Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 115
Filtrer
1.
Int J Biol Macromol ; 277(Pt 3): 134511, 2024 Aug 05.
Article de Anglais | MEDLINE | ID: mdl-39111470

RÉSUMÉ

Titanium dioxide (TiO2) is a common pigment used in food packaging to provide a transparent appearance to plastic packaging materials. In the present study, poly(butylene adipate-co-terephthalate) (PBAT) incorporated with lignin-TiO2 nanoparticles (L-TiO2) eco-friendly composite films was prepared by employing an inexpensive melting and hot-pressing technique. The P-L-TiO2 composite films have been studied using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscope (SEM), Thermogravimetric analysis (TGA), and Differential scanning calorimetry (DSC) analysis. The FTIR results and homogeneous, dense SEM images confirm the interaction of L-TiO2 with the PBAT matrix. It has also been found that the addition of L-TiO2 nanoparticles can increase the crystallinity, tensile strength, and thermal stability of PBAT. The addition of L-TiO2 increased the tensile strength and decreased the elongation at break of films. The maximum tensile strength of the film, achieved with 5 wt% L-TiO2, was 47.0 MPa, compared with 24.3 MPa for pure PBAT film. The composite film with 5 wt% L-TiO2 has outstanding oxygen and water vapor barrier properties. As the content of lignin-TiO2 increases, the antimicrobial activity of the composite films also increases; the percentage of growth of all the tested bacteria Staphylococcus aureus (S. aureus), and Escherichia coli (E. coli) is significantly reduced. Strawberries were packed to evaluate the suitability of produced composite films as packaging materials, as they effectively preserved pigments from accumulation and extended the shelf-life as compared to commercial polyethylene packaging film.

2.
Biomaterials ; 312: 122747, 2024 Aug 06.
Article de Anglais | MEDLINE | ID: mdl-39142219

RÉSUMÉ

Directly administering medication to inflamed intestinal sites for treating ulcerative colitis (UC), poses significant challenges like retention time, absorption variability, side effects, drug stability, and non-specific delivery. Recent advancements in therapy to treat colitis aim to improve local drug availability that is enema therapy at the site of inflammation, thereby reducing systemic adverse effects. Nevertheless, a key limitation lies in enemas' inability to sustain medication in the colon due to rapid peristaltic movement, diarrhea, and poor local adherence. Therefore, in this work, we have developed site-specific thiolated mucoadhesive anionic nanoliposomes to overcome the limitations of conventional enema therapy. The thiolated delivery system allows prolonged residence of the delivery system at the inflamed site in the colon, confirmed by the adhesion potential of thiolated nanoliposomes using in-vitro and in-vivo models. To further provide therapeutic efficacy thiolated nanoliposomes were loaded with gallic acid (GA), a natural compound known for its antibacterial, antioxidant, and potent anti-inflammatory properties. Consequently, Gallic Acid-loaded Thiolated 2,6 DALP DMPG (GATh@APDL) demonstrates the potential for targeted adhesion to the inflamed colon, facilitated by their small size 100 nm and anionic nature. Therapeutic studies indicate that this formulation offers protective effects by mitigating colonic inflammation, downregulating the expression of NF-κB, HIF-1α, and MMP-9, and demonstrating superior efficacy compared to the free GA enema. The encapsulated GA inhibits the NF-κB expression, leading to enhanced expression of MUC2 protein, thereby promoting mucosal healing in the colon. Furthermore, GATh@APDL effectively reduces neutrophil infiltration and regulates immune cell quantification in colonic lamina propria. Our findings suggest that GATh@APDL holds promise for alleviating UC and addressing the limitations of conventional enema therapy.

3.
Article de Anglais | MEDLINE | ID: mdl-39126993

RÉSUMÉ

Accurately identifying and quantifying toxicants is crucial for medico-legal investigations in forensic toxicology; however, low analyte concentrations and the complex samples matrix make this work difficult. Therefore, a simplified sample preparation procedure is crucial to streamline the analysis to minimize sample handling errors, reduce cost and improve the overall efficiency of analysis of toxicants. To address these challenges, an innovative disposable in-tip cellulose paper (DICP) device has been developed for the extraction of three pesticides viz. Chlorpyrifos, Quinalphos and Carbofuran from postmortem blood samples. The DICP device leverages cellulose paper strips housed within a pipette tip to streamline the extraction process, significantly reducing solvent usage, time, and labor while maintaining high analytical accuracy. The extraction of pesticides from postmortem blood using the DICP device involves a streamlined process characterized by adsorption and desorption. The diluted blood samples were processed through the DICP device via repeated aspirating and dispensing calyces to adsorb the pesticides onto the cellulose paper. The adsorbed pesticides are then eluted using acetone, which is collected for GC-MS analysis. The method was meticulously optimized, achieving a limit of quantification in the range of 0.009-0.01 µg mL-1. The intra-day and inter-day precisions were consistently less than 5 % and 10 %, respectively, with accuracy ranging from 94-106 %. Relative recoveries for the analytes were observed to be between 60 % and 93.3 %, and matrix effects were determined to be less than 10 %. The method's sustainability was validated with a whiteness score of 98.8, an AGREE score of 0.64, a BAGI score of 70 and ComplexMoGAPI score of 77. Applicability was demonstrated through successful analysis of real postmortem blood samples and proficiency testing samples, highlighting its potential utility in forensic toxicology.

