Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 26
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Proc Natl Acad Sci U S A ; 121(4): e2309881120, 2024 Jan 23.
Article de Anglais | MEDLINE | ID: mdl-38190514

RÉSUMÉ

Climate change is increasing the frequency and severity of short-term (~1 y) drought events-the most common duration of drought-globally. Yet the impact of this intensification of drought on ecosystem functioning remains poorly resolved. This is due in part to the widely disparate approaches ecologists have employed to study drought, variation in the severity and duration of drought studied, and differences among ecosystems in vegetation, edaphic and climatic attributes that can mediate drought impacts. To overcome these problems and better identify the factors that modulate drought responses, we used a coordinated distributed experiment to quantify the impact of short-term drought on grassland and shrubland ecosystems. With a standardized approach, we imposed ~a single year of drought at 100 sites on six continents. Here we show that loss of a foundational ecosystem function-aboveground net primary production (ANPP)-was 60% greater at sites that experienced statistically extreme drought (1-in-100-y event) vs. those sites where drought was nominal (historically more common) in magnitude (35% vs. 21%, respectively). This reduction in a key carbon cycle process with a single year of extreme drought greatly exceeds previously reported losses for grasslands and shrublands. Our global experiment also revealed high variability in drought response but that relative reductions in ANPP were greater in drier ecosystems and those with fewer plant species. Overall, our results demonstrate with unprecedented rigor that the global impacts of projected increases in drought severity have been significantly underestimated and that drier and less diverse sites are likely to be most vulnerable to extreme drought.


Sujet(s)
Sécheresses , Écosystème , Prairie , Cycle du carbone , Changement climatique , Récepteurs à activité tyrosine kinase
2.
Nat Commun ; 14(1): 8500, 2023 Dec 22.
Article de Anglais | MEDLINE | ID: mdl-38135682

RÉSUMÉ

Coastal vegetated ecosystems are acknowledged for their capacity to sequester organic carbon (OC), known as blue C. Yet, blue C global accounting is incomplete, with major gaps in southern hemisphere data. It also shows a large variability suggesting that the interaction between environmental and biological drivers is important at the local scale. In southwest Atlantic salt marshes, to account for the space occupied by crab burrows, it is key to avoid overestimates. Here we found that southern southwest Atlantic salt marshes store on average 42.43 (SE = 27.56) Mg OC·ha-1 (40.74 (SE = 2.7) in belowground) and bury in average 47.62 g OC·m-2·yr-1 (ranging from 7.38 to 204.21). Accretion rates, granulometry, plant species and burrowing crabs were identified as the main factors in determining belowground OC stocks. These data lead to an updated global estimation for stocks in salt marshes of 185.89 Mg OC·ha-1 (n = 743; SE = 4.92) and a C burial rate of 199.61 g OC·m-2·yr-1 (n = 193; SE = 16.04), which are lower than previous estimates.


Sujet(s)
Brachyura , Zones humides , Animaux , Écosystème , Carbone , Séquestration du carbone
3.
Nat Commun ; 14(1): 6375, 2023 10 11.
Article de Anglais | MEDLINE | ID: mdl-37821444

RÉSUMÉ

Eutrophication usually impacts grassland biodiversity, community composition, and biomass production, but its impact on the stability of these community aspects is unclear. One challenge is that stability has many facets that can be tightly correlated (low dimensionality) or highly disparate (high dimensionality). Using standardized experiments in 55 grassland sites from a globally distributed experiment (NutNet), we quantify the effects of nutrient addition on five facets of stability (temporal invariability, resistance during dry and wet growing seasons, recovery after dry and wet growing seasons), measured on three community aspects (aboveground biomass, community composition, and species richness). Nutrient addition reduces the temporal invariability and resistance of species richness and community composition during dry and wet growing seasons, but does not affect those of biomass. Different stability measures are largely uncorrelated under both ambient and eutrophic conditions, indicating consistently high dimensionality. Harnessing the dimensionality of ecological stability provides insights for predicting grassland responses to global environmental change.


Sujet(s)
Biodiversité , Prairie , Biomasse , Eutrophisation , Saisons , Écosystème
4.
Sci Total Environ ; 892: 164406, 2023 Sep 20.
Article de Anglais | MEDLINE | ID: mdl-37245802

RÉSUMÉ

In ecosystems, soil microbial variables characterization are used to determine soil biological health and the response of soils to environmental stress. Although there are strong associations between plants and soil microorganisms, they may respond asynchronously to environmental factors and severe droughts. We aimed to: I) evaluate the special variation of soil microbiome such as microbial biomass carbon (MBC) and nitrogen (MBN), soil basal respiration (SBR) and microbial indexes in eight rangeland sites located across an aridity gradient (distributed from arid to mesic climates); II) analyze the relative importance of main environmental factors (climate, soils, and plants) and their relationships with microbial variables in the rangelands; and III) assess the effect of drought on microbial and plant variables in field-based manipulative experiments. First, we found significant changes of microbial variables along a precipitation and temperature gradient. The responses of MBC and MBN were strongly dependent on soil pH, soil nitrogen (N), soil organic carbon (SOC), C:N ratio and vegetation cover. In contrast, SBR was influenced by the aridity index (AI), the mean annual precipitation (MAP), the soil pH and vegetation cover. MBC, MBN and SBR were negatively related with soil pH compared to the other factors (C, N, C:N, vegetation cover, MAP and AI) that had a positive relationship. Second, we found a stronger soil microbial variables response to drought in arid sites compared to humid rangelands. Third, the responses of MBC, MBN, and SBR to drought showed positive relationships with vegetation cover and aboveground biomass, but with different regression slopes, this suggest that plant and microbial communities responded differently to drought. The results from this study improve our understanding about the microbial response to drought in different rangelands, and may facilitate the development of predictive models on responses of soil microorganisms in carbon cycle under global change scenarios.


Sujet(s)
Écosystème , Sol , Sol/composition chimique , Sécheresses , Carbone , Microbiologie du sol , Biomasse , Azote/analyse
5.
Nat Commun ; 14(1): 1809, 2023 03 31.
Article de Anglais | MEDLINE | ID: mdl-37002217

RÉSUMÉ

Plant productivity varies due to environmental heterogeneity, and theory suggests that plant diversity can reduce this variation. While there is strong evidence of diversity effects on temporal variability of productivity, whether this mechanism extends to variability across space remains elusive. Here we determine the relationship between plant diversity and spatial variability of productivity in 83 grasslands, and quantify the effect of experimentally increased spatial heterogeneity in environmental conditions on this relationship. We found that communities with higher plant species richness (alpha and gamma diversity) have lower spatial variability of productivity as reduced abundance of some species can be compensated for by increased abundance of other species. In contrast, high species dissimilarity among local communities (beta diversity) is positively associated with spatial variability of productivity, suggesting that changes in species composition can scale up to affect productivity. Experimentally increased spatial environmental heterogeneity weakens the effect of plant alpha and gamma diversity, and reveals that beta diversity can simultaneously decrease and increase spatial variability of productivity. Our findings unveil the generality of the diversity-stability theory across space, and suggest that reduced local diversity and biotic homogenization can affect the spatial reliability of key ecosystem functions.


Sujet(s)
Écosystème , Prairie , Biomasse , Biodiversité , Reproductibilité des résultats , Plantes
6.
Ecol Lett ; 25(12): 2699-2712, 2022 Dec.
Article de Anglais | MEDLINE | ID: mdl-36278303

RÉSUMÉ

Global change drivers, such as anthropogenic nutrient inputs, are increasing globally. Nutrient deposition simultaneously alters plant biodiversity, species composition and ecosystem processes like aboveground biomass production. These changes are underpinned by species extinction, colonisation and shifting relative abundance. Here, we use the Price equation to quantify and link the contributions of species that are lost, gained or that persist to change in aboveground biomass in 59 experimental grassland sites. Under ambient (control) conditions, compositional and biomass turnover was high, and losses (i.e. local extinctions) were balanced by gains (i.e. colonisation). Under fertilisation, the decline in species richness resulted from increased species loss and decreases in species gained. Biomass increase under fertilisation resulted mostly from species that persist and to a lesser extent from species gained. Drivers of ecological change can interact relatively independently with diversity, composition and ecosystem processes and functions such as aboveground biomass due to the individual contributions of species lost, gained or persisting.


Sujet(s)
Écosystème , Prairie , Biomasse , Biodiversité , Plantes
7.
J Environ Manage ; 321: 116025, 2022 Nov 01.
Article de Anglais | MEDLINE | ID: mdl-36029632

RÉSUMÉ

Human coastal occupation often leads to the degradation of the structural properties and environmental functions of natural coastlines. . Much research has been done on the cost-effectiveness of various living shorelines designs, however more work is needed for simple, small-scale designs that are typically adopted in waterfront residential or recreational properties. To contribute to this gap, we planted small-scale plots of black needlerush (Juncus roemerianus) in two sites, one in a residential property and another one in a recreational property in the Northern Gulf of Mexico that experienced significant wave energy. Plots were planted at two different densities (50% or 100% initial cover) or left unplanted (controls) and, along with monitoring the evolution of the planted salt marsh, we measured a number of functional metrics including soil slope, abundance of nekton within and in front of the plots, and cover of submerged aquatic vegetation (SAV) in front of the plots monthly over two years. In one of the sites plant cover decreased precipitously, and in the other site we did not observe any significant changes in plant cover over time (i.e. the initial 50% and 100% plantings remained at that level throughout the experiment) despite protecting the planted salt marsh with coir logs. We did not find any changes in soil slope or nekton abundance between planted and control plots. SAV growth was restrained in front of planted plots in relation to control plots, possibly due to deleterious impacts by the coir logs. Overall, the results suggest the protection against wave energy attained in this experiment is insufficient for adequate saltmarsh establishment and growth, thereby encountering decreasing or stationary plant density and no significant differences in soil slope or nekton abundance between planted and non-planted plots. Our results indicate the adoption of small-scale saltmarsh planting to reduce erosion and enhance coastal functionality needs to ensure that wave energy is sufficiently dampened for adequate saltmarsh growth and, concomitantly, the conceived saltmarsh protection mechanism does not negatively impact adjacent SAV.


Sujet(s)
Plantes , Zones humides , Écosystème , Golfe du Mexique , Humains , Sol
8.
Glob Chang Biol ; 28(8): 2678-2688, 2022 Apr.
Article de Anglais | MEDLINE | ID: mdl-35038782

RÉSUMÉ

Nutrients and herbivores are well-known drivers of grassland diversity and stability in local communities. However, whether they interact to impact the stability of aboveground biomass and whether these effects depend on spatial scales remain unknown. It is also unclear whether nutrients and herbivores impact stability via different facets of plant diversity including species richness, evenness, and changes in community composition through time and space. We used a replicated experiment adding nutrients and excluding herbivores for 5 years in 34 global grasslands to explore these questions. We found that both nutrient addition and herbivore exclusion alone reduced stability at the larger spatial scale (aggregated local communities; gamma stability), but through different pathways. Nutrient addition reduced gamma stability primarily by increasing changes in local community composition over time, which was mainly driven by species replacement. Herbivore exclusion reduced gamma stability primarily by decreasing asynchronous dynamics among local communities (spatial asynchrony). Their interaction weakly increased gamma stability by increasing spatial asynchrony. Our findings indicate that disentangling the processes operating at different spatial scales may improve conservation and management aiming at maintaining the ability of ecosystems to reliably provide functions and services for humanity.


Sujet(s)
Prairie , Herbivorie , Biodiversité , Écosystème , Nutriments
10.
Ecol Evol ; 11(24): 17744-17761, 2021 Dec.
Article de Anglais | MEDLINE | ID: mdl-35003636

RÉSUMÉ

Biotic and abiotic factors interact with dominant plants-the locally most frequent or with the largest coverage-and nondominant plants differently, partially because dominant plants modify the environment where nondominant plants grow. For instance, if dominant plants compete strongly, they will deplete most resources, forcing nondominant plants into a narrower niche space. Conversely, if dominant plants are constrained by the environment, they might not exhaust available resources but instead may ameliorate environmental stressors that usually limit nondominants. Hence, the nature of interactions among nondominant species could be modified by dominant species. Furthermore, these differences could translate into a disparity in the phylogenetic relatedness among dominants compared to the relatedness among nondominants. By estimating phylogenetic dispersion in 78 grasslands across five continents, we found that dominant species were clustered (e.g., co-dominant grasses), suggesting dominant species are likely organized by environmental filtering, and that nondominant species were either randomly assembled or overdispersed. Traits showed similar trends for those sites (<50%) with sufficient trait data. Furthermore, several lineages scattered in the phylogeny had more nondominant species than expected at random, suggesting that traits common in nondominants are phylogenetically conserved and have evolved multiple times. We also explored environmental drivers of the dominant/nondominant disparity. We found different assembly patterns for dominants and nondominants, consistent with asymmetries in assembly mechanisms. Among the different postulated mechanisms, our results suggest two complementary hypotheses seldom explored: (1) Nondominant species include lineages adapted to thrive in the environment generated by dominant species. (2) Even when dominant species reduce resources to nondominant ones, dominant species could have a stronger positive effect on some nondominants by ameliorating environmental stressors affecting them, than by depleting resources and increasing the environmental stress to those nondominants. These results show that the dominant/nondominant asymmetry has ecological and evolutionary consequences fundamental to understand plant communities.

11.
Ecology ; 102(2): e03218, 2021 02.
Article de Anglais | MEDLINE | ID: mdl-33058176

RÉSUMÉ

Human activities are enriching many of Earth's ecosystems with biologically limiting mineral nutrients such as nitrogen (N) and phosphorus (P). In grasslands, this enrichment generally reduces plant diversity and increases productivity. The widely demonstrated positive effect of diversity on productivity suggests a potential negative feedback, whereby nutrient-induced declines in diversity reduce the initial gains in productivity arising from nutrient enrichment. In addition, plant productivity and diversity can be inhibited by accumulations of dead biomass, which may be altered by nutrient enrichment. Over longer time frames, nutrient addition may increase soil fertility by increasing soil organic matter and nutrient pools. We examined the effects of 5-11 yr of nutrient addition at 47 grasslands in 12 countries. Nutrient enrichment increased aboveground live biomass and reduced plant diversity at nearly all sites, and these effects became stronger over time. We did not find evidence that nutrient-induced losses of diversity reduced the positive effects of nutrients on biomass; however, nutrient effects on live biomass increased more slowly at sites where litter was also increasing, regardless of plant diversity. This work suggests that short-term experiments may underestimate the long-term nutrient enrichment effects on global grassland ecosystems.


Sujet(s)
Biodiversité , Écosystème , Biomasse , Prairie , Azote/analyse , Nutriments , Sol
12.
Nat Commun ; 11(1): 5375, 2020 10 23.
Article de Anglais | MEDLINE | ID: mdl-33097736

RÉSUMÉ

Eutrophication is a widespread environmental change that usually reduces the stabilizing effect of plant diversity on productivity in local communities. Whether this effect is scale dependent remains to be elucidated. Here, we determine the relationship between plant diversity and temporal stability of productivity for 243 plant communities from 42 grasslands across the globe and quantify the effect of chronic fertilization on these relationships. Unfertilized local communities with more plant species exhibit greater asynchronous dynamics among species in response to natural environmental fluctuations, resulting in greater local stability (alpha stability). Moreover, neighborhood communities that have greater spatial variation in plant species composition within sites (higher beta diversity) have greater spatial asynchrony of productivity among communities, resulting in greater stability at the larger scale (gamma stability). Importantly, fertilization consistently weakens the contribution of plant diversity to both of these stabilizing mechanisms, thus diminishing the positive effect of biodiversity on stability at differing spatial scales. Our findings suggest that preserving grassland functional stability requires conservation of plant diversity within and among ecological communities.


Sujet(s)
Biote , Écosystème , Eutrophisation , Prairie , Biodiversité , Biomasse , Fécondation , Modèles biologiques , Plantes
13.
Glob Chang Biol ; 26(8): 4572-4582, 2020 08.
Article de Anglais | MEDLINE | ID: mdl-32520438

RÉSUMÉ

Microbial processing of aggregate-unprotected organic matter inputs is key for soil fertility, long-term ecosystem carbon and nutrient sequestration and sustainable agriculture. We investigated the effects of adding multiple nutrients (nitrogen, phosphorus and potassium plus nine essential macro- and micro-nutrients) on decomposition and biochemical transformation of standard plant materials buried in 21 grasslands from four continents. Addition of multiple nutrients weakly but consistently increased decomposition and biochemical transformation of plant remains during the peak-season, concurrent with changes in microbial exoenzymatic activity. Higher mean annual precipitation and lower mean annual temperature were the main climatic drivers of higher decomposition rates, while biochemical transformation of plant remains was negatively related to temperature of the wettest quarter. Nutrients enhanced decomposition most at cool, high rainfall sites, indicating that in a warmer and drier future fertilized grassland soils will have an even more limited potential for microbial processing of plant remains.


Sujet(s)
Écosystème , Prairie , Carbone , Azote/analyse , Nutriments , Sol
14.
Ecol Lett ; 21(9): 1364-1371, 2018 09.
Article de Anglais | MEDLINE | ID: mdl-29952114

RÉSUMÉ

Environmental change can result in substantial shifts in community composition. The associated immigration and extinction events are likely constrained by the spatial distribution of species. Still, studies on environmental change typically quantify biotic responses at single spatial (time series within a single plot) or temporal (spatial beta diversity at single time points) scales, ignoring their potential interdependence. Here, we use data from a global network of grassland experiments to determine how turnover responses to two major forms of environmental change - fertilisation and herbivore loss - are affected by species pool size and spatial compositional heterogeneity. Fertilisation led to higher rates of local extinction, whereas turnover in herbivore exclusion plots was driven by species replacement. Overall, sites with more spatially heterogeneous composition showed significantly higher rates of annual turnover, independent of species pool size and treatment. Taking into account spatial biodiversity aspects will therefore improve our understanding of consequences of global and anthropogenic change on community dynamics.


Sujet(s)
Herbivorie , Plantes , Biodiversité
15.
Ecology ; 99(6): 1411-1418, 2018 06.
Article de Anglais | MEDLINE | ID: mdl-29645089

RÉSUMÉ

Microbial community assembly is affected by a combination of forces that act simultaneously, but the mechanisms underpinning their relative influences remain elusive. This gap strongly limits our ability to predict human impacts on microbial communities and the processes they regulate. Here, we experimentally demonstrate that increased salinity stress, food web alteration and nutrient loading interact to drive outcomes in salt marsh fungal leaf communities. Both salinity stress and food web alterations drove communities to deterministically diverge, resulting in distinct fungal communities. Increased nutrient loads, nevertheless, partially suppressed the influence of other factors as determinants of fungal assembly. Using a null model approach, we found that increased nutrient loads enhanced the relative importance of stochastic over deterministic divergent processes; without increased nutrient loads, samples from different treatments showed a relatively (deterministic) divergent community assembly whereas increased nutrient loads drove the system to more stochastic assemblies, suppressing the effect of other treatments. These results demonstrate that common anthropogenic modifications can interact to control fungal community assembly. Furthermore, our results suggest that when the environmental conditions are spatially heterogeneous (as in our case, caused by specific combinations of experimental treatments), increased stochasticity caused by greater nutrient inputs can reduce the importance of deterministic filters that otherwise caused divergence, thus driving to microbial community homogenization.


Sujet(s)
Microbiote , Zones humides , Champignons , Humains , Azote , Salinité
16.
Nat Ecol Evol ; 2(1): 50-56, 2018 Jan.
Article de Anglais | MEDLINE | ID: mdl-29203922

RÉSUMÉ

Biodiversity is declining in many local communities while also becoming increasingly homogenized across space. Experiments show that local plant species loss reduces ecosystem functioning and services, but the role of spatial homogenization of community composition and the potential interaction between diversity at different scales in maintaining ecosystem functioning remains unclear, especially when many functions are considered (ecosystem multifunctionality). We present an analysis of eight ecosystem functions measured in 65 grasslands worldwide. We find that more diverse grasslands-those with both species-rich local communities (α-diversity) and large compositional differences among localities (ß-diversity)-had higher levels of multifunctionality. Moreover, α- and ß-diversity synergistically affected multifunctionality, with higher levels of diversity at one scale amplifying the contribution to ecological functions at the other scale. The identity of species influencing ecosystem functioning differed among functions and across local communities, explaining why more diverse grasslands maintained greater functionality when more functions and localities were considered. These results were robust to variation in environmental drivers. Our findings reveal that plant diversity, at both local and landscape scales, contributes to the maintenance of multiple ecosystem services provided by grasslands. Preserving ecosystem functioning therefore requires conservation of biodiversity both within and among ecological communities.


Sujet(s)
Biodiversité , Prairie , Plantes , Modèles biologiques , Analyse spatiale
17.
Ecology ; 98(12): 3022-3033, 2017 Dec.
Article de Anglais | MEDLINE | ID: mdl-28940315

RÉSUMÉ

Increases in nutrient availability and alterations to mammalian herbivore communities are a hallmark of the Anthropocene, with consequences for the primary producer communities in many ecosystems. While progress has advanced understanding of plant community responses to these perturbations, the consequences for energy flow to higher trophic levels in the form of secondary production are less well understood. We quantified arthropod biomass after manipulating soil nutrient availability and wild mammalian herbivory, using identical methods across 13 temperate grasslands. Of experimental increases in nitrogen, phosphorus, and potassium, only treatments including nitrogen resulted in significantly increased arthropod biomass. Wild mammalian herbivore removal had a marginal, negative effect on arthropod biomass, with no interaction with nutrient availability. Path analysis including all sites implicated nutrient content of the primary producers as a driver of increased arthropod mean size, which we confirmed using 10 sites for which we had foliar nutrient data. Plant biomass and physical structure mediated the increase in arthropod abundance, while the nitrogen treatments accounted for additional variation not explained by our measured plant variables. The mean size of arthropod individuals was 2.5 times more influential on the plot-level total arthropod biomass than was the number of individuals. The eutrophication of grasslands through human activity, especially nitrogen deposition, thus may contribute to higher production of arthropod consumers through increases in nutrient availability across trophic levels.


Sujet(s)
Eutrophisation , Prairie , Herbivorie , Mammifères/physiologie , Animaux , Arthropodes , Biomasse , Écosystème , Humains , Azote
18.
Ecology ; 98(4): 961-970, 2017 Apr.
Article de Anglais | MEDLINE | ID: mdl-28112395

RÉSUMÉ

Both bottom-up (e.g., nutrients) and top-down (e.g., herbivory) forces structure plant communities, but it remains unclear how they affect the relative importance of stochastic and deterministic processes in plant community assembly. Moreover, different-sized herbivores have been shown to have contrasting effects on community structure and function, but their effects on the processes governing community assembly (i.e., how they generate the impacts on structure) remain largely unknown. We evaluated the influence of bottom-up and top-down forces on the relative importance of deterministic and stochastic processes during plant community assembly. We used the data of a 7-yr factorial experiment manipulating nutrient availability (ambient and increased) and the presence of vertebrate herbivores (>1 kg) of different body size in a floodplain grassland in The Netherlands. We used a null model that describes a community composition expected by chance (i.e., stochastic assembly) and compared the plant community composition in the different treatments with this null model (the larger the difference, the more deterministically assembled). Our results showed that herbivore exclusion promoted a more stochastic plant community assembly, whereas increased nutrients played a relatively minor role in determining the relative importance of stochasticity in community assembly. Large herbivores facilitated intermediate-sized mammal herbivores, resulting in synergistic effects of enhanced grazing pressure and a more deterministic and convergent plant community assembly. We conclude that herbivores can act as strong deterministic forces during community assembly in natural systems. Our results also reveal that although large- and intermediate-sized mammal herbivores often have contrasting effects on many community and ecosystem properties, they can also synergistically homogenize plant communities.


Sujet(s)
Biodiversité , Prairie , Herbivorie , Plantes/classification , Animaux , Écosystème , Pays-Bas
19.
Article de Anglais | MEDLINE | ID: mdl-27114575

RÉSUMÉ

Ecosystem eutrophication often increases domination by non-natives and causes displacement of native taxa. However, variation in environmental conditions may affect the outcome of interactions between native and non-native taxa in environments where nutrient supply is elevated. We examined the interactive effects of eutrophication, climate variability and climate average conditions on the success of native and non-native plant species using experimental nutrient manipulations replicated at 32 grassland sites on four continents. We hypothesized that effects of nutrient addition would be greatest where climate was stable and benign, owing to reduced niche partitioning. We found that the abundance of non-native species increased with nutrient addition independent of climate; however, nutrient addition increased non-native species richness and decreased native species richness, with these effects dampened in warmer or wetter sites. Eutrophication also altered the time scale in which grassland invasion responded to climate, decreasing the importance of long-term climate and increasing that of annual climate. Thus, climatic conditions mediate the responses of native and non-native flora to nutrient enrichment. Our results suggest that the negative effect of nutrient addition on native abundance is decoupled from its effect on richness, and reduces the time scale of the links between climate and compositional change.


Sujet(s)
Biote/physiologie , Climat , Eutrophisation , Prairie , Espèce introduite , Changement climatique , Micronutriments/métabolisme , Azote/métabolisme , Phosphore/métabolisme , Phénomènes physiologiques des plantes , Potassium/métabolisme
20.
Ecology ; 96(8): 2147-56, 2015 Aug.
Article de Anglais | MEDLINE | ID: mdl-26405740

RÉSUMÉ

Bottom-up and top-down effects act together to exert strong control over plant growth and reproduction, but how physical stress modifies those interactive forces remains unclear. Even though empirical evidence is scarce, theory predicts that the importance of both top-down- and bottom-up forces may decrease as physical stress increases. Here, we experimentally evaluate in the field the separate and interactive effect of salinity, nutrient availability, and crab herbivory on plant above- and belowground biomass, as well as on sexual and clonal reproduction in the salt marsh plant Spartina densiflora. Results show that the outcome of the interaction between nutrient availability and herbivory is highly context dependent, not only varying with the abiotic context (i.e., with or without increased salinity stress), but also with the dependent variable considered. Contrary to theoretical predictions, our results show that, consistently across different measured variables, salinity stress did not cancel bottom-up (i.e., nutrients) or top-down (i.e., consumers) control, but has additive effects. Our results support emerging theory by highlighting that, under many conditions, physical stress can act additively with, or even stimulate, consumer control, especially in cases where the physical stress is only experienced by basal levels of the trophic chain. Abiotic stress, as well as bottom-up and top-down factors, can affect salt marsh structure and function not only by affecting biomass production but also by having other indirect effects, such as changing patterns in plant biomass allocation and reproduction.


Sujet(s)
Écosystème , Développement des plantes/physiologie , Stress physiologique/physiologie , Animaux , Argentine , Biomasse , Brachyura/physiologie , Herbivorie , Tiges de plante , Reproduction , Salinité , Eau de mer
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...