Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 3 de 3
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Hum Mutat ; 33(12): 1647-55, 2012 Dec.
Article de Anglais | MEDLINE | ID: mdl-22753075

RÉSUMÉ

Germline mutations in the human DNA mismatch repair (MMR) genes MSH2 and MLH1 are associated with the inherited cancer disorder Lynch syndrome (LS), also known as hereditary nonpolyposis colorectal cancer or HNPCC. A proportion of MSH2 and MLH1 mutations found in suspected LS patients give rise to single amino acid substitutions. The functional consequences in regard to pathogenicity of many of these variants are unclear. We have examined the functionality of a panel of MLH1 missense mutations found in LS families, by testing the variant proteins in functional assays, addressing subcellular localization, and protein-protein interaction with the dimer partner PMS2 and the MMR-associated exonuclease 1. We show that a significant proportion of examined variant proteins have functional defects in either subcellular localization or protein-protein interactions, which is suspected to lead to the cancer phenotype observed in patients. Moreover, the obtained results correlate well with reported MMR activity and with in silico analysis for a majority of the variants.


Sujet(s)
Protéines adaptatrices de la transduction du signal/génétique , Tumeurs colorectales héréditaires sans polypose/génétique , Mutation faux-sens , Protéines nucléaires/génétique , Protéines adaptatrices de la transduction du signal/composition chimique , Protéines adaptatrices de la transduction du signal/métabolisme , Adenosine triphosphatases/composition chimique , Animaux , Enzymes de réparation de l'ADN/composition chimique , Protéines de liaison à l'ADN/composition chimique , Protéines Escherichia coli/composition chimique , Cellules HeLa , Humains , Souris , Mismatch repair endonuclease PMS2 , Modèles moléculaires , Protéine-1 homologue de MutL , Protéines MutL , Mutagenèse dirigée , Cellules NIH 3T3 , Protéines nucléaires/composition chimique , Protéines nucléaires/métabolisme , Polymorphisme de nucléotide simple , Liaison aux protéines , Structure tertiaire des protéines , Transport des protéines , Similitude structurale de protéines
2.
DNA Repair (Amst) ; 11(3): 267-77, 2012 Mar 01.
Article de Anglais | MEDLINE | ID: mdl-22222486

RÉSUMÉ

Human exonuclease 1 (hEXO1) acts directly in diverse DNA processing events, including replication, mismatch repair (MMR), and double strand break repair (DSBR), and it was also recently described to function as damage sensor and apoptosis inducer following DNA damage. In contrast, 14-3-3 proteins are regulatory phosphorserine/threonine binding proteins involved in the control of diverse cellular events, including cell cycle checkpoint and apoptosis signaling. hEXO1 is regulated by post-translation Ser/Thr phosphorylation in a yet not fully clarified manner, but evidently three phosphorylation sites are specifically induced by replication inhibition leading to protein ubiquitination and degradation. We demonstrate direct and robust interaction between hEXO1 and six of the seven 14-3-3 isoforms in vitro, suggestive of a novel protein interaction network between DNA repair and cell cycle control. Binding experiments reveal weak affinity of the more selective isoform 14-3-3σ but both 14-3-3 isoforms η and σ significantly stimulate hEXO1 activity, indicating that these regulatory proteins exert a common regulation mode on hEXO1. Results demonstrate that binding involves the phosphorable amino acid S746 in hEXO1 and most likely a second unidentified binding motif. 14-3-3 associations do not appear to directly influence hEXO1 in vitro nuclease activity or in vitro DNA replication initiation. Moreover, specific phosphorylation variants, including hEXO1 S746A, are efficiently imported to the nucleus; to associate with PCNA in distinct replication foci and respond to DNA double strand breaks (DSBs), indicating that 14-3-3 binding does not involve regulating the subcellular distribution of hEXO1. Altogether, these results suggest that association may be related to regulation of hEXO1 availability during the DNA damage response to plausibly prevent extensive DNA resection at the damage site, as supported by recent studies.


Sujet(s)
Protéines 14-3-3/métabolisme , Points de contrôle du cycle cellulaire , Enzymes de réparation de l'ADN/composition chimique , Enzymes de réparation de l'ADN/métabolisme , Réparation de l'ADN , Exodeoxyribonucleases/composition chimique , Exodeoxyribonucleases/métabolisme , Transport nucléaire actif , Motifs d'acides aminés , Séquence d'acides aminés , Animaux , Noyau de la cellule/métabolisme , Réplication de l'ADN , Cellules HEK293 , Cellules HeLa , Humains , Souris , Modèles biologiques , Données de séquences moléculaires , Protéines mutantes/métabolisme , Cellules NIH 3T3 , Phosphorylation , Antigène nucléaire de prolifération cellulaire/métabolisme , Liaison aux protéines , Cartographie d'interactions entre protéines , Protéines recombinantes/métabolisme , Relation structure-activité
3.
DNA Repair (Amst) ; 8(6): 682-9, 2009 Jun 04.
Article de Anglais | MEDLINE | ID: mdl-19376751

RÉSUMÉ

DNA mutations are circumvented by dedicated specialized excision repair systems, such as the base excision repair (BER), nucleotide excision repair (NER), and mismatch repair (MMR) pathways. Although the individual repair pathways have distinct roles in suppressing changes in the nuclear DNA, it is evident that proteins from the different DNA repair pathways interact [Y. Wang, D. Cortez, P. Yazdi, N. Neff, S.J. Elledge, J. Qin, BASC, a super complex of BRCA1-associated proteins involved in the recognition and repair of aberrant DNA structures, Genes Dev. 14 (2000) 927-939; M. Christmann, M.T. Tomicic, W.P. Roos, B. Kaina, Mechanisms of human DNA repair: an update, Toxicology 193 (2003) 3-34; N.B. Larsen, M. Rasmussen, L.J. Rasmussen, Nuclear and mitochondrial DNA repair: similar pathways? Mitochondrion 5 (2005) 89-108]. Protein interactions are not only important for function, but also for regulation of nuclear import that is necessary for proper localization of the repair proteins. This review summarizes the current knowledge on nuclear import mechanisms of DNA excision repair proteins and provides a model that categorizes the import by different mechanisms, including classical nuclear import, co-import of proteins, and alternative transport pathways. Most excision repair proteins appear to contain classical NLS sequences directing their nuclear import, however, additional import mechanisms add alternative regulatory levels to protein import, indirectly affecting protein function. Protein co-import appears to be a mechanism employed by the composite repair systems NER and MMR to enhance and regulate nuclear accumulation of repair proteins thereby ensuring faithful DNA repair.


Sujet(s)
Noyau de la cellule/métabolisme , Réparation de l'ADN , ADN/génétique , Transport nucléaire actif , Noyau de la cellule/génétique , Humains , Transport des protéines
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...