4.
Food Sci Nutr ; 12(7): 5188-5200, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-39055197

RÉSUMÉ

This research was aimed to investigate the utilization of mung bean starch as an innovative edible coating material to enhance the shelf-life of cut papaya fruits. The study focused on the extraction process of mung bean starch and its subsequent characterization through various analyses. Particle size (142.3 ± 1.24 nm), zeta potential (-25.52 ± 1.02 mV), morphological images, Fourier transform infrared (FTIR) spectra, and thermal stability (68.36 ± 0.15°C) were assessed to determine the mung bean starch properties. The functional properties, such as bulk density (0.51 ± 0.004 g/cm3) and tapped density (0.62 ± 0.010 g/cm3), angle of repose (21.61°), swelling power (12.26 ± 0.25%), and minimum gelation concentration (4.01 ± 1.25%), were examined to detect its potential as a coating base material. Subsequently, the prepared mung bean starch coating solution (1%, 2%, 3%, 4%, and 5%) was applied to papaya fruits and the coated fruits' physicochemical characteristics evaluated during storage. These characteristics encompassed color, weight loss, pH shifts, total soluble solids, titratable acidity, vitamin C content, fruit firmness, microbial analysis, and sensory attributes. The results revealed that starch coating on papaya maintained its color, reduced weight loss, preserved vitamin C, and delayed firmness loss, enhancing shelf-life when compared to control sample. These findings demonstrated the effectiveness of mung bean starch coatings in preserving papaya fruits. The research made a significant contribution to the use of mung bean starch as a potential coating material for improving the shelf-life of papaya fruits. This finding has great promise for the field of food preservation and quality control.

5.
J Gen Physiol ; 156(9)2024 Sep 02.
Article de Anglais | MEDLINE | ID: mdl-38990175

RÉSUMÉ

L-type CaV1.2 current (ICa,L) links electrical excitation to contraction in cardiac myocytes. ICa,L is tightly regulated to control cardiac output. Rad is a Ras-related, monomeric protein that binds to L-type calcium channel ß subunits (CaVß) to promote inhibition of ICa,L. In addition to CaVß interaction conferred by the Rad core motif, the highly conserved Rad C-terminus can direct membrane association in vitro and inhibition of ICa,L in immortalized cell lines. In this work, we test the hypothesis that in cardiomyocytes the polybasic C-terminus of Rad confers t-tubular localization, and that membrane targeting is required for Rad-dependent ICa,L regulation. We introduced a 3xFlag epitope to the N-terminus of the endogenous mouse Rrad gene to facilitate analysis of subcellular localization. Full-length 3xFlag-Rad (Flag-Rad) mice were compared with a second transgenic mouse model, in which the extended polybasic C-termini of 3xFlag-Rad was truncated at alanine 277 (Flag-RadΔCT). Ventricular cardiomyocytes were isolated for anti-Flag-Rad immunocytochemistry and ex vivo electrophysiology. Full-length Flag-Rad showed a repeating t-tubular pattern whereas Flag-RadΔCT failed to display membrane association. ICa,L in Flag-RadΔCT cardiomyocytes showed a hyperpolarized activation midpoint and an increase in maximal conductance. Additionally, current decay was faster in Flag-RadΔCT cells. Myocardial ICa,L in a Rad C-terminal deletion model phenocopies ICa,L modulated in response to ß-AR stimulation. Mechanistically, the polybasic Rad C-terminus confers CaV1.2 regulation via membrane association. Interfering with Rad membrane association constitutes a specific target for boosting heart function as a treatment for heart failure with reduced ejection fraction.


Sujet(s)
Canaux calciques de type L , Myocytes cardiaques , Animaux , Canaux calciques de type L/métabolisme , Canaux calciques de type L/génétique , Souris , Myocytes cardiaques/métabolisme , Membrane cellulaire/métabolisme , Protéines G monomériques/métabolisme , Protéines G monomériques/génétique , Souris transgéniques , Protéines G ras
6.
Int J Biol Macromol ; 277(Pt 2): 134170, 2024 Jul 25.
Article de Anglais | MEDLINE | ID: mdl-39067731

RÉSUMÉ

Agricultural waste presents a significant environmental challenge due to improper disposal and management practices, contributing to soil degradation, biodiversity loss, and pollution of water and air resources. To address these issues, there is a growing emphasis on the valorization of agricultural waste. Cellulose, a major component of agricultural waste, offers promising opportunities for resource utilization due to its unique properties, including biodegradability, biocompatibility, and renewability. Thus, this review explored various types of agricultural waste, their chemical composition, and pretreatment methods for cellulose extraction. It also highlights the significance of rice straw, sugarcane bagasse, and other agricultural residues as cellulose-rich resources. Among the various membrane fabrication techniques, phase inversion is highly effective for creating porous membranes with controlled thickness and uniformity, while electrospinning produces nanofibrous membranes with high surface area and exceptional mechanical properties. The review further explores the separation of pollutants including using cellulose membranes, demonstrating their potential in environmental remediation. Hence, by valorizing agricultural residues into functional materials, this approach addresses the challenge of agricultural waste management and contributes to the development of innovative solutions for pollution control and water treatment.

7.
Food Chem ; 460(Pt 1): 140401, 2024 Jul 14.
Article de Anglais | MEDLINE | ID: mdl-39033640

RÉSUMÉ

The study evaluates the interaction between Calocybe indica mushroom polyphenols (phenolic acid) and kidney bean protein (KBPM), aiming to enhance vegan food quality. The mushrooms exhibited a carbohydrate content of 3.65%, an antioxidant activity of 55.04 ± 0.17%, and a phenolic content of 4.86 mg GAE/g. Caffeic and cinnamic acids were identified through high-pressure liquid chromatography. Various concentrations of KBPM were tested at phenolic acid concentrations of 0.025, 0.050, 0.1, 0.2, 0.4, 0.8, and 1%, among these, KBPM 0.2 demonstrated the highest binding efficiency of 99.40 ± 0.05%. Notably, this complex improved the protein's functional properties, such as solubility by 11.43%, water and oil holding capacities by 10.62% and 22.04%, and emulsion capacity and stability by 3.69% and 5.83%, respectively, compared to the native protein. The protein-phenolic acid complex also enhanced thermal stability, surface charge, amino acid content, and reduced particle size compared to native protein. These enhancements also improved protein digestibility and sensory attributes in a fruit-based smoothie.

8.
Food Sci Nutr ; 12(6): 3920-3934, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38873482

RÉSUMÉ

Lecithin is constituted of a glycerophospholipid mixture and is abundantly used as an emulsifying agent in various food applications including chocolate production. However, overconsumption of lecithin may create an adverse effect on human health. Thus, this study aims to replace the lecithin with plant-based gums. Different ratios of guar and arabic gum (25%-75%) and their blend (25%-75%) were employed as partial replacement of lecithin. Milk chocolate prepared using 40% guar gum (60GGL [guar gum, lecithin]), 25% arabic gum (75AGL [arabic gum, lecithin]), and a blend of 15 arabic gum and 10 guar gum (65AGGL [arabic gum, guar gum, lecithin]) showed similar rheological behavior as compared to control chocolate (100% lecithin). The fat content of 65AGGL (37.85%) was significantly lower than that of the control sample (43.37%). Rheological behavior exhibited shear-thinning behavior and samples (60GGL-75GGL-80GGL, 65AGL-75AGL, and 65AGGL-75AGGL) showed similar rheological properties as compared to control. The chocolate samples (60GGL and 65AGGL) showed significantly (p < .05) higher hardness values (86.01 and 83.55 N) than the control (79.95 N). As well, gum-added chocolates exhibited higher thermal stability up to 660°C as compared to the control sample. The Fourier transform infrared spectroscopy (FTIR) analysis revealed predominant ß-(1 → 4) and ß-(1 → 6) glycosidic linkages of the gums and lecithin. Sensory evaluation revealed a comparable score of gum-added milk chocolate in comparison to control samples in terms of taste, texture, color, and overall acceptance. Thus, plant exudate gums could be an excellent alternative to lecithin in milk chocolate, which can enhance the textural properties and shelf life.

9.
Int J Biol Macromol ; 273(Pt 2): 132915, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38844289

RÉSUMÉ

Non-conventional starch sources have attracted substantial attention due to their preferred physicochemical and mechanical properties similar to conventional sources. This study aimed to enhance the mechanical properties of mango seed kernel starch (MSKS) based films reinforced with carboxymethyl cellulose (CMC) and gum acacia (GA). Physical modification of MSKS was carried out using microwave-assisted at 180 W for 1 min. SEM results confirmed the oval and irregular shape of starch. The particle size of native starch (NS) (754.9 ± 20.4 nm) was higher compared to modified starch (MS) 336.6 ± 88.9 nm with a surface charge of -24.80 ± 3.92 to -34.87 ± 3.92 mV, respectively. Several functional groups including hydroxyl (OH) and carboxyl (CH) were confirmed in NS and MS. Different ratios of the MS, NS, CMC, and GA were used for the fabrication of films. Results revealed the higher tensile strength of M/C/G-1 (57.45 ± 0.05 nm) and M/C/G-2 (50.77 ± 0.58), compared to control C-4 (100 % native starch) (4.82 ± 0.04) respectively. The ternary complex provided excellent permeability against moisture and the film with a higher starch concentration confirmed the uniform thickness (0.09-0.10 mm). Furthermore, selected films (M/C/G-1 and M/C/G-2) reduced the microbial growth and weight loss of the bun compared to the control (C-4) film. Thus, the ternary complex maintained the freshness of the bun-bread for 14 days. It can be potentially used as a cost-effective and eco-friendly packaging material for food applications.


Sujet(s)
Carboxyméthylcellulose de sodium , Gomme arabique , Mangifera , Graines , Amidon , Carboxyméthylcellulose de sodium/composition chimique , Amidon/composition chimique , Gomme arabique/composition chimique , Mangifera/composition chimique , Graines/composition chimique , Résistance à la traction , Emballage alimentaire/méthodes
10.
Ageing Res Rev ; 99: 102388, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-38914265

RÉSUMÉ

Being age-related disorders, both Alzheimer's disease (AD) and stroke share multiple risk factors, such as hypertension, smoking, diabetes, and apolipoprotein E (APOE) Ɛ4 genotype, and coexist in patients. Accumulation of amyloid-ß plaques and neurofibrillary tangled impair cognitive potential, leading to AD. Blocked blood flow in the neuronal tissues, causes neurodegeneration and cell death in stroke. AD is commonly characterized by cerebral amyloid angiopathy, which significantly elevates the risk of hemorrhagic stroke. Patients with AD and stroke have been both reported to exhibit greater cognitive impairment, followed by multiple pathophysiological mechanisms shared between the two. The manuscript aims to elucidate the relationship between AD and stroke, as well as the common pathways and risk factors while understanding the preventive therapies that might limit the negative impacts of this correlation, with diagnostic modalities and current AD treatments. The authors provide a comprehensive review of the link and aid the healthcare professionals to identify suitable targets and risk factors, that may retard cognitive decline and neurodegeneration in patients. However, more intricate research is required in this regard and an interdisciplinary approach that would target both the vascular and neurodegenerative factors would improve the quality of life in AD patients.


Sujet(s)
Maladie d'Alzheimer , Accident vasculaire cérébral , Humains , Maladie d'Alzheimer/anatomopathologie , Maladie d'Alzheimer/étiologie , Facteurs de risque , Accident vasculaire cérébral/anatomopathologie , Animaux
11.
Saudi Pharm J ; 32(7): 102108, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38868175

RÉSUMÉ

Chronic exposure to opioids can lead to downregulation of astrocytic glutamate transporter 1 (GLT-1), which regulates the majority of glutamate uptake. Studies from our lab revealed that beta-lactam antibiotic, ceftriaxone, attenuated hydrocodone-induced downregulation of GLT-1 as well as cystine/glutamate antiporter (xCT) expression in central reward brain regions. In this study, we investigated the effects of escalating doses of morphine and tested the efficacy of novel synthetic non-antibiotic drug, MC-100093, and ceftriaxone in attenuating the effects of morphine exposure in the expression of GLT-1, xCT, and neuroinflammatory factors (IL-6 and TGF-ß) in the nucleus accumbens (NAc). This study also investigated the effects of morphine and beta-lactams in locomotor activity, spontaneous alternation percentage (SAP) and number of entries in Y maze since opioids have effects in locomotor sensitization. Mice were exposed to moderate dose of morphine (20 mg/kg, i.p.) on days 1, 3, 5, 7, and a higher dose of morphine (150 mg/kg, i.p.) on day 9, and these mice were then behaviorally tested and euthanized on Day 10. Western blot analysis showed that exposure to morphine downregulated GLT-1 and xCT expression in the NAc, and both MC-100093 and ceftriaxone attenuated these effects. In addition, morphine exposure increased IL-6 mRNA and TGF-ß mRNA expression, and MC-100093 and ceftriaxone attenuated only the effect on IL-6 mRNA expression in the NAc. Furthermore, morphine exposure induced an increase in distance travelled, and MC-100093 and ceftriaxone attenuated this effect. In addition, morphine exposure decreased the SAP and increased the number of arm entries in Y maze, however, neither MC-100093 nor ceftriaxone showed any attenuating effect. Our findings demonstrated for the first time that MC-100093 and ceftriaxone attenuated morphine-induced downregulation of GLT-1 and xCT expression, and morphine-induced increase in neuroinflammatory factor, IL-6, as well as hyperactivity. These findings revealed the beneficial therapeutic effects of MC-100093 and ceftriaxone against the effects of exposure to escalated doses of morphine.

12.
Biomater Sci ; 12(13): 3335-3344, 2024 Jun 25.
Article de Anglais | MEDLINE | ID: mdl-38787761

RÉSUMÉ

Rheumatoid arthritis (RA) is a systemic immune disorder marked by synovitis, bone damage, and cartilage erosion, leading to increased socio-economic burdens and reduced quality of life. Despite its unknown cause, advancements in understanding its pathophysiology have facilitated novel therapeutic approaches. Current treatments, including disease-modifying anti-rheumatic drugs (DMARDs) and biologics, often result in low efficacy and unnecessary side effects. To address the limitations of these drugs, carrier-based drug delivery systems, such as nanomicelles, have emerged as a promising solution. In this study, nanomicelles were synthesised utilizing PLGA (poly(lactic-co-glycolic acid)) as a backbone; this backbone is conjugated with chlorogenic acid (CGA), which is known for suppressing inflammation, and incorporates methotrexate (MTX), a model drug that is established for RA treatment. The nanomicelles were extensively characterized in terms of size, charge, drug loading, and drug-release behaviour. The in vivo assessment of MTX-PLGA-b-CGA nanomicelles in a collagen-induced arthritis model demonstrated a remarkable reduction in joint swelling, cartilage erosion, and disease severity. Furthermore, histological findings confirmed cartilage integrity and reduced expression of key pro-inflammatory markers, including receptor activator of nuclear factor kappa beta ligand (RANKL) and tumor necrosis factor (TNF-α). The approach based on the MTX-PLGA-b-CGA nanomicelles presents a biocompatible and potentially effective therapeutic strategy for management of the severity and progression of RA, providing a hopeful alternative for RA treatment.


Sujet(s)
Arthrite expérimentale , Acide chlorogénique , Méthotrexate , Micelles , Copolymère d'acide poly(lactique-co-glycolique) , Animaux , Acide chlorogénique/composition chimique , Acide chlorogénique/pharmacologie , Acide chlorogénique/administration et posologie , Méthotrexate/composition chimique , Méthotrexate/pharmacologie , Méthotrexate/administration et posologie , Arthrite expérimentale/traitement médicamenteux , Arthrite expérimentale/anatomopathologie , Copolymère d'acide poly(lactique-co-glycolique)/composition chimique , Souris , Vecteurs de médicaments/composition chimique , Mâle , Libération de médicament , Nanoparticules/composition chimique , Polyarthrite rhumatoïde/traitement médicamenteux
13.
Biomater Sci ; 12(13): 3389-3400, 2024 Jun 25.
Article de Anglais | MEDLINE | ID: mdl-38804911

RÉSUMÉ

Rheumatoid arthritis (RA) is a chronic autoimmune inflammatory joint disorder affecting nearly 1% of the global population. In RA, synovial joints are infiltrated by inflammatory mediators and enzymes, leading to articular cartilage deterioration, joint damage, and bone erosion. Herein, the 9-aminoacridine-6-O-stearoyl-L-ascorbic acid hydrogel (9AA-SAA hydrogel) was formulated by the heat-cool method and further characterized for surface charge, surface morphology, rheology, and cytocompatibility. Furthermore, we evaluated the therapeutic efficacy of the 9AA-SAA hydrogel, an enzyme-responsive drug delivery system with on-and-off switching capabilities based on disease severity against collagen-induced experimental arthritis in Wistar rats. The anti-inflammatory action of the US FDA-approved drug 9-aminoacridine (9AA) was revealed which acted through nuclear receptor subfamily 4 group A member 1 (NR4A1), an anti-inflammatory orphan nuclear receptor that inhibits nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB). Furthermore, we have explored the role of ascorbic acid, an active moiety of 6-O-stearoyl-L-ascorbic acid (SAA), in promoting the production of collagen production through ten-eleven translocation-2 (TET2) upregulation. Targeting through NR4A1 and TET2 could be the probable mechanism for the treatment of experimental arthritis. The combination of 9AA and ascorbic acid demonstrated enhanced therapeutic efficacy in the 9AA-SAA hydrogel, significantly reducing the severity of experimental arthritis. This approach, in contrast to existing treatments with limited effectiveness, presents a promising and more effective strategy for RA treatment by mitigating inflammation in experimental arthritis.


Sujet(s)
Arthrite expérimentale , Acide ascorbique , Hydrogels , Rat Wistar , Animaux , Acide ascorbique/pharmacologie , Acide ascorbique/composition chimique , Acide ascorbique/administration et posologie , Hydrogels/composition chimique , Hydrogels/administration et posologie , Hydrogels/pharmacologie , Rats , Arthrite expérimentale/traitement médicamenteux , Arthrite expérimentale/anatomopathologie , Mâle , Anti-inflammatoires/pharmacologie , Anti-inflammatoires/composition chimique , Anti-inflammatoires/administration et posologie , Souris , Matériaux biocompatibles/composition chimique , Matériaux biocompatibles/pharmacologie , Matériaux biocompatibles/administration et posologie , Injections
14.
Food Res Int ; 186: 114344, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38729696

RÉSUMÉ

The research aimed to evaluate the effect of ultrasonication and succinylation on the functional, iron binding, physiochemical, and cellular mineral uptake efficacy of chickpea protein concentrate. Succinylation resulted in significant improvements in the water-holding capacity (WHC) (25.47 %), oil-holding capacity (OHC) (31.38 %), and solubility (5.80 %) of the chickpea protein-iron complex. Mineral bioavailability significantly increased by 4.41 %, and there was a significant increase in cellular mineral uptake (64.64 %), retention (36.68 %), and transport (27.96 %). The ferritin content of the succinylated chickpea protein-iron complex showed a substantial increase of 66.31%. Furthermore, the dual modification approach combining ultrasonication and succinylation reduced the particle size of the protein-iron complex with a substantial reduction of 83.25 %. It also resulted in a significant enhancement of 51.5 % in the SH (sulfhydryl) content and 48.92 % in the surface hydrophobicity. Mineral bioavailability and cellular mineral uptake, retention, and transport were further enhanced through dual modification. In terms of application, the addition of single and dual-modified chickpea protein-iron complex to a fruit-based smoothie demonstrated positive acceptance in sensory attributes. Overall, the combined approach of succinylation and ultrasonication to the chickpea protein-iron complex shows a promising strategy for enhancing the physiochemical and techno-functional characteristics, cellular mineral uptake, and the development of vegan food products.


Sujet(s)
Biodisponibilité , Cicer , Fer , Cicer/composition chimique , Fer/composition chimique , Fer/métabolisme , Humains , Aliment enrichi , Protéines végétales/composition chimique , Digestion , Minéraux/composition chimique , Cellules Caco-2 , Acide succinique/composition chimique , Taille de particule , Manipulation des aliments/méthodes , Solubilité , Ferritines/composition chimique , Ferritines/métabolisme
15.
Saudi Pharm J ; 32(6): 102103, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38799001

RÉSUMÉ

Chemotherapeutic drugs, such as doxorubicin (Dox), are commonly used to treat a variety of malignancies. However, Dox-induced cardiotoxicity limits the drug's clinical applications. Hence, this study intended to investigate whether diosmin could prevent or limit Dox-induced cardiotoxicity in an animal setting. Thirty-two rats were separated into four distinct groups of controls, those treated with Dox (20 mg/kg, intraperitoneal, i.p.), those treated with diosmin 100 mg plus Dox, and those treated with diosmin 200 mg plus Dox. At the end of the experiment, rats were anesthetized and sacrificed and their blood and hearts were collected. Cardiac toxicity markers were analyzed in the blood, and the heart tissue was analyzed by the biochemical assays MDA, GSH, and CAT, western blot analysis (NF-kB, IL-6, TLR-4, TNF-α, iNOS, and COX-2), and gene expression analysis (ß-MHC, BNP). Formalin-fixed tissue was used for histopathological studies. We demonstrated that a Dox insult resulted in increased oxidative stress, inflammation, and hypertrophy as shown by increased MDA levels and reduced GSH content and CAT activity. Furthermore, Dox treatment induced cardiac hypertrophy and damage, as evidenced by the biochemical analysis, ELISA, western blot analysis, and gene expression analysis. However, co-administration of diosmin at both doses, 100 mg and 200 mg, mitigated these alterations. Data derived from the current research revealed that the cardioprotective effect of diosmin was likely due to its ability to mitigate oxidative stress and inflammation. However, further study is required to investigate the protective effects of diosmin against Dox-induced cardiotoxicity.

17.
ACS Omega ; 9(12): 13534-13555, 2024 Mar 26.
Article de Anglais | MEDLINE | ID: mdl-38559954

RÉSUMÉ

Pulmonary diseases like asthma, chronic obstructive pulmonary disorder, lung fibrosis, and lung cancer pose a significant burden to global human health. Many of these complications arise as a result of exposure to particulate matter (PM), which has been examined in several preclinical and clinical trials for its effect on several respiratory diseases. Particulate matter of size less than 2.5 µm (PM2.5) has been known to inflict unforeseen repercussions, although data from epidemiological studies to back this are pending. Conventionally utilized two-dimensional (2D) cell culture and preclinical animal models have provided insufficient benefits in emulating the in vivo physiological and pathological pulmonary conditions. Three-dimensional (3D) structural models, including organ-on-a-chip models, have experienced a developmental upsurge in recent times. Lung-on-a-chip models have the potential to simulate the specific features of the lungs. With the advancement of technology, an emerging and advanced technique termed microfluidic organ-on-a-chip has been developed with the aim of identifying the complexity of the respiratory cellular microenvironment of the body. In the present Review, the role of lung-on-a-chip modeling in reproducing pulmonary complications has been explored, with a specific emphasis on PM2.5-induced pulmonary complications.

18.
Nanoscale ; 16(16): 7965-7975, 2024 Apr 25.
Article de Anglais | MEDLINE | ID: mdl-38567436

RÉSUMÉ

Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease that mostly affects joints. Although RA therapy has made significant progress, difficulties including extensive medication metabolism and its quick clearance result in its inadequate bioavailability. The anti-inflammatory effect of zein was reported with other medications, but it has certain limitations. There are reports on the anti-oxidant and anti-inflammatory effect of aescin, which exhibits low bioavailability for the treatment of rheumatoid arthritis. Also, the combinatorial effect of zein with other effective drug delivery systems is still under investigation for the treatment of experimental collagen-induced rheumatoid arthritis. The focus of this study was to formulate and define the characteristics of zein-coated gelatin nanoparticles encapsulated with aescin (Ze@Aes-GNPs) and to assess and contrast the therapeutic effectiveness of Ze@Aes-GNPs towards collagen-induced RA in Wistar rats. Nanoprecipitation and the layer-by-layer coating process were used to fabricate Ze@Aes-GNPs and their hydrodynamic diameter was determined to be 182 nm. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to further validate the size, shape, and surface morphology of Ze@Aes-GNPs. When tested against foreskin fibroblasts (BJ), these nanoparticles demonstrated significantly high cytocompatibility. Both Aes and Ze@Aes-GNPs were effective in treating arthritis, as shown by the decreased edoema, erythema, and swelling of the joints, between which Ze@Aes-GNPs were more effective. Further, it was demonstrated that Aes and Ze@Aes-GNPs reduced the levels of oxidative stress (articular elastase, lipid peroxidation, catalase, superoxide dismutase and nitric oxide) and inflammatory indicators (TNF-α, IL-1ß and myeloperoxidase). The histopathology findings further demonstrated that Ze@Aes-GNPs considerably reduced the infiltration of inflammatory cells at the ankle joint cartilage compared to Aes. Additionally, immunohistochemistry examination showed that treatment with Ze@Aes-GNPs suppressed the expression of pro-inflammatory markers (COX-2 and IL-6) while increasing the expression of SOD1. In summary, the experiments indicated that Aes and Ze@Aes-GNPs lowered the severity of arthritis, and critically, Ze@Aes-GNPs showed better effectiveness in comparison to Aes. This suppression of oxidative stress and inflammation was likely driven by Aes and Ze@Aes-GNPs.


Sujet(s)
Arthrite expérimentale , Aescine , Gélatine , Nanoparticules , Rat Wistar , Zéine , Animaux , Gélatine/composition chimique , Zéine/composition chimique , Rats , Nanoparticules/composition chimique , Arthrite expérimentale/traitement médicamenteux , Arthrite expérimentale/anatomopathologie , Arthrite expérimentale/métabolisme , Aescine/composition chimique , Aescine/pharmacologie , Mâle , Anti-inflammatoires/composition chimique , Anti-inflammatoires/pharmacologie , Anti-inflammatoires/usage thérapeutique , Polyarthrite rhumatoïde/traitement médicamenteux , Polyarthrite rhumatoïde/anatomopathologie , Polyarthrite rhumatoïde/métabolisme , Humains , Fibroblastes/métabolisme , Fibroblastes/effets des médicaments et des substances chimiques , Inflammation/traitement médicamenteux , Inflammation/anatomopathologie , Collagène/composition chimique
19.
Int J Biol Macromol ; 268(Pt 1): 131687, 2024 May.
Article de Anglais | MEDLINE | ID: mdl-38642692

RÉSUMÉ

In future, global demand for low-cost-sustainable materials possessing good strength is going to increase tremendously, to replace synthetic plastic materials, thus motivating scientists towards green composites. The PLA has been the most promising sustainable bio composites, due to its inherent antibacterial property, biodegradability, eco-friendliness, and good thermal and mechanical characteristics. However, PLA has certain demerits such as poor water and gas barrier properties, and low glass transition temperature, which restricts its use in food packaging applications. To overcome this, PLA is blended with polysaccharides such as gum and cellulose to enhance the water barrier, thermal, crystallization, degradability, and mechanical properties. Moreover, the addition of these polysaccharides not only reduces the production cost but also helps in manufacturing packaging material with superior quality. Hence this review focuses on various fabrication techniques, degradation of the ternary composite, and its application in the food sector. Moreover, this review discusses the enhanced barrier and mechanical properties of the ternary blend packaging material. Incorporation of gum enhanced flexibility, while the reinforcement of cellulose improved the structural integrity of the ternary composite. The unique properties of this ternary composite make it suitable for extending the shelf life of food packaging, specifically for fruits, vegetables, and fried products. Future studies must be conducted to investigate the optimization of formulations for specific food types, explore scalability for industrial applications, and integrate these composites with emerging technologies (3D/4D printing).


Sujet(s)
Cellulose , Emballage alimentaire , Polyesters , Emballage alimentaire/méthodes , Cellulose/composition chimique , Polyesters/composition chimique , Gommes végétales/composition chimique
20.
Toxicon ; 243: 107722, 2024 May 28.
Article de Anglais | MEDLINE | ID: mdl-38653393

RÉSUMÉ

Flutamide is frequently used in the management of prostate cancer, hirsutism, and acne. It is a non-steroidal anti-androgenic drug and causes hepatotoxicity. The current study's objective is to evaluate sophorin's hepatoprotective effectiveness against flutamide-induced hepatotoxicity in Wistar rats. Sophorin is a citrus flavonoid glycoside, also known as rutin, which is a low molecular weight polyphenolic compound with natural antioxidant properties and reported to have promising hepatoprotective efficacy. In this study, sophorin was used at a dose of 100 mg/kg body weight in purified water via oral route for 4 week daily whereas, flutamide was used at a dose of 100 mg kg/b.wt for 4 weeks daily in 0.5% carboxy methyl cellulose (CMC) through the oral route for the induction of hepatotoxicity. Flutamide administration leads to enhanced reactive oxygen species (ROS) generation, an imbalance in redox homeostasis and peroxidation of lipid resulted in reduced natural antioxidant level in liver tissue. Our result demonstrated that sophorin significantly abrogate flutamide induced lipid peroxidation, protein carbonyl (PC), and also significantly increasesed in enzymatic activity/level of tissue natural antioxidant such as reduced glutathione(GSH), glutathione reductase(GR), catalase, and superoxide dismutase(SOD). Additionally, sophorin reduced the activity of cytochrome P450 3A1 in liver tissue which was elevated due to flutamide treatment. Furthermore, sophorin treatment significantly decreased the pro-inflammatory cytokines (TNF-α and IL-6) level. Immunohistochemical analysis for the expression of inflammatory proteins (iNOS and COX-2) in hepatic tissue was decreased after sophorin treatment against flutamide-induced hepatotoxicity. Moreover, sophorin suppressed the infiltration of mast cells in liver tissue which further showed anti-inflammatory potential of sophorin. Our histological investigation further demonstrated sophorin's hepatoprotective function by restoring the typical histology of the liver. Based on the aforementioned information, we are able to come to the conclusion that sophorin supplementation might benefit wistar rats with flutamide-induced hepatic damage by reducing oxidative stress and hepatocellular inflammation.


Sujet(s)
Lésions hépatiques dues aux substances , Flutamide , Foie , Rat Wistar , Animaux , Flutamide/pharmacologie , Rats , Lésions hépatiques dues aux substances/traitement médicamenteux , Lésions hépatiques dues aux substances/prévention et contrôle , Mâle , Foie/effets des médicaments et des substances chimiques , Foie/anatomopathologie , Stress oxydatif/effets des médicaments et des substances chimiques , Antioxydants/pharmacologie , Peroxydation lipidique/effets des médicaments et des substances chimiques , Espèces réactives de l'oxygène/métabolisme , Antagonistes des androgènes/pharmacologie
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE