Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 9 de 9
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
ACS Appl Mater Interfaces ; 16(25): 32516-32523, 2024 Jun 26.
Article de Anglais | MEDLINE | ID: mdl-38867603

RÉSUMÉ

Plasmonic metamaterials have opened new avenues in medical diagnostics. However, the transfer of the technology to the markets has been delayed due to multiple challenges. The need of bulky optics for signal reading from nanostructures patterned on submillimeter area limits the miniaturization of the devices. The use of objective-free optics can solve this problem, which necessitates large area patterning of the nanostructures. In this work, we utilize laser interference lithography (LIL) to pattern nanodisc-shaped metamaterial absorber nanoantennas over a large area (4 cm2) within minutes. The introduction of a sacrificial layer during the fabrication process enables an inverted hole profile and a well-controlled liftoff, which ensures perfectly defined uniform nanopatterning almost with no defects. Furthermore, we use a macroscopic reflection probe for optical characterization in the near-IR, including the detection of the binding kinematics of immunologically relevant proteins. We show that the photonic quality of the plasmonic nanoantennas commensurates with electron-beam-lithography-fabricated ones over the whole area. The refractive index sensitivity of the LIL-fabricated metasurface is determined as 685 nm per refractive index unit, which demonstrates ultrasensitive detection. Moreover, the fabricated surfaces can be used multiple times for biosensing without losing their optical quality. The combination of rapid and large area nanofabrication with a simple optical reading not only simplifies the detection process but also makes the biosensors more environmentally friendly and cost-effective. Therefore, the improvements provided in this work will empower researchers and industries for accurate and real-time analysis of biological systems.


Sujet(s)
Techniques de biocapteur , Nanostructures , Techniques de biocapteur/méthodes , Nanostructures/composition chimique , Résonance plasmonique de surface , Propriétés de surface , Réfractométrie
2.
Molecules ; 27(14)2022 Jul 18.
Article de Anglais | MEDLINE | ID: mdl-35889446

RÉSUMÉ

We present a metamaterial-based perfect absorber (PA) that strongly supports four resonances covering a wide spectral range from 1.8 µm to 10 µm of the electromagnetic spectrum. The designed perfect absorber has metal-dielectric-metal layers where a MgF2 spacer is sandwiched between an optically thick gold film and patterned gold nanoantennas. The spectral tuning of PA is achieved by calibrating the geometrical parameters numerically and experimentally. The manufactured quad-band plasmonic PA absorbs light close to the unity. Moreover, the biosensing capacity of the PA is tested using a 14 kDa S100A9 antibody, which is a clinically relevant biomarker for brain metastatic cancer cells. We utilize a UV-based photochemical immobilization technique for patterning of the antibody monolayer on a gold surface. Our results reveal that the presented PA is eligible for ultrasensitive detection of such small biomarkers in a point-of-care device to potentially personalize radiotherapy for patients with brain metastases.


Sujet(s)
Techniques de biocapteur , Résonance plasmonique de surface , Or , Humains , Résonance plasmonique de surface/méthodes
3.
Sci Rep ; 11(1): 2303, 2021 Jan 27.
Article de Anglais | MEDLINE | ID: mdl-33504895

RÉSUMÉ

The investigation on metalenses have been rapidly developing, aiming to bring compact optical devices with superior properties to the market. Realizing miniature optics at the UV frequency range in particular has been challenging as the available transparent materials have limited range of dielectric constants. In this work we introduce a low absorption loss and low refractive index dielectric material magnesium oxide, MgO, as an ideal candidate for metalenses operating at UV frequencies. We theoretically investigate metalens designs capable of efficient focusing over a broad UV frequency range (200-400 nm). The presented metalenses are composed of sub-wavelength MgO nanoblocks, and characterized according to the geometric Pancharatnam-Berry phase method using FDTD method. The presented broadband metalenses can focus the incident UV light on tight focal spots (182 nm) with high numerical aperture ([Formula: see text]). The polarization conversion efficiency of the metalens unit cell and focusing efficiency of the total metalens are calculated to be as high as 94%, the best value reported in UV range so far. In addition, the metalens unit cell can be hybridized to enable lensing at multiple polarization states. The presented highly efficient MgO metalenses can play a vital role in the development of UV nanophotonic systems and could pave the way towards the world of miniaturization.

4.
Materials (Basel) ; 13(22)2020 Nov 14.
Article de Anglais | MEDLINE | ID: mdl-33202666

RÉSUMÉ

We theoretically investigate a multi-resonant plasmonic metamaterial perfect absorber operating between 600 and 950 nm wavelengths. The presented device generates 100% absorption at two resonance wavelengths and delivers an ultra-narrow band (sub-20 nm) and high quality factor (Q=44) resonance. The studied perfect absorber is a metal-insulator-metal configuration where a thin MgF2 spacer is sandwiched between an optically thick gold layer and uniformly patterned gold circular nanodisc antennas. The localized and propagating nature of the plasmonic resonances are characterized and confirmed theoretically. The origin of the perfect absorption is investigated using the impedance matching and critical coupling phenomenon. We calculate the effective impedance of the perfect absorber and confirm the matching with the free space impedance. We also investigate the scattering properties of the top antenna layer and confirm the minimized reflection at resonance wavelengths by calculating the absorption and scattering cross sections. The excitation of plasmonic resonances boost the near-field intensity by three orders of magnitude which enhances the interaction between the metamaterial surface and the incident energy. The refractive index sensitivity of the perfect absorber could go as high as S=500 nm/RIU. The presented optical characteristics make the proposed narrow-band multi-resonant perfect absorber a favorable platform for biosensing and contrast agent based bioimaging.

5.
Nano Lett ; 12(9): 4817-22, 2012 Sep 12.
Article de Anglais | MEDLINE | ID: mdl-22839211

RÉSUMÉ

In this paper, we demonstrate a novel method for high throughput patterning of bioprobes with nanoscale features on biocompatible polymer substrate. Our technique, based on nanostencil lithography, employs high resolution and robust masks integrated with array of reservoirs. We show that the smallest pattern size can reach down to 100 nm. We also show that different types of biomolecules can be patterned on the same substrate simultaneously. Furthermore, the stencil can be reused multiple times to generate a series of identical patterns at low cost. Finally, we demonstrate that biomolecules can be covalently patterned on the surface while retaining their biofunctionalities. By offering the flexibility on the nanopattern design and enabling the reusability of the stencil, our approach significantly simplifies the bionanopatterning process and therefore could have profound implications in diverse biological and medical applications.


Sujet(s)
Biopolymères/composition chimique , Cristallisation/méthodes , Empreinte moléculaire/méthodes , Nanostructures/composition chimique , Nanostructures/ultrastructure , Polymères/composition chimique , Structures macromoléculaires/composition chimique , Test de matériaux , Conformation moléculaire , Taille de particule , Propriétés de surface
7.
Lab Chip ; 11(21): 3596-602, 2011 Nov 07.
Article de Anglais | MEDLINE | ID: mdl-21901194

RÉSUMÉ

Microarrays allowing simultaneous analysis of thousands of parameters can significantly accelerate screening of large libraries of pharmaceutical compounds and biomolecular interactions. For large-scale studies on diverse biomedical samples, reliable, label-free, and high-content microarrays are needed. In this work, using large-area plasmonic nanohole arrays, we demonstrate for the first time a large-scale label-free microarray technology with over one million sensors on a single microscope slide. A dual-color filter imaging method is introduced to dramatically increase the accuracy, reliability, and signal-to-noise ratio of the sensors in a highly multiplexed manner. We used our technology to quantitatively measure protein-protein interactions. Our platform, which is highly compatible with the current microarray scanning systems can enable a powerful screening technology and facilitate diagnosis and treatment of diseases.


Sujet(s)
Tests de criblage à haut débit/méthodes , Analyse par réseau de protéines , Résonance plasmonique de surface , Animaux , Fluorescéine-5-isothiocyanate/composition chimique , Capra , Immunoglobuline G/métabolisme , Microscopie à force atomique , Nanotechnologie , Cartographie d'interactions entre protéines , Protéines/métabolisme , Lapins , Rapport signal-bruit
8.
Opt Express ; 19(8): 7921-8, 2011 Apr 11.
Article de Anglais | MEDLINE | ID: mdl-21503104

RÉSUMÉ

We demonstrate a compact multi-resonant metamaterial structure based on integrated U- and T-shaped nano-aperture antennas. We investigate the physical origin of the multi-resonant behavior and determine the parameter dependence of the nano-aperture antennas both experimentally and numerically. We also show enhanced field distribution in the apertures at the corresponding resonance wavelengths. Both multi-spectral response and enhanced near field distributions can open up exciting new opportunities in applications ranging from subwavelength optics and optoelectronics to chemical and biosensing.

9.
Nano Lett ; 10(7): 2511-8, 2010 Jul 14.
Article de Anglais | MEDLINE | ID: mdl-20560536

RÉSUMÉ

The introduction of high-throughput and high-resolution nanofabrication techniques operating at low cost and low complexity is essential for the advancement of nanoplasmonic and nanophotonic fields. In this paper, we demonstrate a novel fabrication approach based on nanostencil lithography for high-throughput fabrication of engineered infrared plasmonic nanorod antenna arrays. The technique relying on deposition of materials through a shadow mask enables plasmonic substrates supporting spectrally sharp collective resonances. We show that reflectance spectra of these antenna arrays are comparable to that of arrays fabricated by electron beam lithography. We also show that nanostencils can be reused multiple times to fabricate a series of infrared nanoantenna arrays with identical optical responses. Finally, we demonstrate fabrication of plasmonic nanostructures in a variety of shapes with a single metal deposition step on different substrates, including nonconducting ones. Our approach, by enabling the reusability of the stencil and offering flexibility on the substrate choice and nanopattern design, could facilitate the transition of plasmonic technologies to the real-world applications.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE