Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 66
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Cytogenet Genome Res ; 162(10): 570-578, 2022.
Article de Anglais | MEDLINE | ID: mdl-36682354

RÉSUMÉ

There are 2 genetically divergent groups in the dojo loach Misgurnus anguillicaudatus: A and B. Although most wild-type diploids reproduce sexually, clonal diploids (clonal loach) reproduce gynogenetically in certain areas. Clonal loaches produce unreduced isogenic eggs by premeiotic endomitosis, and such diploid eggs develop gynogenetically following activation by the sperm of sympatric wild-type diploids. These clonal loaches have presumably arisen from past hybridization events between 2 different ancestors. The genomic differences between these 2 groups have not been completely elucidated. Thus, new genetic and cytogenetic markers are required to distinguish between these 2 groups. Here, we compared the 5S rDNA region to develop markers for the identification of different dojo loach groups. The nontranscribed sequence (NTS) of the 5S rDNA was highly polymorphic and group-specific. NTSs were found in clades of 2 different groups in clonal loaches. In contrast, we did not find any group-specific sequences in the coding region of the 5S rRNA gene. Sequences were located near the centromere of the short arm of the largest submetacentric chromosomes in groups A and B and clonal loaches. Thus, the 5S rDNA of the dojo loach is conserved at the chromosomal location. Whereas, the sequences of the NTS regions evolved group-specifically in the dojo loach, with the sequences of both groups being conserved in clonal loaches.

2.
Zebrafish ; 18(5): 316-325, 2021 10.
Article de Anglais | MEDLINE | ID: mdl-34491109

RÉSUMÉ

The zebrafish is a valuable model organism that is widely used in studies of vertebrate development. In the laboratory, zebrafish embryonic development is normally carried out at 28.5°C. In this study, we sought to determine whether it was possible to modify the speed of embryonic development through the use of short- and long-term variations in incubation temperature. After incubation at 20°C-32°C, most early-stage embryos survived to the epiboly stage, whereas more than half of the embryos died at <20°C or >32°C. The rate of development differed between embryos incubated at the lowest (18°C) and highest (34°C) temperatures: a difference of 60 min was observed at the 2-cell stage and 290 min at the 1k-cell stage. When blastulae that had developed at 28°C were transferred to a temperature lower than 18°C for one or more hours, they developed normally after being returned to the original 28°C. Analyses using green fluorescent protein-buckyball mRNA and in situ hybridization against vasa mRNA showed that primordial germ cells increase under low-temperature culture; this response may be of use for studies involving heterochronic germ cell transplantation. Our study shows that embryonic developmental speed can be slowed, which will be of value for performing time-consuming, complicated, and delicate microsurgical operations.


Sujet(s)
Embryon non mammalien , Danio zébré , Animaux , Blastula , Développement embryonnaire , Température
3.
Theriogenology ; 172: 95-105, 2021 Sep 15.
Article de Anglais | MEDLINE | ID: mdl-34147877

RÉSUMÉ

Ginbuna (Carassius auratus langsdorfii (Teleostei: Cyprinidae)) occur in diploid, triploid, and tetraploid forms in wild populations. Diploid females reproduce bisexually, whereas polyploid (triploid and tetraploid) females reproduce gynogenetically with no contribution from sperm nuclei. However, tetraploid males produce diploid sperm. The mechanism responsible for the differences in egg and sperm ploidy has not been elucidated as tetraploid males are rare in wild populations. Here, we aimed to characterize the types of sperm and elucidate the mechanism of spermatogenesis in ginbuna. In the present study, we artificially produced tetraploid males by crossbreeding triploid ginbuna females with diploid goldfish (Carassius auratusauratus) males via accidental incorporation of sperm nuclei. We then examined spermatogenesis to reveal the process by which reduced diploid sperm are generated from tetraploid germ cells. DNA fingerprinting by random amplified polymorphic DNA (RAPD)-PCR indicated that the tetraploid progeny had a paternally derived genome. For the tetraploid male sperm, there were narrow (N-type) and broad (B-type) flow cytometrical histograms. The N-type were determined to be diploid with a low coefficient of variation (CV) by flow cytometry. The B-type were found to be aneuploid (hypodiploid to hexaploid) with a high CV. The head sizes of B-type sperm were variable, whereas those of the N-type sperm were uniform. Computer-assisted sperm analysis (CASA) revealed that both the haploid and diploid B-type sperm were weakly motile compared with the haploid sperm of goldfish and the diploid N-type sperm of tetraploid males. Bivalents and various multivalents were observed in the meiotic configurations of diploid spermatogenesis. In aneuploid spermatogenesis, most of the chromosomes were unpaired univalents and there were very few bivalents. Our findings provide empirical evidence for two different types of spermatogenesis in tetraploid C. a. langsdorfii males. Meiotic synapses might explain the observed differences in the ploidy status of the two sperm types.


Sujet(s)
Diploïdie , Tétraploïdie , Aneuploïdie , Animaux , Femelle , Poisson rouge/génétique , Haploïdie , Mâle , Polyploïdie , Technique RAPD/médecine vétérinaire , Spermatozoïdes , Triploïdie
4.
Cytogenet Genome Res ; 161(3-4): 178-186, 2021.
Article de Anglais | MEDLINE | ID: mdl-33971659

RÉSUMÉ

In dojo loach (Misgurnus anguillicaudatus), although most wild types are gonochoristic diploids that are genetically differentiated into 2 groups, A and B, clonal lineages appear in certain localities. Clonal loaches have been considered to have hybrid origins between the 2 groups by a series of genetic studies. In this study, using FISH with a newly developed probe (ManDra-A), we identified 26 (1 pair of metacentric and 12 pairs of telocentric chromosomes) of 50 diploid chromosomes in contemporary wild-type group A loach. In contrast, ManDra-A signals were not detected on metacentric chromosomes derived from the ancestral group A of clonal loach. The FISH results clearly showed the presence of certain differentiations in metacentric chromosomes between ancestral and contemporary group A loach. Two-color FISH with ManDra-A and group B-specific ManDra (renamed ManDra-B) probes reconfirmed the hybrid origin of clones by identifying chromosomes from both groups A and B in metaphases. Our results showed the hybrid origin of clonally reproducing fish and the possibility that chromosomal differentiation between ancestral and contemporary fish can affect gametogenesis. In meiotic spermatocytes of sex-reversed clones, ManDra-A, and not ManDra-B, signals were detected in 12 out of 50 bivalents. Thus, the results further support the previous conclusion that clonal gametogenesis was assured by pairing between sister chromosomes duplicated from each ancestral chromosome from group A or B. Our study deepens the knowledge about the association between clonality and hybridity in unisexual vertebrates.


Sujet(s)
Chromosomes/génétique , Cypriniformes/génétique , Sondes d'ADN/génétique , Génome/génétique , Hybridation fluorescente in situ/méthodes , Animaux , Appariement des chromosomes/génétique , Clones cellulaires/métabolisme , Cypriniformes/classification , Diploïdie , Femelle , Hybridation génétique/génétique , Mâle , Méiose/génétique , Microscopie de fluorescence , Triploïdie
5.
Zygote ; 28(6): 470-481, 2020 Dec.
Article de Anglais | MEDLINE | ID: mdl-32772964

RÉSUMÉ

The cause of hybrid sterility and inviability has not been analyzed in the fin-fish hybrid, although large numbers of hybridizations have been carried out. In this study, we produced allo-diploid hybrids by cross-fertilization between female goldfish (Carassius auratus) and male golden venus chub (Hemigrammocypris rasborella). Inviability of these hybrids was due to breakage of the enveloping layer during epiboly or due to malformation with serious cardiac oedema around the hatching stage. Spontaneous allo-triploid hybrids with two sets of the goldfish genome and one set of the golden venus chub genome developed normally and survived beyond the feeding stage. This improved survival was confirmed by generating heat-shock-induced allo-triploid hybrids that possessed an extra goldfish genome. When inviable allo-diploid hybrid cells were transplanted into goldfish host embryos at the blastula stage, these embryos hatched normally, incorporating the allo-diploid cells. These allo-diploid hybrid cells persisted, and were genetically detected in a 6-month-old fish. In contrast, primordial germ cells taken from allo-diploid hybrids and transplanted into goldfish hosts at the blastula stage had disappeared by 10 days post-fertilization, even under chimeric conditions. In allo-triploid hybrid embryos, germ cells proliferated in the gonad, but had disappeared by 10 weeks post-fertilization. These results showed that while hybrid germ cells are inviable even in chimeric conditions, hybrid somatic cells remain viable.


