Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 3 de 3
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Commun Biol ; 7(1): 1129, 2024 Sep 13.
Article de Anglais | MEDLINE | ID: mdl-39271957

RÉSUMÉ

In response to the escalating antibiotic resistance in multidrug-resistant pathogens, we propose an innovative phagemid-based capsid system to generate CRISPR-Cas13a-loaded antibacterial capsids (AB-capsids) for targeted therapy against multidrug-resistant Staphylococcus aureus. Our optimized phagemid system maximizes AB-capsid yield and purity, showing a positive correlation with phagemid copy number. Notably, an 8.65-fold increase in copy number results in a 2.54-fold rise in AB-capsid generation. Phagemids carrying terL-terS-rinA-rinB (prophage-encoded packaging site genes) consistently exhibit high packaging efficiency, and the generation of AB-capsids using lysogenized hosts with terL-terS deletion resulted in comparatively lower level of wild-type phage contamination, with minimal compromise on AB-capsid yield. These generated AB-capsids selectively eliminate S. aureus strains carrying the target gene while sparing non-target strains. In conclusion, our phagemid-based capsid system stands as a promising avenue for developing sequence-specific bactericidal agents, offering a streamlined approach to combat antibiotic-resistant pathogens within the constraints of efficient production and targeted efficacy.


Sujet(s)
Antibactériens , Systèmes CRISPR-Cas , Capside , Staphylococcus aureus résistant à la méticilline , Staphylococcus aureus résistant à la méticilline/effets des médicaments et des substances chimiques , Staphylococcus aureus résistant à la méticilline/génétique , Capside/métabolisme , Capside/effets des médicaments et des substances chimiques , Antibactériens/pharmacologie , Infections à staphylocoques/microbiologie , Infections à staphylocoques/traitement médicamenteux
2.
mBio ; 15(6): e0033924, 2024 Jun 12.
Article de Anglais | MEDLINE | ID: mdl-38988221

RÉSUMÉ

The emergence of oxacillin-susceptible methicillin-resistant Staphylococcus aureus (OS-MRSA) has imposed further challenges to the clinical management of MRSA infections. When exposed to ß-lactam antibiotics, these strains can easily acquire reduced ß-lactam susceptibility through chromosomal mutations, including those in RNA polymerase (RNAP) genes such as rpoBC, which may then lead to treatment failure. Despite the increasing prevalence of such strains and the apparent challenges they pose for diagnosis and treatment, there is limited information available on the actual mechanisms underlying such chromosomal mutation-related transitions to reduced ß-lactam susceptibility, as it does not directly associate with the expression of mecA. This study investigated the cellular physiology and metabolism of six missense mutants with reduced oxacillin susceptibility, each carrying respective mutations on RpoBH929P, RpoBQ645H, RpoCG950R, RpoCG498D, RpiAA64E, and FruBA211E, using capillary electrophoresis-mass spectrometry-based metabolomics analysis. Our results showed that rpoBC mutations caused RNAP transcription dysfunction, leading to an intracellular accumulation of ribonucleotides. These mutations also led to the accumulation of UDP-Glc/Gal and UDP-GlcNAc, which are precursors of UTP-associated peptidoglycan and wall teichoic acid. Excessive amounts of building blocks then contributed to the cell wall thickening of mutant strains, as observed in transmission electron microscopy, and ultimately resulted in decreased susceptibility to ß-lactam in OS-MRSA. IMPORTANCE: The emergence of oxacillin-susceptible methicillin-resistant Staphylococcus aureus (OS-MRSA) strains has created new challenges for treating MRSA infections. These strains can become resistant to ß-lactam antibiotics through chromosomal mutations, including those in the RNA polymerase (RNAP) genes such as rpoBC, leading to treatment failure. This study investigated the mechanisms underlying reduced ß-lactam susceptibility in four rpoBC mutants of OS-MRSA. The results showed that rpoBC mutations caused RNAP transcription dysfunction, leading to an intracellular accumulation of ribonucleotides and precursors of peptidoglycan as well as wall teichoic acid. This, in turn, caused thickening of the cell wall and ultimately resulted in decreased susceptibility to ß-lactam in OS-MRSA. These findings provide insights into the mechanisms of antibiotic resistance in OS-MRSA and highlight the importance of continued research in developing effective treatments to combat antibiotic resistance.


Sujet(s)
Antibactériens , DNA-directed RNA polymerases , Staphylococcus aureus résistant à la méticilline , Tests de sensibilité microbienne , Oxacilline , Staphylococcus aureus résistant à la méticilline/génétique , Staphylococcus aureus résistant à la méticilline/effets des médicaments et des substances chimiques , Staphylococcus aureus résistant à la méticilline/enzymologie , Oxacilline/pharmacologie , DNA-directed RNA polymerases/génétique , DNA-directed RNA polymerases/métabolisme , Antibactériens/pharmacologie , bêta-Lactames/pharmacologie , Protéines bactériennes/génétique , Protéines bactériennes/métabolisme , Mutation faux-sens , Paroi cellulaire/effets des médicaments et des substances chimiques , Paroi cellulaire/métabolisme , Paroi cellulaire/génétique , Humains , Mutation , Métabolomique
3.
Sci Rep ; 14(1): 16225, 2024 07 13.
Article de Anglais | MEDLINE | ID: mdl-39003336

RÉSUMÉ

In response to the escalating global threat of antimicrobial resistance, our laboratory has established a phagemid packaging system for the generation of CRISPR-Cas13a-antimicrobial capsids targeting methicillin-resistant Staphylococcus aureus (MRSA). However, a significant challenge arose during the packaging process: the unintentional production of wild-type phages alongside the antimicrobial capsids. To address this issue, the phagemid packaging system was optimized by strategically incorporated silent mutations. This approach effectively minimized contamination risks without compromising packaging efficiency. The study identified the indispensable role of phage packaging genes, particularly terL-terS, in efficient phagemid packaging. Additionally, the elimination of homologous sequences between the phagemid and wild-type phage genome was crucial in preventing wild-type phage contamination. The optimized phagemid-LSAB(mosaic) demonstrated sequence-specific killing, efficiently eliminating MRSA strains carrying target antibiotic-resistant genes. While acknowledging the need for further exploration across bacterial species and in vivo validation, this refined phagemid packaging system offers a valuable advancement in the development of CRISPR-Cas13a-based antimicrobials, shedding light on potential solutions in the ongoing battle against bacterial infections.


Sujet(s)
Systèmes CRISPR-Cas , Capside , Staphylococcus aureus résistant à la méticilline , Mutation , Staphylococcus aureus résistant à la méticilline/génétique , Staphylococcus aureus résistant à la méticilline/effets des médicaments et des substances chimiques , Capside/métabolisme , Antibactériens/pharmacologie , Bactériophages/génétique
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE