Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 11 de 11
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Tissue Cell ; 88: 102420, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38795506

RÉSUMÉ

Peripheral and central neuropathies frequently complicate worldwide diabetes. Compared to peripheral neuropathy, central neuropathy didn`t gain a major research interest. Angiotensin II is reported to be involved in diabetic neuropathic pain but its role in the central pathological changes in the spinal cord is not clear. Here, we study the role of Losartan; an Angiotensin II receptor 1 (AT1) antagonist in suppression of the diabetes-induced changes in the spinal cord. Three groups of rats were applied; a negative control group, a streptozotocin (STZ) diabetic group, and a group receiving STZ and Losartan. After two months, the pathological alteration in the spinal cord was investigated, and an immunohistochemical study was performed for neuronal, astrocytic, and microglial markers; nuclear protein (NeuN), Glial fibrillary acidic protein (GFAP), and Ionized calcium-binding adaptor molecule 1 (Iba1), respectively, and for an apoptosis marker; caspase-3, and the inflammatory marker; nuclear factor kappa B (NF-kB) signaling, heme oxygenase-1 (HO-1) and nuclear factor erythroid 2-related factor 2 (Nrf2); physiological antioxidant system. The results showed that Losartan caused recovery of spinal cord changes, by inhibiting the microglial and astrocytic activation, suppressing neuronal apoptosis and NF-kB expression with activation of Nrf2/HO-1 (P<0.0005). It is suggested, herein, that Losartan can suppress diabetes-induced glial activation, inflammation, neuronal apoptosis, and oxidative stress in the spinal cord; the mechanisms that may underlie the role of AT1 antagonism in suppressing diabetic neuropathic pain.


Sujet(s)
Antagonistes du récepteur de type 1 de l'angiotensine-II , Diabète expérimental , Losartan , Facteur-2 apparenté à NF-E2 , Moelle spinale , Animaux , Moelle spinale/anatomopathologie , Moelle spinale/métabolisme , Moelle spinale/effets des médicaments et des substances chimiques , Diabète expérimental/anatomopathologie , Diabète expérimental/métabolisme , Diabète expérimental/traitement médicamenteux , Diabète expérimental/complications , Facteur-2 apparenté à NF-E2/métabolisme , Antagonistes du récepteur de type 1 de l'angiotensine-II/pharmacologie , Rats , Mâle , Losartan/pharmacologie , Heme oxygenase-1/métabolisme , Neuropathies diabétiques/anatomopathologie , Neuropathies diabétiques/métabolisme , Neuropathies diabétiques/traitement médicamenteux , Transduction du signal/effets des médicaments et des substances chimiques , Rat Wistar , Apoptose/effets des médicaments et des substances chimiques , Facteur de transcription NF-kappa B/métabolisme , Stress oxydatif/effets des médicaments et des substances chimiques
2.
Front Pharmacol ; 15: 1384834, 2024.
Article de Anglais | MEDLINE | ID: mdl-38751780

RÉSUMÉ

Introduction: Administration of high doses of acetaminophen (APAP) results in liver injury. Oxidative stress and iron overload play roles in the pathogenesis of APAP-induced hepatotoxicity. The present study assessed the potential hepatoprotective effects of phytic acid (PA), a natural antioxidant and iron chelator, on APAP-induced hepatotoxicity and the possible underlying mechanism through its effects on CYP2E1 gene expression, iron homeostasis, oxidative stress, and SIRT-1 expression levels. Methods: Twenty-four adult male albino mice were used in this study. Mice were divided into four groups (six mice in each group): control, APAP-treated, PA-treated and APAP + PA-treated groups. Liver function tests, serum and liver tissue iron load were evaluated in all the study groups. Hepatic tissue homogenates were used to detect oxidative stress markers, including malondialdehyde (MDA) and reduced glutathione (GSH). Histological hepatic evaluation and immunohistochemistry of SIRT-1 were performed. Quantitative real-time PCR was used for the assessment of CYP2E1 and SIRT-1 gene expressions. APAP-induced biochemical and structural hepatic changes were reported. Results: PA administration showed beneficial effects on APAP-induced hepatotoxicity through improvements in liver functions, decreased CYP2E1 gene expression, decreased serum and liver iron load, decreased MDA, increased GSH, increased SIRT-1 expression level and improvement in hepatic architecture. Conclusion: Conclusively, PA can be considered a potential compound that can attenuate acetaminophen-induced hepatotoxicity through its role as an iron chelator and antioxidant, as well as the up-regulation of SIRT-1 and down-regulation of CYP2E1.

3.
Tissue Cell ; 88: 102385, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38678740

RÉSUMÉ

BACKGROUND: Metabolic syndrome (MetS) is commonly associated with increased risk of cardiac disease that affects a large number of world populations. OBJECTIVE: This research attempted to investigate the efficacy of fennel seeds extract (FSE) in preventing development of cardiac dysfunction in rats on fructose enriched diet for 3 months, as a model of MetS. MATERIALS & METHODS: Thirty adult Wistar male rats (160-170 g) were assigned into 5 groups including control, vehicle, FSE (200 mg/kg BW) and fructose (60%) fed rats with and without FSE. Following the last treatment, blood pressure, ECG and heart rate were measured. Next, blood and cardiac tissues were taken for biochemical and histological investigations. RESULTS: Feeding fructose exhibited characteristic features of MetS involving, hypertension, abnormal ECG, elevated heart rate, serum glucose, insulin, lipids and insulin resistance, accompanied by abdominal obesity, cardiac hypertrophy and hyperuricemia. Fructose fed rats also showed significant reduction in cardiac antioxidants (GSH, SOD, CAT) with elevation in oxidative stress indices (NADPH oxidase, O2.-, H2O2, MDA, PCO), NF-κß, pro-inflammatory cytokines (TNF-α, IL-1ß, IL-6), adhesion molecules (ICAM-1, VCAM-1) and serum cardiac biomarkers (AST, LDH, CK-MB, cTn-I). Histopathological changes evidenced by destruction of cardiac myofibrils, cytoplasmic vacuolization, and aggregation of inflammatory cells were also detected. Consumption of FSE showed high ability to alleviate fructose-induced hypertension, ECG abnormalities, cardiac hypertrophy, metabolic alterations, oxidative stress, inflammation and histological injury. CONCLUSION: Findings could suggest FSE as a complementary supplement for preventing MetS and associated cardiac outcomes. However, well controlled clinical studies are still needed.


Sujet(s)
Modèles animaux de maladie humaine , Foeniculum , Fructose , Hyperuricémie , Inflammation , Syndrome métabolique X , Facteur de transcription NF-kappa B , Extraits de plantes , Rat Wistar , Graines , Animaux , Syndrome métabolique X/métabolisme , Syndrome métabolique X/anatomopathologie , Syndrome métabolique X/induit chimiquement , Syndrome métabolique X/traitement médicamenteux , Fructose/effets indésirables , Extraits de plantes/pharmacologie , Mâle , Facteur de transcription NF-kappa B/métabolisme , Graines/composition chimique , Rats , Hyperuricémie/induit chimiquement , Hyperuricémie/traitement médicamenteux , Foeniculum/composition chimique , Inflammation/anatomopathologie , Inflammation/métabolisme , Stress oxydatif/effets des médicaments et des substances chimiques , Transduction du signal/effets des médicaments et des substances chimiques
4.
Tissue Cell ; 88: 102327, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38493756

RÉSUMÉ

BACKGROUND: Ulcerative colitis is a risk factor for colorectal carcinoma. Different mechanisms are related to colitis like apoptosis and hyperproliferation. Moringa oleifera leaves extract (MO) provides a promising option to overcome the risk. PURPOSE: To examine the colonic changes in a rat model of colitis induced by sodium nitrate (SN) and study the effects of MO. STUDY DESIGN: Eight adult male rats were allocated in each of the three group; control (distilled water), SN (100 mg/kg/day, orally via gastric gavage), and SN + MO (100 mg/kg/day, orally via gastric gavage). METHODS: Body weight was measured after the end of the experiment. Colonic homogenates were tested for levels of oxidative stress indicators. Immunohistochemistry for P53, PCNA and Ki-67 was performed. Fresh colon specimens were used for quantitative real-time PCR for assessment of P53, PCNA and Ki-67 gene expression. RESULTS: SN group revealed a significant decreased weight (p = 0.002). MDA and NO levels were higher with SN administration than with MO co-administration (p= 0.04, 0.01 respectively). GSH level was reduced in SN group (p = 0.02) and significantly increased with MO intake (p = 0.04). SN-induced colonic destructive changes were reversed with MO. P53, PCNA and Ki-67 levels of gene expression were reduced in SN + MO group than SN group (P = 0.007, 0.02, 0.001 respectively). CONCLUSION: MO protected the colonic mucosa against SN-induced changes regulating apoptosis, and cell proliferation.


Sujet(s)
Antigène KI-67 , Moringa oleifera , Nitrates , Extraits de plantes , Feuilles de plante , Antigène nucléaire de prolifération cellulaire , Protéine p53 suppresseur de tumeur , Animaux , Moringa oleifera/composition chimique , Protéine p53 suppresseur de tumeur/métabolisme , Antigène KI-67/métabolisme , Antigène nucléaire de prolifération cellulaire/métabolisme , Extraits de plantes/pharmacologie , Mâle , Feuilles de plante/composition chimique , Rats , Nitrates/métabolisme , Marqueurs biologiques/métabolisme , Colite/induit chimiquement , Colite/métabolisme , Colite/anatomopathologie , Modèles animaux de maladie humaine , Côlon/effets des médicaments et des substances chimiques , Côlon/métabolisme , Côlon/anatomopathologie , Stress oxydatif/effets des médicaments et des substances chimiques
5.
Tissue Cell ; 84: 102192, 2023 Oct.
Article de Anglais | MEDLINE | ID: mdl-37579617

RÉSUMÉ

Aging is a highly complicated natural process. Brain aging is associated with remarkable neurodegenerative changes and oxidative damage. Whey protein (WP) has been mentioned to have an antioxidant property. Nuclear factor erythrogen-2 associated factor 2 (Nrf2) signaling pathway is an antioxidant defense system. Nrf2 activity declines with age so, its activation could be a promising therapeutic strategy for aging. This study aimed to explore the anti-aging role of WP against D-galactose (D-gal) induced age-related degenerative changes and oxidative damage in the prefrontal cortex (PFC) and investigate its underlying mechanisms. Forty adult male rats were divided into 4 groups; control, WP group received WP (28.77 mg/kg/day) by gastric tube on the 4th experimental week; D-gal (model group) received D-gal (300 mg/kg/day) intraperitoneally for 8 weeks and D-gal +WP group received WP on the 4th week of D-gal treatment. Specimens from PFC were obtained for biochemical, histological, immunohistochemical and western blot analysis. WP treatment in D-gal +WP group reduced lipid peroxidation, enhanced antioxidant enzyme activities, decreased advanced glycation end products level and improved the histological and ultrastructural alterations. Moreover, the number of neurons expressed the senescence marker; p21 and percentage area of the astrocytic marker; glial fibrillary acidic protein were significantly reduced. WP also enhanced Nrf2 pathway and its downstream targets; heme oxygenase-1 and NADPH quinone oxidoreductase 1. In conclusion WP alleviates the D-gal-induced PFC aging through activating Nrf2 pathway, reducing cell senescence and gliosis. So, it may be a potential therapeutic target to retard the aging process.


Sujet(s)
Antioxydants , Facteur-2 apparenté à NF-E2 , Rats , Mâle , Animaux , Antioxydants/métabolisme , Facteur-2 apparenté à NF-E2/métabolisme , Protéines de lactosérum/pharmacologie , Protéines de lactosérum/métabolisme , Vieillissement/métabolisme , Stress oxydatif , Transduction du signal , Cortex préfrontal/métabolisme , Galactose/pharmacologie
6.
Front Mol Biosci ; 10: 1306523, 2023.
Article de Anglais | MEDLINE | ID: mdl-38357327

RÉSUMÉ

Background: High-fat diet-induced obesity is linked to suppression of aquaporins (AQPs) expression in different tissues. Both vitamin D and intermittent fasting were identified to enhance AQPs expression. In the urinary bladder, AQP-1 and AQP-3 mRNA transcripts were identified. Vitamin D has an impact on a variety of genes that encode proteins that control cell proliferation, differentiation, and death. Aim: To assess potential benefits of vitamin D and intermittent fasting (IF) and to explore alterations to the urinary bladder triggered by high-fat diet (HFD) in a rat model of obesity. Methods: Each of the 4 groups contained six adult male albino rats; control: a standard rodent chew for 12 weeks, HFD: HFD and fructose were administered orally via gastric gavage for 12 weeks, and vitamin D: HFD and fructose were administered orally for 8 weeks, then 4 weeks of intraperitoneal injection of vitamin D (5 microns/Kg/2 days) and IF group: Received intraperitoneal injections of vitamin D (5 microns/Kg/2 days) for 4 weeks after consumption of HFD and fructose orally for 8 weeks. The serum lipid profile was conducted at end of the experiment. In the bladder homogenates, the levels of oxidative stress indicators were assessed. Quantitative real-time PCR was performed on recently collected bladder samples. AQP-1 and AQP-3 immunohistochemistry was done. Results: When compared to the HFD group, the vitamin D and IF groups both demonstrated a substantial improvement in histopathological, immunohistochemical, biochemical, and molecular markers. Conclusion: In all examined parameters, IF exceeded vitamin D as a preventive factor for the urinary bladder deterioration.

7.
Front Neuroanat ; 16: 1012422, 2022.
Article de Anglais | MEDLINE | ID: mdl-36312298

RÉSUMÉ

Alzheimer's disease (AD) is a neurodegenerative disorder characterized by gradual cognitive decline. Strong antioxidants that inhibit free radicals, such as polyphenols, reduce the likelihood of developing oxidative stress-related degenerative diseases such as AD. Naringin, a flavonoid found in citrus fruit shown to be neuroprotective, reduce oxidative damage and minimize histopathological changes caused by ischemic reperfusion, enhance the long-term memory in AD animal models. This work aimed to comprehend the role of naringin in the defense of the cerebellum against aluminum chloride (AlCl3)-induced AD in rats by investigating the behavioral, neurochemical, immunohistochemical, and molecular mechanisms that underpin its possible neuroprotective effects. Twenty-four adult albino rats were divided into four groups (n = 6/group): (i) Control (C) received saline per oral (p.o.), (ii) Naringin(N)-received naringin (100 mg/kg/d) p.o, (iii) AlCl3-recived AlCl3 (100 mg/kg/d) p.o and (iv) AlCl3 + Naringin (AlCl3 + N) received both AlCl3 and naringin p.o for 21 days. Behavioral tests showed an increase in the time to reach the platform in Morris water maze, indicating memory impairment in the AlCl3-treated group, but co-administration of naringin showed significant improvement. The Rotarod test demonstrated a decrease in muscle coordination in the AlCl3-treated group, while it was improved in the AlCl3 + N group. Neurochemical analysis of the hippocampus and cerebellum revealed that AlCl3 significantly increased lipid peroxidation and oxidative stress and decreased levels of reduced glutathione. Administration of naringin ameliorated these neurochemical changes via its antioxidant properties. Cerebellar immunohistochemical expression for microtubule assembly (tau protein) and oxidative stress (iNOS) increased in A1C13-treated group. On the other hand, the expression of the autophagic marker (LC3) in the cerebellum showed a marked decline in AlCl3-treated group. Western blot analysis confirmed the cerebellar immunohistochemical findings. Collectively, these findings suggested that naringin could contribute to the combat of oxidative and autophagic stress in the cerebellum of AlCl3-induced AD.

8.
Cureus ; 14(3): e23051, 2022 Mar.
Article de Anglais | MEDLINE | ID: mdl-35464563

RÉSUMÉ

BACKGROUND: The deltoid ligament (DL) is a strong triangle-shaped ligament with a complex fascicular arrangement. Understanding the morphological and/or functional typing of the DL structure is hindered by a paucity of clear, quantitative, and reproducible data and is further complicated by inconsistent terminology use. The aim of this work was to describe different components of the DL using strict identification criteria. METHODS: Thirty embalmed cadaveric ankles of both sides were dissected on all sides and studied by using gross examination, micro-dissection, and light microscopy by tracing the fascicular pattern of each under 6X magnification. RESULTS: Six ligamentous bands were identified. The tibiotalocalcaneal ligament (TTC) and the superficial posterior tibiotalar ligament (sPTT) were two superficial variants and the anterior tibiotalar ligament (ATT), the anterior tibiotalonavicular ligament (ATTN), the intermediate tibiotalar ligament (ITT), and the deep posterior tibiotalar ligament (dPTT) were four deep variants. The TTC was identified in all 30 embalmed cadaveric specimens. Five additional ligamentous bands (ITT, sPTT, dPTT, ATT, and ATTN) were variable findings in the current cohort. CONCLUSION: This study presents six ligamentous bands as a regular finding and five additional ligamentous bands as variable findings in the dissected specimen. This data could assist in the radiological diagnosis of DL injuries and advanced procedures related to its surgical repair and reconstruction.

9.
Reprod Sci ; 28(10): 2916-2928, 2021 10.
Article de Anglais | MEDLINE | ID: mdl-34008157

RÉSUMÉ

Cryptorchidism causes spermatogenic failure and reduced serum androgen levels, as well as testicular oedema and fibrosis, which are hallmarks of inflammation. However, the role of inflammation and the effects of cryptorchidism on Sertoli cell and Leydig cell function at the molecular level remain ill-defined. Bilateral cryptorchidism was surgically induced in adult rats for 7 and 14 weeks. Testis weights decreased to 40% of normal within 7 weeks, due to loss of all developing spermatogenic cells except spermatogonia, but did not decrease further at 14 weeks. Serum FSH and LH were increased at both time points, consistent with a loss of feedback by inhibin and testosterone. This damage was accompanied by progressive accumulation of interstitial fluid and peritubular fibrosis, and a progressive decline of several critical Sertoli cell genes (Sox9, Inha (inhbin α-subunit), Cldn11 (claudin 11), Gja1 (connexin 43), and Il1a (interleukin-1α)) and the Leydig cell steroidogenic enzymes, Cyp11a1, Hsd3b1, and Hs17b3. Activin B and the activin-binding protein, follistatin, also declined, but the intratesticular concentration of activin A, which is a regulator of inflammatory responses, was largely unaffected at either time point. Expression of genes involved in inflammation (Tnf, Il10, Il1b, Mcp1) and fibrosis (Acta2, Col1a1) were considerably elevated at both time points. These data indicate that induction of experimental cryptorchidism, which causes complete failure of spermatogenesis in the adult rat, also induces chronic testicular inflammation, manifesting in oedema and fibrosis, and a progressive decline of Sertoli and Leydig cell gene expression and function.


Sujet(s)
Cryptorchidie/métabolisme , Évolution de la maladie , Médiateurs de l'inflammation/métabolisme , Cellules de Leydig/métabolisme , Cellules de Sertoli/métabolisme , Animaux , Cryptorchidie/anatomopathologie , Cellules de Leydig/anatomopathologie , Mâle , Rats , Rat Sprague-Dawley , Cellules de Sertoli/anatomopathologie , Testicule/métabolisme , Testicule/anatomopathologie
10.
Mol Cell Endocrinol ; 527: 111216, 2021 05 01.
Article de Anglais | MEDLINE | ID: mdl-33639219

RÉSUMÉ

The testis is a temperature-sensitive organ that needs to be maintained 2-7 °C below core body temperature to ensure the production of normal sperm. Failure to maintain testicular temperature in mammals impairs spermatogenesis and leads to low sperm counts, poor sperm motility and abnormal sperm morphology in the ejaculate. This review discusses the recent knowledge on the response of testicular somatic cells to heat stress and, specifically, regarding the relevant contributions of heat, germ cell depletion and inflammatory reactions on the functions of Sertoli and Leydig cells. It also outlines mechanisms of testicular thermoregulation, as well as the thermogenic factors that impact testicular function.


Sujet(s)
Cellules de Leydig/métabolisme , Cellules de Sertoli/métabolisme , Mobilité des spermatozoïdes , Spermatogenèse , Spermatozoïdes/métabolisme , Animaux , Réaction de choc thermique , Humains , Mâle
11.
Mol Cell Endocrinol ; 498: 110546, 2019 12 01.
Article de Anglais | MEDLINE | ID: mdl-31422101

RÉSUMÉ

Heat reversibly disrupts spermatogenesis, but the effects on Sertoli cell (SC) function and inhibin/activin-related proteins are less well-defined. Adult rat testis weights decreased by 40% within 2 weeks after heat-treatment (43 °C, 15 min), due to loss of pachytene spermatocytes and round spermatids. Coincident effects were reduced SC nuclear volume at one week and >50% reduction in expression of several critical SC genes (Inha, Cld11, Gja1, Tjp1, Cldn3) by 2 weeks. Leydig cell steroidogenic enzymes, Cyp11a1, Hsd3b1, were also reduced. Activin gene expression was unaffected at this time, but expression of the activin-binding protein, follistatin (Fst), increased >2-fold. At 4-8 weeks, coincident with the recovery of spermatocytes and early spermatids, but progressive loss of elongated spermatids, most SC genes had recovered; however, testicular activin A was reduced and activin B increased. At 8 weeks, serum inhibin was decreased and, consequently, serum FSH increased. Crucially, germ cell damage was not associated with a significant inflammatory response. At 14 weeks, most testicular parameters had returned to normal, but testis weights remained slightly reduced. These data indicate that, following acute heat-treatment, expression of several key Sertoli and Leydig cell genes declined in parallel with the initial loss of meiotic germ cells, whereas activins were responsive to the subsequent loss of mature spermatids, leading to an increase in testicular activin B production relative to activin A.


Sujet(s)
Activines/métabolisme , Régulation de l'expression des gènes , Température élevée/effets indésirables , Inhibines/métabolisme , Cellules de Leydig/anatomopathologie , Testicule/anatomopathologie , Activines/génétique , Animaux , Hormone folliculostimulante/métabolisme , Follistatine/génétique , Follistatine/métabolisme , Inhibines/génétique , Cellules de Leydig/métabolisme , Mâle , Rats , Rat Sprague-Dawley , Testicule/métabolisme
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...