Sujet(s)
Poisson rouge , Animaux , Carpes (poisson) , Diploïdie , Femelle , Cellules germinales , Mâle , Triploïdie
6.
PLoS One ; 15(5): e0233885, 2020.
Article de Anglais | MEDLINE | ID: mdl-32470029

RÉSUMÉ

In the Danio species, interspecific hybridization has been conducted in several combinations. Among them, only the hybrid between a zebrafish (D. rerio) female and a spotted danio (D. nigrofasciatus) male was reported to be fertile. However, beyond these investigations, by means of reproductive biology, gametes of the hybrid have also not been investigated genetically. For this study, we induced a hybrid of the D. rerio female and D. nigrofasciatus male in order to study its developmental capacity, reproductive performance and gametic characteristics. Its hybrid nature was genetically verified by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis of the rhodopsin gene. Almost all the hybrids (36/37) were males, and only one was female. Developing oocytes were observed in the hybrid female, but ovulated eggs have not been obtained thus far. Microscopic observation revealed various head sizes of sperm in the hybrid males. Flow cytometry showed that the hybrid males generated aneuploid sperm with various ploidy levels up to diploidy. In backcrosses between D. rerio females and hybrid males, fertilization rates were significantly lower than the control D. rerio, and most resultant progeny with abnormal appearance exhibited various kinds of aneuploidies ranging from haploidy to triploidy, but only one viable progeny, which survived more than four months, was triploid. This suggested the contribution of fertile diploid sperm of the hybrid male to successful fertilization and development.


Sujet(s)
Aneuploïdie , Fécondation/physiologie , Hybridation génétique , Spermatozoïdes/physiologie , Danio zébré/génétique , Danio zébré/physiologie , Animaux , Croisements génétiques , ADN/génétique , Femelle , Mâle , Ovaire/cytologie , Ploïdies , Rhodopsine/génétique , Sexe-ratio , Spermatozoïdes/cytologie
7.
Evolution ; 74(2): 392-403, 2020 02.
Article de Anglais | MEDLINE | ID: mdl-31873961

RÉSUMÉ

Unisexual vertebrates (i.e., those produced through clonal or hemiclonal reproduction) are typically incapable of purging deleterious mutations, and, as a result, are considered short-lived in evolutionary terms. In hemiclonal reproduction (hybridogenesis), one parental genome is eliminated during oogenesis, producing haploid eggs containing the genome of a single parent. Hemiclonal hybrids are usually produced by backcrossing hemiclonal hybrids with males of the paternal species. When hemiclonal hybrids from a genus of greenlings (Hexagrammos) are crossed with males of the maternal species, the progeny are phenotypically similar to the maternal species and produce recombinant gametes by regular meiosis. The present study was conducted to determine if the hemiclonal genome is returned to the gene pool of the maternal species in the wild. Using a specific cytogenetic marker to discriminate between such progeny and the maternal species, we observed that Hexagrammos hybrids mated with maternal and paternal ancestors at the same frequency. This two-way backcrossing in which clonal genomes are returned to the gene pool where they can undergo recombination plays an important role in increasing the genetic variability of the hemiclonal genome and reducing the extinction risk. In this way, hybrid lineages may have survived longer than predicted through occasional recombinant generation.


Sujet(s)
Évolution biologique , Poissons/physiologie , Hybridation génétique , Reproduction , Animaux , Femelle , Poissons/génétique , Haploïdie , Mâle
8.
Cytogenet Genome Res ; 158(1): 46-54, 2019.
Article de Anglais | MEDLINE | ID: mdl-31158836

RÉSUMÉ

Gonochoristic wild-type dojo loaches (Misgurnus anguillicaudatus) are diploid (2n = 50) and reproduce bisexually. However, sympatric clonal diploids generate unreduced diploid isogenic eggs that develop gynogenetically. Clone-origin triploidy arises following the incorporation of a haploid wild-type sperm nucleus into the diploid egg. Triploid females produce fertile haploid eggs by meiotic hybridogenesis, while triploid males are sterile. Clonal loaches arose from past hybridization event(s) between genetically diverse groups, A and B. Artificial hybrid females between the 2 groups produce unreduced and/or aneuploid eggs, but the hybrid males are sterile. In this study using FISH, we analyzed chromosome pairing in meiotic cells of clone-origin triploid and inter-group hybrid males to clarify the cytogenetic mechanisms underlying the male-specific sterility. We used a repetitive sequence probe to identify group B-derived chromosomes and a 5.8S + 28S rDNA probe to identify pairs of homologous chromosomes. We found that asynapsis and irregular synapsis occur in triploid and hybrid males containing 2 different genomes and that this may cause the formation of sterile germ cells. These results will help us to understand hybrid sterility from the viewpoint of synapsis behavior.


Sujet(s)
Cypriniformes/génétique , Maladies des poissons/génétique , Infertilité masculine/médecine vétérinaire , Animaux , Chromosomes/génétique , Chromosomes/ultrastructure , Croisements génétiques , ADN ribosomique/génétique , Femelle , Génome , Hybridation fluorescente in situ , Infertilité masculine/génétique , Mâle , Méiose/génétique , Tératozoospermie , Triploïdie
9.
Int J Dev Biol ; 63(11-12): 597-604, 2019.
Article de Anglais | MEDLINE | ID: mdl-32149369

RÉSUMÉ

The goldfish (Carassius auratus auratus) is a useful species for embryonic micromanipulations because of its large egg size and wide temperature tolerance. Here, we describe in detail the rate of development and morphological characteristics of goldfish embryos incubated at temperatures between 10 °C and 30 °C. The cleavage speed increased rapidly as temperature increased. Synchronized cell divisions occurred at 131 min intervals at 10 °C, at 33 min intervals at 20 °C, and at 19 min intervals at 30 °C during the cleavage period. The rate of hatched abnormal embryos significantly increased at temperatures of 26 °C and above, while there was no change in the number of abnormal embryos at temperatures less than 24 °C. Moreover, the blastomeres around the center of the blastodisc rose in the direction of the animal pole at temperatures less than 14 °C. At the lower temperatures, clusters of maternally-supplied germplasm were visualized both at the ends of the first three cleavage furrows and at the border between the lower and upper tiers at the 16- to 32-cell stage, with injection of artificial mRNA and vasa in situ hybridization. This study showed that temperature affects not only developmental speed but also the shape of the blastodisc and the distribution of maternally-supplied materials in the blastodisc. By controlling the temperature, it is possible for researchers to prepare many stages of embryos and shapes of the blastodisc from a single batch of eggs.


Sujet(s)
Embryon non mammalien/embryologie , Développement embryonnaire/physiologie , Poisson rouge/embryologie , Température , Animaux , Différenciation cellulaire/génétique , Division cellulaire/génétique , Mouvement cellulaire , Embryon non mammalien/cytologie , Embryon non mammalien/métabolisme , Développement embryonnaire/génétique , Régulation de l'expression des gènes au cours du développement , Hybridation in situ , Mésoderme/cytologie , Mésoderme/embryologie , Mésoderme/métabolisme , Facteurs temps
11.
Zygote ; 26(5): 408-416, 2018 Oct.
Article de Anglais | MEDLINE | ID: mdl-30370880

RÉSUMÉ

SummaryPolyspermy was initiated by microinjecting a multiple number of sperm into the activated and dechorionated eggs of dojo loach Misgurnus anguillicaudatus (Teleostei: Cobitidae). A 10-nl sperm suspension from an albino (recessive trait) male (105, 106, 107 or 108 sperm ml -1) was microinjected into eggs from a wild-type female. Although the rates of embryos developing into the blastula stage in the injection group at the highest sperm concentration were similar to that of the control group, the hatching rates of the injection group were much lower. A large proportion of embryos that developed from the injected eggs was haploid and were mosaics containing haploid cells. Most of the haploid and mosaic embryos inherited only paternally derived alleles in the microsatellite markers (i.e. androgenesis was initiated by injecting multiple sperm). In contrast, some haploid embryos contained both paternal and maternal alleles despite haploidy, suggesting that they were mosaics consisting of cells with either paternal or maternal inheritance. The injected eggs displayed diploid, hypotriploid and triploid cells, all of which included both maternally and paternally derived alleles. One albino tetraploid with only paternal alleles was also observed from the injected eggs. These results suggested that part of the sperm microinjected into the ooplasm should form a male pronucleus/pronuclei, which could develop by androgenesis or could fuse with the female pronucleus/pronuclei. Therefore, microinjection of multiple sperm should be considered a potential technique to induce androgenesis and polyploidy.


Sujet(s)
Cypriniformes/embryologie , Fécondation in vitro/méthodes , Polyploïdie , Spermatozoïdes , Animaux , Blastula/cytologie , Blastula/physiologie , Embryon non mammalien/physiologie , Femelle , Haploïdie , Mâle , Microinjections , Répétitions microsatellites , Ovule/physiologie
12.
Chromosome Res ; 26(4): 243-253, 2018 12.
Article de Anglais | MEDLINE | ID: mdl-29882067

RÉSUMÉ

Wild-type dojo loach (Misgurnus anguillicaudatus) commonly reproduces bisexually as a gonochoristic diploid (2n = 50), but gynogenetically reproducing clonal diploid lines (2n = 50) exist in certain districts in Japan. Clones have been considered to develop from past hybridization event(s) between two genetically diverse groups, A and B, within the species. Fluorescence in situ hybridization analyses using the repetitive sequence "ManDra" as a probe clearly distinguished 25 chromosomes derived from group B out of a total of 50 diploid chromosomes of the clone, providing strong molecular cytogenetic evidence of its hybrid origin. In meiosis, diploid wild-type showed 25 bivalents, while diploid clones revealed 50 bivalents, indicating the presence of 100 chromosomes. In meiotic chromosome spreads in sex-reversed clonal males, ManDra signals were detected in 25 out of 50 bivalents, and only one out of two bivalents possessing major ribosomal RNA coding regions exhibited two positive ManDra signals. In clonal females, ManDra signals were detected in approximately 25 out of 50 bivalents. Thus, unreduced gametes should be generated by the pairing between sister chromosomes doubled from each ancestral chromosome from the different groups by premeiotic endomitosis. Sister chromosome pairing should assure production of unreduced isogenic clonal gametes due to the absence of the influence of recombination or crossing over.


Sujet(s)
Appariement des chromosomes , Clonage d'organisme/méthodes , Reproduction asexuée/génétique , Animaux , Cypriniformes , Diploïdie , Femelle , Poissons , Cellules germinales , Hybridation génétique , Hybridation fluorescente in situ , Mâle
13.
Zebrafish ; 15(1): 33-44, 2018 02.
Article de Anglais | MEDLINE | ID: mdl-29261026

RÉSUMÉ

Androgenesis is useful for induction of doubled haploids from male genetic resources and contributes to the restoration of individuals from cryopreserved sperm. Here, we determined the suitable conditions for egg in vitro preservation and the suitable dose of UV irradiation for genetic inactivation of the egg nucleus, and established an improved procedure for induction of androgenetic-doubled haploids in zebrafish. The suitable solution for egg preservation was evaluated by the fertilization rate using different types of solutions or conditions. Hank's solution with 0.5% bovine serum albumin (pH8.0) was suitable for the preservation of zebrafish eggs. In addition, we discovered an improvement of fertilization rates by temporal preservation of ovulated eggs in the suitable solution. UV irradiation of eggs at 50-75 mJ/cm2 induced haploid embryos. Microsatellite genotyping using eight loci revealed the paternity and homozygosity of the putative androgenetic doubled haploids. The yield rate of androgenetic doubled haploids, which were induced by UV irradiation and heat shock, ranged from 0.4% to 10.7%.


Sujet(s)
Cryoconservation/méthodes , Haploïdie , Rayons ultraviolets , Danio zébré/génétique , Danio zébré/physiologie , Animaux , Femelle , Fécondation , Mâle , Ovule , Spermatozoïdes
14.
Int J Dev Biol ; 61(6-7): 397-405, 2017.
Article de Anglais | MEDLINE | ID: mdl-28695959

RÉSUMÉ

In teleost fish, the gonad originates from primordial germ cells (PGCs) and somatic cells. However, it is not clear whether the final gonadal position is determined by anteroposterior and dextrosinistral differentiation of endodermal organs or by the distribution of PGCs. The pond smelt has a transparent body even after hatching, enabling clear observation of PGC distribution and endodermal differentiation. Here, we first examined normal embryonic development to define the spatio-temporal characteristics of our developmental model. Second, the origin of PGCs was investigated by in situ hybridization. Third, the migration route of PGCs was tracked by microinjection of GFP-nos3 3' UTR mRNA and visualization of PGCs by green fluorescent protein. Lastly, differentiation of gonadal and endodermal organs was examined histologically. Maternal vasa transcripts were detected at the ends of cleavage furrows, indicating that PGCs differentiated by inheritance of germplasm as in other teleosts. During gastrulation, PGCs migrated following somatic cell movement and lined both sides of the embryonic body. During the segmentation period, PGCs moved posteriorly and were distributed in a line among dorsal mesentery cells around the posterior part of the intestinal bulb in the 16th to 24th somite region at 3 days post hatching. At 1 month post hatching, the gonad was formed at the 20th somite region. PGC distribution was biased to the left side of the body cavity, while the pancreas was formed on the right side. These results indicate that PGCs accumulate at the gonadal region by dorsal mesentery cells, and gonadal position is determined by the digestive system.


Sujet(s)
Différenciation cellulaire , Mouvement cellulaire/physiologie , Cellules germinales/physiologie , Gonades/embryologie , Osmériformes/physiologie , Animaux , Cellules germinales/cytologie , Gonades/physiologie , Étangs
15.
PLoS One ; 12(7): e0180626, 2017.
Article de Anglais | MEDLINE | ID: mdl-28678883

RÉSUMÉ

Two types of natural hybrids were discovered in populations of three Hexagrammos species (Teleostei: Hexagrammidae) distributed off the southern coast of Hokkaido in the North Pacific Ocean. Both hybrids reproduce by hybridogenesis, in which the maternal haploid genome is transmitted to offspring without recombination and the paternal haploid genome is eliminated during gametogenesis. While natural hybrids are unisexual and reproduce hemiclonally by backcrossing with the paternal species (BC-P), artificial F1-hybrids between the pure species produce recombinant gametes. Thus, despite having the same genome composition, the natural hybrids and the F1-hybrids are not genetically identical. Here, to clarify the differences between both hybrids, we examined the karyotypes of the three Hexagrammos species, their natural hybrids, the artificial F1-hybrids, and several backcrosses. Artificial F1-hybrids have karyotypes and chromosome numbers that are intermediate between those of the parental species. Conversely, the natural hybrids differed from F1-hybrids by having several large metacentric chromosomes and microchromosomes. Since the entire maternal haploid genome is inherited by the natural hybrids, maternal backcrosses (BC-M) between natural hybrids and males of the maternal species (H. octogrammus; Hoc) have a hemiclonal Hoc genome with large chromosomes from the mother and a normal Hoc genome from the father. However, the large chromosomes disappear in offspring of BC-M, probably due to fissuring during gametogenesis. Similarly, microsatellite DNA analysis revealed that chromosomes of BC-M undergo recombination. These findings suggest that genetic factors associated with hemiclonal reproduction may be located on the large metacentric chromosomes of natural hybrids.


Sujet(s)
Hybridation génétique , Caryotypage , Perciformes/génétique , Animaux , Chromosomes , ADN satellite/génétique , Translocation génétique
16.
Sci Rep ; 7(1): 1694, 2017 05 10.
Article de Anglais | MEDLINE | ID: mdl-28490748

RÉSUMÉ

Sturgeons (Acipenseriformes) are among the most endangered species in the world due to fragmentation and destruction of their natural habitats and to overexploitation, mainly for highly priced caviar. This has led to the development of sturgeon culture, originally for reintroduction, but more recently for caviar production. In both cases, accurate species identification is essential. We report a new tool for accurate identification of Huso huso and Acipenser ruthenus based on nuclear DNA markers. We employed ddRAD sequencing to identify species-specific nucleotide variants, which served as specific binding sites for diagnostic primers. The primers allowed identification of Huso huso and Acipenser ruthenus as well as their discrimination from A. baerii, A. schrenckii, A. gueldenstaedtii, A. stellatus, A. persicus, A. mikadoi, A. transmontanus, and H. dauricus and identification of A. ruthenus and H. huso hybrids with these species, except hybrid between A. ruthenus and A. stellatus. The species-specific primers also allowed identification of bester (H. huso × A. ruthenus), the most commercially exploited sturgeon hybrid. The tool, based on simple PCR and gel electrophoresis, is rapid, inexpensive, and reproducible. It will contribute to conservation of remaining wild populations of A. ruthenus and H. huso, as well as to traceability of their products.


Sujet(s)
Noyau de la cellule/génétique , ADN/génétique , Poissons/génétique , Hybridation génétique , Animaux , Marqueurs génétiques , Spécificité d'espèce
17.
Biol Reprod ; 96(4): 780-799, 2017 Apr 01.
Article de Anglais | MEDLINE | ID: mdl-28371886

RÉSUMÉ

Eggs of teleost fish, unlike those of many other animals, allow sperm entry only at a single site, a narrow canal in the egg's chorion called the micropyle. In some fish (e.g., flounder, herring, and Alaska pollock), the micropyle is a narrow channel in the chorion, with or without a shallow depression around the outer opening of micropyle. In some other fish (e.g., salmon, pufferfish, cod, and medaka), the micropyle is like a funnel with a conical opening. Eggs of all the above fish have a glycoprotein tightly bound to the chorion surface around the micropyle. This glycoprotein directs spermatozoa into the micropylar canal in a Ca2+-dependent manner. This substance, called the micropylar sperm attractant or MISA, increases fertilization efficiency and is essential in herring. In flounder, salmon, and perhaps medaka, fertilization is possible without MISA, but its absence makes fertilization inefficient because most spermatozoa swim over the micropyle without entering it. The mechanism underlying sperm-MISA interactions is yet to be determined, but at least in herring the involvement of Ca2+ and K+ channel proteins, as well as CatSper and adenylyl cyclase, is very likely. In some other fish (e.g., zebrafish, loach, and goldfish), the chorion around the micropyle is deeply indented (e.g., zebrafish and loach) or it has radially or spirally arranged grooves around the outer opening of the micropyle (e.g., goldfish). MISA is absent from the eggs of these fish and sperm entry into micropylar canal seems to be purely physical.


Sujet(s)
Poissons/physiologie , Ovule/physiologie , Spermatozoïdes/physiologie , Animaux , Fécondation/physiologie , Mâle , Inhibiteurs de la sérine protéinase/pharmacologie , Spécificité d'espèce , Capacitation des spermatozoïdes/effets des médicaments et des substances chimiques , Interaction sperme-ovule
18.
J Exp Zool B Mol Dev Evol ; 328(3): 240-258, 2017 05.
Article de Anglais | MEDLINE | ID: mdl-28229554

RÉSUMÉ

Teleost egg envelope generally consists of a thin outer layer and a thick inner layer. The inner layer of the Pacific herring egg envelope is further divided into distinct inner layers I and II. In our previous study, we cloned four zona pellucida (ZP) proteins (HgZPBa, HgZPBb, HgZPCa, and HgZPCb) from Pacific herring, two of which (HgZPBa and HgZPCa) were synthesized in the liver and two (HgZPBb and HgZPCb) in the ovary. In this study, we raised antibodies against these four proteins to identify their locations using immunohistochemistry. Our results suggest that inner layer I is constructed primarily of HgZPBa and Ca, whereas inner layer II consists primarily of HgZPBa. HgZPBb and Cb were minor components of the envelope. Therefore, the egg envelope of Pacific herring is primarily composed of liver-synthesized ZP proteins. A comparison of the thickness of the fertilized egg envelopes of 55 species suggested that egg envelopes derived from liver-synthesized ZP proteins tended to be thicker in demersal eggs than those in pelagic eggs, whereas egg envelopes derived from ovarian-synthesized ZP proteins had no such tendency. Our comparison suggests that the prehatching period of an egg with a thick egg envelope is longer than that of an egg with a thin egg envelope. We hypothesized that acquisition of liver-synthesized ZP proteins during evolution conferred the ability to develop a thick egg envelope, which allowed species with demersal eggs to adapt to mechanical stress in the prehatching environment by thickening the egg envelope, while pelagic egg envelopes have remained thin.


Sujet(s)
Évolution biologique , Ovule/métabolisme , Glycoprotéines de la zone pellucide/biosynthèse , Zone pellucide/métabolisme , Séquence d'acides aminés/génétique , Animaux , Clonage moléculaire , Protéines d'oeuf/biosynthèse , Protéines d'oeuf/génétique , Femelle , Poissons/génétique , Poissons/croissance et développement , Ovaire/croissance et développement , Ovaire/métabolisme , Ovule/croissance et développement , Glycoprotéines de la zone pellucide/génétique
19.
Genetica ; 144(5): 601-609, 2016 Oct.
Article de Anglais | MEDLINE | ID: mdl-27660255

RÉSUMÉ

Triploid Chinese loach, Misgurnus anguillicaudatus, hybrids between tetraploids from Hubei Province and diploids from Liaoning Province were mated with either diploid wild-type or triploid hybrids to analyze viability and ploidy of the resultant progenies. Both triploid males and females generated fertile gametes, but progenies from the crosses using gametes of triploid hybrids did not survive beyond the larval stages. In crosses between wild-type diploid females and triploid hybrid males, embryos ranging from 2.2n to 2.6n were predominant with a mode of either 2.4n (chromosome numbers 59, 60, 61) or 2.5n (chromosome numbers 62, 63). Those from the crosses between triploid hybrid females and diploid males gave a modal ploidy level at approximately 2.5n in one case, but a shift to a higher ploidy level was observed in other embryos. In the progenies between triploid hybrid females and males, the ploidy level at approximately 3.0n (chromosome numbers 74, 75, 76) was most frequent. The cytogenetic results of the progenies suggest the production of aneuploid gametes with a modal ploidy level at approximately 1.5n in triploid hybrids. However, a shift to higher chromosome numbers in gametes was observed in certain cases, suggesting the involvement of mortality selection of gametes and/or zygotes with lower chromosome numbers.


Sujet(s)
Aneuploïdie , Cypriniformes/génétique , Diploïdie , Hybridation génétique , Tétraploïdie , Triploïdie , Animaux , Chine , Croisements génétiques , Femelle , Hybridation fluorescente in situ , Caryotype , Mâle , Reproduction , Testicule/cytologie
20.
Sci Rep ; 5: 13346, 2015 Aug 20.
Article de Anglais | MEDLINE | ID: mdl-26289165

RÉSUMÉ

Generation of clonal zebrafish will facilitate large-scale genetic screening and help us to overcome other biological and biotechnological challenges due to their isogenecity. However, protocols for the development of clonal lines have not been optimized. Here, we sought to develop a novel method for generation of clonal zebrafish by androgenesis induced by cold shock. Androgenetic zebrafish doubled haploids (DHs) were induced by cold shock of just-fertilized eggs, and the eggs were then heat shocked to double the chromosome set. The yield rate of putative DHs relative to the total number of eggs used was 1.10% ± 0.19%. Microsatellite genotyping of the putative DHs using 30 loci that covered all 25 linkage groups detected no heterozygous loci, confirming the homozygosity of the DHs. Thus, a clonal line was established from sperm of a DH through a second cycle of cold-shock androgenesis and heat-shock chromosome doubling, followed by genetic verification of the isogenic rate confirming the presence of identical DNA fingerprints by using amplified fragment length polymorphism markers. In addition, our data provided important insights into the cytological mechanisms of cold-shock-induced androgenesis.


Sujet(s)
Ovule/effets des radiations , Danio zébré/métabolisme , Animaux , Lignée cellulaire , Chromosomes/génétique , Clones cellulaires , Basse température , Femelle , Fécondation , Haploïdie , Réaction de choc thermique , Mâle
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...