Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 23
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Neuropsychologia ; 191: 108730, 2023 Dec 15.
Article de Anglais | MEDLINE | ID: mdl-37939871

RÉSUMÉ

EEG and eye-tracking provide complementary information when investigating language comprehension. Evidence that speech processing may be facilitated by speech prediction comes from the observation that a listener's eye gaze moves towards a referent before it is mentioned if the remainder of the spoken sentence is predictable. However, changes to the trajectory of anticipatory fixations could result from a change in prediction or an attention shift. Conversely, N400 amplitudes and concurrent spectral power provide information about the ease of word processing the moment the word is perceived. In a proof-of-principle investigation, we combined EEG and eye-tracking to study linguistic prediction in naturalistic, virtual environments. We observed increased processing, reflected in theta band power, either during verb processing - when the verb was predictive of the noun - or during noun processing - when the verb was not predictive of the noun. Alpha power was higher in response to the predictive verb and unpredictable nouns. We replicated typical effects of noun congruence but not predictability on the N400 in response to the noun. Thus, the rich visual context that accompanied speech in virtual reality influenced language processing compared to previous reports, where the visual context may have facilitated processing of unpredictable nouns. Finally, anticipatory fixations were predictive of spectral power during noun processing and the length of time fixating the target could be predicted by spectral power at verb onset, conditional on the object having been fixated. Overall, we show that combining EEG and eye-tracking provides a promising new method to answer novel research questions about the prediction of upcoming linguistic input, for example, regarding the role of extralinguistic cues in prediction during language comprehension.


Sujet(s)
Électroencéphalographie , Perception de la parole , Humains , Mâle , Femelle , Parole , Technologie d'oculométrie , Compréhension/physiologie , Potentiels évoqués , Perception de la parole/physiologie
2.
Front Psychol ; 13: 817516, 2022.
Article de Anglais | MEDLINE | ID: mdl-36092106

RÉSUMÉ

Predictive coding provides a compelling, unified theory of neural information processing, including for language. However, there is insufficient understanding of how predictive models adapt to changing contextual and environmental demands and the extent to which such adaptive processes differ between individuals. Here, we used electroencephalography (EEG) to track prediction error responses during a naturalistic language processing paradigm. In Experiment 1, 45 native speakers of English listened to a series of short passages. Via a speaker manipulation, we introduced changing intra-experimental adjective order probabilities for two-adjective noun phrases embedded within the passages and investigated whether prediction error responses adapt to reflect these intra-experimental predictive contingencies. To this end, we calculated a novel measure of speaker-based, intra-experimental surprisal ("speaker-based surprisal") as defined on a trial-by-trial basis and by clustering together adjectives with a similar meaning. N400 amplitude at the position of the critical second adjective was used as an outcome measure of prediction error. Results showed that N400 responses attuned to speaker-based surprisal over the course of the experiment, thus indicating that listeners rapidly adapt their predictive models to reflect local environmental contingencies (here: the probability of one type of adjective following another when uttered by a particular speaker). Strikingly, this occurs in spite of the wealth of prior linguistic experience that participants bring to the laboratory. Model adaptation effects were strongest for participants with a steep aperiodic (1/f) slope in resting EEG and low individual alpha frequency (IAF), with idea density (ID) showing a more complex pattern. These results were replicated in a separate sample of 40 participants in Experiment 2, which employed a highly similar design to Experiment 1. Overall, our results suggest that individuals with a steep aperiodic slope adapt their predictive models most strongly to context-specific probabilistic information. Steep aperiodic slope is thought to reflect low neural noise, which in turn may be associated with higher neural gain control and better cognitive control. Individuals with a steep aperiodic slope may thus be able to more effectively and dynamically reconfigure their prediction-related neural networks to meet current task demands. We conclude that predictive mechanisms in language are highly malleable and dynamic, reflecting both the affordances of the present environment as well as intrinsic information processing capabilities of the individual.

3.
Psychophysiology ; 59(6): e13999, 2022 06.
Article de Anglais | MEDLINE | ID: mdl-35066874

RÉSUMÉ

Decreases in oscillatory alpha- and beta-band power have been consistently found in spoken-word production. These have been linked to both motor preparation and conceptual-lexical retrieval processes. However, the observed power decreases have a broad frequency range that spans two "classic" (sensorimotor) bands: alpha and beta. It remains unclear whether alpha- and beta-band power decreases contribute independently when a spoken word is planned. Using a re-analysis of existing magnetoencephalography data, we probed whether the effects in alpha and beta bands are spatially distinct. Participants read a sentence that was either constraining or non-constraining toward the final word, which was presented as a picture. In separate blocks participants had to name the picture or score its predictability via button press. Irregular-resampling auto-spectral analysis (IRASA) was used to isolate the oscillatory activity in the alpha and beta bands from the background 1-over-f spectrum. The sources of alpha- and beta-band oscillations were localized based on the participants' individualized peak frequencies. For both tasks, alpha- and beta-power decreases overlapped in left posterior temporal and inferior parietal cortex, regions that have previously been associated with conceptual and lexical processes. The spatial distributions of the alpha and beta power effects were spatially similar in these regions to the extent we could assess it. By contrast, for left frontal regions, the spatial distributions differed between alpha and beta effects. Our results suggest that for conceptual-lexical retrieval, alpha and beta oscillations do not dissociate spatially and, thus, are distinct from the classical sensorimotor alpha and beta oscillations.


Sujet(s)
Cortex cérébral , Langage , Humains , Magnétoencéphalographie , Lobe pariétal , Lecture
4.
Sci Rep ; 11(1): 22325, 2021 11 16.
Article de Anglais | MEDLINE | ID: mdl-34785702

RÉSUMÉ

The capacity to regulate one's attention in accordance with fluctuating task demands and environmental contexts is an essential feature of adaptive behavior. Although the electrophysiological correlates of attentional processing have been extensively studied in the laboratory, relatively little is known about the way they unfold under more variable, ecologically-valid conditions. Accordingly, this study employed a 'real-world' EEG design to investigate how attentional processing varies under increasing cognitive, motor, and environmental demands. Forty-four participants were exposed to an auditory oddball task while (1) sitting in a quiet room inside the lab, (2) walking around a sports field, and (3) wayfinding across a university campus. In each condition, participants were instructed to either count or ignore oddball stimuli. While behavioral performance was similar across the lab and field conditions, oddball count accuracy was significantly reduced in the campus condition. Moreover, event-related potential components (mismatch negativity and P3) elicited in both 'real-world' settings differed significantly from those obtained under laboratory conditions. These findings demonstrate the impact of environmental factors on attentional processing during simultaneously-performed motor and cognitive tasks, highlighting the value of incorporating dynamic and unpredictable contexts within naturalistic designs.


Sujet(s)
Attention/physiologie , Électroencéphalographie , Potentiels évoqués/physiologie , Temps de réaction/physiologie , Marche à pied/physiologie , Adolescent , Adulte , Femelle , Humains , Mâle
5.
Front Psychol ; 12: 693124, 2021.
Article de Anglais | MEDLINE | ID: mdl-34603124

RÉSUMÉ

Natural conversations are characterized by short transition times between turns. This holds in particular for multi-party conversations. The short turn transitions in everyday conversations contrast sharply with the much longer speech onset latencies observed in laboratory studies where speakers respond to spoken utterances. There are many factors that facilitate speech production in conversational compared to laboratory settings. Here we highlight one of them, the impact of competition for turns. In multi-party conversations, speakers often compete for turns. In quantitative corpus analyses of multi-party conversation, the fastest response determines the recorded turn transition time. In contrast, in dyadic conversations such competition for turns is much less likely to arise, and in laboratory experiments with individual participants it does not arise at all. Therefore, all responses tend to be recorded. Thus, competition for turns may reduce the recorded mean turn transition times in multi-party conversations for a simple statistical reason: slow responses are not included in the means. We report two studies illustrating this point. We first report the results of simulations showing how much the response times in a laboratory experiment would be reduced if, for each trial, instead of recording all responses, only the fastest responses of several participants responding independently on the trial were recorded. We then present results from a quantitative corpus analysis comparing turn transition times in dyadic and triadic conversations. There was no significant group size effect in question-response transition times, where the present speaker often selects the next one, thus reducing competition between speakers. But, as predicted, triads showed shorter turn transition times than dyads for the remaining turn transitions, where competition for the floor was more likely to arise. Together, these data show that turn transition times in conversation should be interpreted in the context of group size, turn transition type, and social setting.

6.
Neuropsychologia ; 148: 107660, 2020 11.
Article de Anglais | MEDLINE | ID: mdl-33075330

RÉSUMÉ

Alpha-band oscillatory activity is involved in modulating memory and attention. However, few studies have investigated individual differences in oscillatory activity during the encoding of emotional memory, particularly in sleep paradigms where sleep is thought to play an active role in memory consolidation. The current study aimed to address the question of whether individual alpha frequency (IAF) modulates the consolidation of declarative memory across periods of sleep and wake. 22 participants aged 18-41 years (mean age = 25.77) viewed 120 emotionally valenced images (positive, negative, neutral) and completed a baseline memory task before a 2hr afternoon sleep opportunity and an equivalent period of wake. Following the sleep and wake conditions, participants were required to distinguish between 120 learned (target) images and 120 new (distractor) images. This method allowed us to delineate the role of different oscillatory components of sleep and wake states in the emotional modulation of memory. Linear mixed-effects models revealed interactions between IAF, rapid eye movement sleep theta power, and slow-wave sleep slow oscillatory density on memory outcomes. These results highlight the importance of individual factors in the EEG in modulating oscillatory-related memory consolidation and subsequent behavioural outcomes and test predictions proposed by models of sleep-based memory consolidation.


Sujet(s)
Consolidation de la mémoire , Adulte , Émotions , Humains , Apprentissage , Mémoire , Sommeil
7.
J Neurosci ; 40(49): 9467-9475, 2020 12 02.
Article de Anglais | MEDLINE | ID: mdl-33097640

RÉSUMÉ

Neural oscillations track linguistic information during speech comprehension (Ding et al., 2016; Keitel et al., 2018), and are known to be modulated by acoustic landmarks and speech intelligibility (Doelling et al., 2014; Zoefel and VanRullen, 2015). However, studies investigating linguistic tracking have either relied on non-naturalistic isochronous stimuli or failed to fully control for prosody. Therefore, it is still unclear whether low-frequency activity tracks linguistic structure during natural speech, where linguistic structure does not follow such a palpable temporal pattern. Here, we measured electroencephalography (EEG) and manipulated the presence of semantic and syntactic information apart from the timescale of their occurrence, while carefully controlling for the acoustic-prosodic and lexical-semantic information in the signal. EEG was recorded while 29 adult native speakers (22 women, 7 men) listened to naturally spoken Dutch sentences, jabberwocky controls with morphemes and sentential prosody, word lists with lexical content but no phrase structure, and backward acoustically matched controls. Mutual information (MI) analysis revealed sensitivity to linguistic content: MI was highest for sentences at the phrasal (0.8-1.1 Hz) and lexical (1.9-2.8 Hz) timescales, suggesting that the delta-band is modulated by lexically driven combinatorial processing beyond prosody, and that linguistic content (i.e., structure and meaning) organizes neural oscillations beyond the timescale and rhythmicity of the stimulus. This pattern is consistent with neurophysiologically inspired models of language comprehension (Martin, 2016, 2020; Martin and Doumas, 2017) where oscillations encode endogenously generated linguistic content over and above exogenous or stimulus-driven timing and rhythm information.SIGNIFICANCE STATEMENT Biological systems like the brain encode their environment not only by reacting in a series of stimulus-driven responses, but by combining stimulus-driven information with endogenous, internally generated, inferential knowledge and meaning. Understanding language from speech is the human benchmark for this. Much research focuses on the purely stimulus-driven response, but here, we focus on the goal of language behavior: conveying structure and meaning. To that end, we use naturalistic stimuli that contrast acoustic-prosodic and lexical-semantic information to show that, during spoken language comprehension, oscillatory modulations reflect computations related to inferring structure and meaning from the acoustic signal. Our experiment provides the first evidence to date that compositional structure and meaning organize the oscillatory response, above and beyond prosodic and lexical controls.


Sujet(s)
Psycholinguistique , Stimulation acoustique , Adulte , Compréhension/physiologie , Rythme delta/physiologie , Électroencéphalographie , Femelle , Humains , Mâle , Processus mentaux/physiologie , Sémantique , Perception de la parole , Jeune adulte
8.
Behav Brain Res ; 384: 112536, 2020 04 20.
Article de Anglais | MEDLINE | ID: mdl-32032740

RÉSUMÉ

Previous work found that single-session focused attention meditation (FAM) enhanced motor sequence learning through increased cognitive control as a mechanistic action, although electrophysiological correlates of sequence learning performance following FAM were not investigated. We measured the persistent frontal N2 event-related potential (ERP) that is closely related to cognitive control processes and its ability to predict behavioural measures. Twenty-nine participants were randomised to one of three conditions reflecting the level of FAM experienced prior to a serial reaction time task (SRTT): 21 sessions of FAM (FAM21, N = 12), a single FAM session (FAM1, N = 9) or no preceding FAM control (Control, N = 8). Continuous 64-channel EEG were recorded during SRTT and N2 amplitudes for correct trials were extracted. Component amplitude, regions of interests, and behavioural outcomes were compared using mixed effects regression models between groups. FAM21 exhibited faster reaction time performances in majority of the learning blocks compared to FAM1 and Control. FAM21 also demonstrated a significantly more pronounced N2 over majority of anterior and central regions of interests during SRTT compared to the other groups. When N2 amplitudes were modelled against general learning performance, FAM21 showed the greatest rate of amplitude decline over anterior and central regions. The combined results suggest that FAM training provided greater cognitive control enhancement for improved general performance, and less pronounced effects for sequence-specific learning performance compared to the other groups. Importantly, FAM training facilitates dynamic modulation of cognitive control: lower levels of general learning performance was supported by greater levels of activation, whilst higher levels of general learning exhibited less activation.


Sujet(s)
Attention , Cognition/physiologie , Potentiels évoqués/physiologie , Apprentissage/physiologie , Méditation/méthodes , Performance psychomotrice/physiologie , Adolescent , Adulte , Électroencéphalographie , Femelle , Humains , Mâle , Répartition aléatoire , Temps de réaction/physiologie , Jeune adulte
9.
Psychol Rev ; 127(2): 281-304, 2020 03.
Article de Anglais | MEDLINE | ID: mdl-31886696

RÉSUMÉ

That speakers can vary their speaking rate is evident, but how they accomplish this has hardly been studied. Consider this analogy: When walking, speed can be continuously increased, within limits, but to speed up further, humans must run. Are there multiple qualitatively distinct speech "gaits" that resemble walking and running? Or is control achieved by continuous modulation of a single gait? This study investigates these possibilities through simulations of a new connectionist computational model of the cognitive process of speech production, EPONA, that borrows from Dell, Burger, and Svec's (1997) model. The model has parameters that can be adjusted to fit the temporal characteristics of speech at different speaking rates. We trained the model on a corpus of disyllabic Dutch words produced at different speaking rates. During training, different clusters of parameter values (regimes) were identified for different speaking rates. In a 1-gait system, the regimes used to achieve fast and slow speech are qualitatively similar, but quantitatively different. In a multiple gait system, there is no linear relationship between the parameter settings associated with each gait, resulting in an abrupt shift in parameter values to move from speaking slowly to speaking fast. After training, the model achieved good fits in all three speaking rates. The parameter settings associated with each speaking rate were not linearly related, suggesting the presence of cognitive gaits. Thus, we provide the first computationally explicit account of the ability to modulate the speech production system to achieve different speaking styles. (PsycINFO Database Record (c) 2020 APA, all rights reserved).


Sujet(s)
Fonction exécutive , Modèles théoriques , , Psycholinguistique , Parole , Humains
10.
Front Hum Neurosci ; 13: 285, 2019.
Article de Anglais | MEDLINE | ID: mdl-31507392

RÉSUMÉ

Although the N400 was originally discovered in a paradigm designed to elicit a P300 (Kutas and Hillyard, 1980), its relationship with the P300 and how both overlapping event-related potentials (ERPs) determine behavioral profiles is still elusive. Here we conducted an ERP (N = 20) and a multiple-response speed-accuracy tradeoff (SAT) experiment (N = 16) on distinct participant samples using an antonym paradigm (The opposite of black is white/nice/yellow with acceptability judgment). We hypothesized that SAT profiles incorporate processes of task-related decision-making (P300) and stimulus-related expectation violation (N400). We replicated previous ERP results (Roehm et al., 2007): in the correct condition (white), the expected target elicits a P300, while both expectation violations engender an N400 [reduced for related (yellow) vs. unrelated targets (nice)]. Using multivariate Bayesian mixed-effects models, we modeled the P300 and N400 responses simultaneously and found that correlation between residuals and subject-level random effects of each response window was minimal, suggesting that the components are largely independent. For the SAT data, we found that antonyms and unrelated targets had a similar slope (rate of increase in accuracy over time) and an asymptote at ceiling, while related targets showed both a lower slope and a lower asymptote, reaching only approximately 80% accuracy. Using a GLMM-based approach (Davidson and Martin, 2013), we modeled these dynamics using response time and condition as predictors. Replacing the predictor for condition with the averaged P300 and N400 amplitudes from the ERP experiment, we achieved identical model performance. We then examined the piecewise contribution of the P300 and N400 amplitudes with partial effects (see Hohenstein and Kliegl, 2015). Unsurprisingly, the P300 amplitude was the strongest contributor to the SAT-curve in the antonym condition and the N400 was the strongest contributor in the unrelated condition. In brief, this is the first demonstration of how overlapping ERP responses in one sample of participants predict behavioral SAT profiles of another sample. The P300 and N400 reflect two independent but interacting processes and the competition between these processes is reflected differently in behavioral parameters of speed and accuracy.

11.
Neuropsychologia ; 134: 107199, 2019 11.
Article de Anglais | MEDLINE | ID: mdl-31545965

RÉSUMÉ

Many theoretical accounts of prediction in language processing are based to a substantial amount on experimental evidence from electrophysiological studies measuring N400 target word modulations. A drawback of most of these studies is that lexical prediction ('top-down' activation) accounts cannot be distinguished conclusively from lexical integration ('bottom-up' activation) accounts. Here we explored whether it is possible to distinguish integration and prediction accounts of ERP N400 modulations in language processing through experimental design. By employing rhyming sentence completions, we kept the ease of integration constant across conditions that differed in word predictability only. This experimental design allowed us to attribute N400 target word effects across conditions to predictive language processing. We close by discussing recommendations for future electrophysiological studies on prediction in language.


Sujet(s)
Potentiels évoqués/physiologie , Langage , Adolescent , Adulte , Anticipation psychologique , Compréhension/physiologie , Électroencéphalographie , Phénomènes électrophysiologiques , Femelle , Humains , Tests du langage , Mâle , Plan de recherche , Jeune adulte
12.
Psychophysiology ; 56(12): e13451, 2019 12.
Article de Anglais | MEDLINE | ID: mdl-31403187

RÉSUMÉ

Baseline correction plays an important role in past and current methodological debates in ERP research (e.g., the Tanner vs. Maess debate in the Journal of Neuroscience Methods), serving as a potential alternative to strong high-pass filtering. However, the very assumptions that underlie traditional baseline also undermine it, implying a reduction in the signal-to-noise ratio. In other words, traditional baseline correction is statistically unnecessary and even undesirable. Including the baseline interval as a predictor in a GLM-based statistical approach allows the data to determine how much baseline correction is needed, including both full traditional and no baseline correction as special cases. This reduces the amount of variance in the residual error term and thus has the potential to increase statistical power.


Sujet(s)
Cortex cérébral/physiologie , Interprétation statistique de données , Électroencéphalographie/normes , Potentiels évoqués/physiologie , Modèles statistiques , Électroencéphalographie/méthodes , Humains
13.
Neuroinformatics ; 17(1): 27-42, 2019 01.
Article de Anglais | MEDLINE | ID: mdl-29721680

RÉSUMÉ

In recent years, neuroimaging research in cognitive neuroscience has increasingly used multivariate pattern analysis (MVPA) to investigate higher cognitive functions. Here we present DDTBOX, an open-source MVPA toolbox for electroencephalography (EEG) data. DDTBOX runs under MATLAB and is well integrated with the EEGLAB/ERPLAB and Fieldtrip toolboxes (Delorme and Makeig 2004; Lopez-Calderon and Luck 2014; Oostenveld et al. 2011). It trains support vector machines (SVMs) on patterns of event-related potential (ERP) amplitude data, following or preceding an event of interest, for classification or regression of experimental variables. These amplitude patterns can be extracted across space/electrodes (spatial decoding), time (temporal decoding), or both (spatiotemporal decoding). DDTBOX can also extract SVM feature weights, generate empirical chance distributions based on shuffled-labels decoding for group-level statistical testing, provide estimates of the prevalence of decodable information in the population, and perform a variety of corrections for multiple comparisons. It also includes plotting functions for single subject and group results. DDTBOX complements conventional analyses of ERP components, as subtle multivariate patterns can be detected that would be overlooked in standard analyses. It further allows for a more explorative search for information when no ERP component is known to be specifically linked to a cognitive process of interest. In summary, DDTBOX is an easy-to-use and open-source toolbox that allows for characterising the time-course of information related to various perceptual and cognitive processes. It can be applied to data from a large number of experimental paradigms and could therefore be a valuable tool for the neuroimaging community.


Sujet(s)
Encéphale/physiologie , Potentiels évoqués/physiologie , Neuroimagerie/méthodes , Traitement du signal assisté par ordinateur , Machine à vecteur de support , Électroencéphalographie/méthodes , Humains , Analyse multifactorielle
14.
Lang Speech ; 62(4): 652-680, 2019 Dec.
Article de Anglais | MEDLINE | ID: mdl-30354860

RÉSUMÉ

Previous studies of Austrian Sign Language (ÖGS) word-order variations have demonstrated the human processing system's tendency to interpret a sentence-initial (case-) ambiguous argument as the subject of the clause ("subject preference"). The electroencephalogram study motivating the current report revealed earlier reanalysis effects for object-subject compared to subject-object sentences, in particular, before the start of the movement of the agreement marking sign. The effects were bound to time points prior to when both arguments were referenced in space and/or the transitional hand movement prior to producing the disambiguating sign. Due to the temporal proximity of these time points, it was not clear which visual cues led to disambiguation; that is, whether non-manual markings (body/shoulder/head shift towards the subject position) or the transitional hand movement resolved ambiguity. The present gating study further supports that disambiguation in ÖGS is triggered by cues occurring before the movement of the disambiguating sign. Further, the present study also confirms the presence of the subject preference in ÖGS, showing again that signers and speakers draw on similar strategies during language processing independent of language modality. Although the ultimate role of the visual cues leading to disambiguation (i.e., non-manual markings and transitional movements) requires further investigation, the present study shows that they contribute crucial information about argument structure during online processing. This finding provides strong support for granting these cues some degree of linguistic status (at least in ÖGS).


Sujet(s)
Linguistique , Mouvement , Langue des signes , Autriche , Signaux , Électroencéphalographie , Femelle , Humains , Langage , Mâle , Stimulation lumineuse , Facteurs temps
15.
Front Psychol ; 9: 525, 2018.
Article de Anglais | MEDLINE | ID: mdl-29706919

RÉSUMÉ

As conversation is the most important way of using language, linguists and psychologists should combine forces to investigate how interlocutors deal with the cognitive demands arising during conversation. Linguistic analyses of corpora of conversation are needed to understand the structure of conversations, and experimental work is indispensable for understanding the underlying cognitive processes. We argue that joint consideration of corpus and experimental data is most informative when the utterances elicited in a lab experiment match those extracted from a corpus in relevant ways. This requirement to compare like with like seems obvious but is not trivial to achieve. To illustrate this approach, we report two experiments where responses to polar (yes/no) questions were elicited in the lab and the response latencies were compared to gaps between polar questions and answers in a corpus of conversational speech. We found, as expected, that responses were given faster when they were easy to plan and planning could be initiated earlier than when they were harder to plan and planning was initiated later. Overall, in all but one condition, the latencies were longer than one would expect based on the analyses of corpus data. We discuss the implication of this partial match between the data sets and more generally how corpus and experimental data can best be combined in studies of conversation.

16.
Psychophysiology ; 55(7): e13064, 2018 07.
Article de Anglais | MEDLINE | ID: mdl-29357113

RÉSUMÉ

Individual alpha frequency (IAF) is a promising electrophysiological marker of interindividual differences in cognitive function. IAF has been linked with trait-like differences in information processing and general intelligence, and provides an empirical basis for the definition of individualized frequency bands. Despite its widespread application, however, there is little consensus on the optimal method for estimating IAF, and many common approaches are prone to bias and inconsistency. Here, we describe an automated strategy for deriving two of the most prevalent IAF estimators in the literature: peak alpha frequency (PAF) and center of gravity (CoG). These indices are calculated from resting-state power spectra that have been smoothed using a Savitzky-Golay filter (SGF). We evaluate the performance characteristics of this analysis procedure in both empirical and simulated EEG data sets. Applying the SGF technique to resting-state data from n = 63 healthy adults furnished 61 PAF and 62 CoG estimates. The statistical properties of these estimates were consistent with previous reports. Simulation analyses revealed that the SGF routine was able to reliably extract target alpha components, even under relatively noisy spectral conditions. The routine consistently outperformed a simpler method of automated peak detection that did not involve spectral smoothing. The SGF technique is fast, open source, and available in two popular programming languages (MATLAB, Python), and thus can easily be integrated within the most popular M/EEG toolsets (EEGLAB, FieldTrip, MNE-Python). As such, it affords a convenient tool for improving the reliability and replicability of future IAF-related research.


Sujet(s)
Rythme alpha , Électroencéphalographie , Traitement du signal assisté par ordinateur , Adolescent , Adulte , Sujet âgé , Algorithmes , Femelle , Humains , Individualité , Mâle , Adulte d'âge moyen , Reproductibilité des résultats , Rapport signal-bruit , Logiciel , Jeune adulte
18.
eNeuro ; 4(6)2017.
Article de Anglais | MEDLINE | ID: mdl-29379867

RÉSUMÉ

The recent trend away from ANOVA-based analyses places experimental investigations into the neurobiology of cognition in more naturalistic and ecologically valid designs within reach. Using mixed-effects models for epoch-based regression, we demonstrate the feasibility of examining event-related potentials (ERPs), and in particular the N400, to study the neural dynamics of human auditory language processing in a naturalistic setting. Despite the large variability between trials during naturalistic stimulation, we replicated previous findings from the literature: the effects of frequency, animacy, and word order and find previously unexplored interaction effects. This suggests a new perspective on ERPs, namely, as a continuous modulation reflecting continuous stimulation instead of a series of discrete and essentially sequential processes locked to discrete events.


Sujet(s)
Encéphale/physiologie , Électroencéphalographie , Potentiels évoqués , Linguistique , Perception de la parole/physiologie , Électroencéphalographie/méthodes , Études de faisabilité , Femelle , Humains , Mâle , Narration , Traitement du signal assisté par ordinateur , Jeune adulte
19.
Brain Lang ; 162: 42-45, 2016 Nov.
Article de Anglais | MEDLINE | ID: mdl-27543688

RÉSUMÉ

Experimental research on behavior and cognition frequently rests on stimulus or subject selection where not all characteristics can be fully controlled, even when attempting strict matching. For example, when contrasting patients to controls, variables such as intelligence or socioeconomic status are often correlated with patient status. Similarly, when presenting word stimuli, variables such as word frequency are often correlated with primary variables of interest. One procedure very commonly employed to control for such nuisance effects is conducting inferential tests on confounding stimulus or subject characteristics. For example, if word length is not significantly different for two stimulus sets, they are considered as matched for word length. Such a test has high error rates and is conceptually misguided. It reflects a common misunderstanding of statistical tests: interpreting significance not to refer to inference about a particular population parameter, but about 1. the sample in question, 2. the practical relevance of a sample difference (so that a nonsignificant test is taken to indicate evidence for the absence of relevant differences). We show inferential testing for assessing nuisance effects to be inappropriate both pragmatically and philosophically, present a survey showing its high prevalence, and briefly discuss an alternative in the form of regression including nuisance variables.


Sujet(s)
Recherche comportementale/méthodes , Langage , Modèles statistiques , , Humains
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...