HMF, MDA, GO, and MGO.


Sujet(s)
Digestion , Furfural , Malonaldéhyde , Composés chimiques organiques , Furfural/analogues et dérivés , Furfural/composition chimique , Furfural/analyse , Malonaldéhyde/métabolisme , Malonaldéhyde/composition chimique , Composés chimiques organiques/composition chimique , Humains , Tube digestif/métabolisme , Corylus/composition chimique , Produits terminaux de glycation avancée/composition chimique , Produits terminaux de glycation avancée/métabolisme , Modèles biologiques , Huile de tournesol/composition chimique , Margarine/analyse
2.
Foods ; 8(6)2019 Jun 18.
Article de Anglais | MEDLINE | ID: mdl-31216705

RÉSUMÉ

This study aimed to investigate the effect of different drying methods, namely ultrasound-assisted vacuum drying (USV), vacuum drying (VD), and freeze-drying (FD), on the drying kinetics and some quality parameters of dried minced meat. In this study, USV was for the first time applied to the drying of minced meat. The USV and VD methods were conducted at 25 °C, 35 °C, and 45 °C. The different drying methods and temperatures significantly affected the drying time (p < 0.05). The USV method showed lower drying times at all temperatures. The rehydration values of the freeze-dried minced meat samples were higher than those obtained by the USV and VD techniques. The samples prepared using USV showed higher rehydration values than the vacuum dried samples for all temperatures. The effects of the different drying techniques and drying conditions on the microstructural properties of the minced meat samples were investigated using scanning electron microscope (SEM). The USV method resulted in higher porosity and a more open structure than the VD method. Total color differences (ΔE) for VD, USV, and FD were 8.27-20.81, 9.58-16.42, and 9.38, respectively, and were significantly affected by the drying methods and temperatures (p < 0.05). Higher drying temperature increased the ΔE value. Peroxide values (PV) significantly increased after the drying process, and samples treated with USV showed lower PV values than the VD treated samples. This study suggests that USV could be used as an alternative drying method for minced meat drying due to lower drying times and higher quality parameters.

3.
Environ Sci Pollut Res Int ; 22(5): 3279-97, 2015 Mar.
Article de Anglais | MEDLINE | ID: mdl-25056743

RÉSUMÉ

Currently, reduction of carbon dioxide (CO2) emissions and fuel consumption has become a critical environmental problem and has attracted the attention of both academia and the industrial sector. Government regulations and customer demands are making environmental responsibility an increasingly important factor in overall supply chain operations. Within these operations, transportation has the most hazardous effects on the environment, i.e., CO2 emissions, fuel consumption, noise and toxic effects on the ecosystem. This study aims to construct vehicle routes with time windows that minimize the total fuel consumption and CO2 emissions. The green vehicle routing problem with time windows (G-VRPTW) is formulated using a mixed integer linear programming model. A memory structure adapted simulated annealing (MSA-SA) meta-heuristic algorithm is constructed due to the high complexity of the proposed problem and long solution times for practical applications. The proposed models are integrated with a fuel consumption and CO2 emissions calculation algorithm that considers the vehicle technical specifications, vehicle load, and transportation distance in a green supply chain environment. The proposed models are validated using well-known instances with different numbers of customers. The computational results indicate that the MSA-SA heuristic is capable of obtaining good G-VRPTW solutions within a reasonable amount of time by providing reductions in fuel consumption and CO2 emissions.


Sujet(s)
Pollution de l'air/prévention et contrôle , Algorithmes , Conservation des ressources énergétiques , Modèles théoriques , Transports , Polluants atmosphériques/analyse , Dioxyde de carbone/analyse , Emissions des véhicules/analyse
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE