Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
J Transl Med ; 22(1): 554, 2024 Jun 10.
Article de Anglais | MEDLINE | ID: mdl-38858785

RÉSUMÉ

BACKGROUND: The molecular complexity of colorectal cancer poses a significant challenge to the clinical implementation of accurate risk stratification. There is still an urgent need to find better biomarkers to enhance established risk stratification and guide risk-adapted treatment decisions. METHODS: we systematically analyzed cancer dependencies of 17 colorectal cancer cells and 513 other cancer cells based on genome-scale CRISPR-Cas9 knockout screens to identify colorectal cancer-specific fitness genes. A regression model was built using colorectal cancer-specific fitness genes, which was validated in other three independent cohorts. 30 published gene expression signatures were also retrieved. FINDINGS: We defined a total of 1828 genes that were colorectal cancer-specific fitness genes and identified a 22 colorectal cancer-specific fitness gene (CFG22) score. A high CFG22 score represented unfavorable recurrence and mortality rates, which was validated in three independent cohorts. Combined with age, and TNM stage, the CFG22 model can provide guidance for the prognosis of colorectal cancer patients. Analysis of genomic abnormalities and infiltrating immune cells in the CFG22 risk stratification revealed molecular pathological difference between the subgroups. Besides, drug analysis found that CFG22 high patients were more sensitive to clofibrate. INTERPRETATION: The CFG22 model provided a powerful auxiliary prediction tool for identifying colorectal cancer patients with high recurrence risk and poor prognosis, optimizing precise treatment and improving clinical efficacy.


Sujet(s)
Systèmes CRISPR-Cas , Tumeurs colorectales , Techniques de knock-out de gènes , Tumeurs colorectales/génétique , Tumeurs colorectales/anatomopathologie , Tumeurs colorectales/diagnostic , Humains , Systèmes CRISPR-Cas/génétique , Appréciation des risques , Lignée cellulaire tumorale , Pronostic , Mâle , Aptitude génétique , Femelle , Génome humain , Régulation de l'expression des gènes tumoraux
2.
Comput Biol Med ; 169: 107863, 2024 Feb.
Article de Anglais | MEDLINE | ID: mdl-38199208

RÉSUMÉ

BACKGROUND: XueFuZhuYu (XFZY), a typical Chinese herbal formula, has remarkable clinical effects for treating Pulmonary Hypertension (PH) with unclear mechanisms. Our research involved the utilization of network pharmacology to explore the traditional Chinese herbal monomers and their related targets within XFZY for PH treatment. Furthermore, molecular docking verification was performed. METHODS: The XFZY's primary active compounds, along with their corresponding targets, were both obtained from the TCMSP, ChEMBL, and UniProt databases. The target proteins relevant to PH were sifted through OMIM, GeneCards and TTD databases. The common "XFZY-PH" targets were evaluated with Disease Ontology (DO), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses with the assistance of R software. The Protein-Protein Interaction (PPI) network and compound-target-pathway network were constructed and a systematic analysis of network parameters was performed by the powerful software Cytoscape. Molecular docking was employed for assessing and verifying the interactions between the core targets and the top Chinese herbal monomer. RESULTS: The screening included 297 targets of active compounds in XFZY and 8400 PH-related targets. DO analysis of the above common 268 targets indicated that the treatment of the diseases by XFZY is mediated by genes related to Chronic Obstructive Pulmonary Disease (COPD), Obstructive Lung Disease (OLD), ischemia, and myocardial infarction. The findings from molecular docking indicated that the binding energies of 57 ligand-receptor pairs in PH and 20 ligand-receptor pairs in COPD-PH were lower than -7kJ•mol-1. CONCLUSIONS: This study indicates that XFZY is a promising option within traditional Chinese medicine compound preparation for combating PH, particularly in cases associated with COPD. Our demonstration of the specific molecular mechanism of XFZY anti-PH and its effective active ingredients provides a theoretical basis for better clinical application of the compound.


Sujet(s)
Médicaments issus de plantes chinoises , Hypertension pulmonaire , Broncho-pneumopathie chronique obstructive , Humains , Simulation de docking moléculaire , Pharmacologie des réseaux , Ligands , Biologie informatique , Médecine traditionnelle chinoise
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...