Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 3 de 3
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Trials ; 25(1): 433, 2024 Jul 02.
Article de Anglais | MEDLINE | ID: mdl-38956676

RÉSUMÉ

BACKGROUND: Surfactant is a well-established therapy for preterm neonates affected by respiratory distress syndrome (RDS). The goals of different methods of surfactant administration are to reduce the duration of mechanical ventilation and the severity of bronchopulmonary dysplasia (BPD); however, the optimal administration method remains unknown. This study compares the effectiveness of the INtubate-RECruit-SURfactant-Extubate (IN-REC-SUR-E) technique with the less-invasive surfactant administration (LISA) technique, in increasing BPD-free survival of preterm infants. This is an international unblinded multicenter randomized controlled study in which preterm infants will be randomized into two groups to receive IN-REC-SUR-E or LISA surfactant administration. METHODS: In this study, 382 infants born at 24+0-27+6 weeks' gestation, not intubated in the delivery room and failing nasal continuous positive airway pressure (nCPAP) or nasal intermittent positive pressure ventilation (NIPPV) during the first 24 h of life, will be randomized 1:1 to receive IN-REC-SUR-E or LISA surfactant administration. The primary outcome is a composite outcome of death or BPD at 36 weeks' postmenstrual age. The secondary outcomes are BPD at 36 weeks' postmenstrual age; death; pulse oximetry/fraction of inspired oxygen; severe intraventricular hemorrhage; pneumothorax; duration of respiratory support and oxygen therapy; pulmonary hemorrhage; patent ductus arteriosus undergoing treatment; percentage of infants receiving more doses of surfactant; periventricular leukomalacia, severe retinopathy of prematurity, necrotizing enterocolitis, sepsis; total in-hospital stay; systemic postnatal steroids; neurodevelopmental outcomes; and respiratory function testing at 24 months of age. Randomization will be centrally provided using both stratification and permuted blocks with random block sizes and block order. Stratification factors will include center and gestational age (24+0 to 25+6 weeks or 26+0 to 27+6 weeks). Analyses will be conducted in both intention-to-treat and per-protocol populations, utilizing a log-binomial regression model that corrects for stratification factors to estimate the adjusted relative risk (RR). DISCUSSION: This trial is designed to provide robust data on the best method of surfactant administration in spontaneously breathing preterm infants born at 24+0-27+6 weeks' gestation affected by RDS and failing nCPAP or NIPPV during the first 24 h of life, comparing IN-REC-SUR-E to LISA technique, in increasing BPD-free survival at 36 weeks' postmenstrual age of life. TRIAL REGISTRATION: ClinicalTrials.gov NCT05711966. Registered on February 3, 2023.


Sujet(s)
Prématuré , Surfactants pulmonaires , Syndrome de détresse respiratoire du nouveau-né , Femelle , Humains , Nouveau-né , Extubation/effets indésirables , Dysplasie bronchopulmonaire/thérapie , Ventilation en pression positive continue , Âge gestationnel , Intubation trachéale , Études multicentriques comme sujet , Surfactants pulmonaires/administration et posologie , Essais contrôlés randomisés comme sujet , Syndrome de détresse respiratoire du nouveau-né/thérapie , Syndrome de détresse respiratoire du nouveau-né/mortalité , Facteurs temps , Résultat thérapeutique
2.
J Environ Manage ; 134: 117-26, 2014 Feb 15.
Article de Anglais | MEDLINE | ID: mdl-24473345

RÉSUMÉ

Agricultural terraces are features that provide a number of ecosystem services. As a result, their maintenance is supported by measures established by the European Common Agricultural Policy (CAP). In the framework of CAP implementation and monitoring, there is a current and future need for the development of robust, repeatable and cost-effective methodologies for the automatic identification and monitoring of these features at farm scale. This is a complex task, particularly when terraces are associated to complex vegetation cover patterns, as happens with permanent crops (e.g. olive trees). In this study we present a novel methodology for automatic and cost-efficient identification of terraces using only imagery from commercial off-the-shelf (COTS) cameras on board unmanned aerial vehicles (UAVs). Using state-of-the-art computer vision techniques, we generated orthoimagery and digital surface models (DSMs) at 11 cm spatial resolution with low user intervention. In a second stage, these data were used to identify terraces using a multi-scale object-oriented classification method. Results show the potential of this method even in highly complex agricultural areas, both regarding DSM reconstruction and image classification. The UAV-derived DSM had a root mean square error (RMSE) lower than 0.5 m when the height of the terraces was assessed against field GPS data. The subsequent automated terrace classification yielded an overall accuracy of 90% based exclusively on spectral and elevation data derived from the UAV imagery.


Sujet(s)
Agriculture , Technologie de télédétection , Traitement d'image par ordinateur
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...